Put shortly, the proof is this :-
Figure 18 (b).
Let $A B C D$ be the position of maximum area. Then the flat triangle $\mathrm{AOD}=\mathrm{BOC}$ and their angles at O are equal,
$\therefore \mathrm{OA} . \mathrm{OD}=\mathrm{OB} . \mathrm{OC}$.
$\therefore \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are concyclic.
It obviously applies to any quadrilateral.
The following is not open to the same objection:-
Let $A B C^{\prime} D^{\prime}, A B C^{\prime \prime} D^{\prime \prime}$ be two equal areas on opposite sides of the maximum position.

Bisect $D^{\prime} D^{\prime \prime}$ and $C^{\prime} \mathrm{C}^{\prime \prime}$ and let $A D, B C$ meet in $O$. Then $\mathrm{AD}^{\prime} \mathrm{OD}^{\prime \prime}, \mathrm{BC}^{\prime} \mathrm{OC}^{\prime \prime}$ are kites having $\mathrm{OD}^{\prime}=\mathrm{OD}^{\prime \prime}, \mathrm{OC}^{\prime}=\mathrm{OC}^{\prime \prime}$, and $\mathrm{D}^{\prime} \mathrm{C}^{\prime}=\mathrm{D}^{\prime \prime} \mathrm{C}^{\prime \prime}$.
$\therefore$ triangles $\mathrm{OD}^{\prime} \mathrm{C}^{\prime}, \mathrm{OD}^{\prime \prime} \mathrm{C}^{\prime \prime}$ are congruent.
$\therefore$ after taking away the common $\angle \mathrm{D}^{\prime \prime} \mathrm{OC}^{\prime}, \angle \mathrm{D}^{\prime} \mathrm{OD}^{\prime \prime}=\mathrm{C}^{\prime} \mathrm{OC}^{\prime \prime}$
$\therefore$ their halves $\angle \mathrm{AOD}^{\prime \prime}$ and $\angle \mathrm{BOC}^{\prime}$ are equal.
Also, since triangles $O D^{\prime} \mathrm{C}^{\prime}, \mathrm{OD}^{\prime \prime} \mathrm{C}^{\prime \prime}$ are congruent and the quadrilaterals are equal,

$$
\therefore O^{\prime} A B C^{\prime}=O D^{\prime \prime} A B C^{\prime \prime}
$$

Take away $O^{\prime \prime} \mathrm{ABC}^{\prime}$ and the kites are proved equal in area and so are their halves, $\mathrm{AOD}^{\prime \prime}$ and $\mathrm{BOC}^{\prime}$.

It follows that $\mathrm{OA} . \mathrm{OD}^{\prime \prime}=\mathrm{OB} . \mathrm{OC}^{\prime}$.
This is true for every such pair of equal quadrilaterals, and therefore for the coincident pair, when $\mathrm{D}^{\prime} \mathrm{D}^{\prime \prime}$ coincide on OA and $\mathrm{C}^{\prime} \mathrm{C}^{\prime \prime}$ coincide on OB.
$\therefore$ for the maximum position

$$
\mathrm{OA} \cdot \mathrm{OD}=\mathrm{OB} \cdot \mathrm{OC},
$$

i.e., ABCD is cyclic.

An application of Sturm's Functions.
By J. D. Höppner.

