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Abstract
The categorical models of differential linear logic (LL) are additive categories and those of the differential
lambda-calculus are left-additive categories because of the Leibniz rule which requires the summation
of two expressions. This means that, as far as the differential lambda-calculus and differential LL are
concerned, these models feature finite nondeterminism and indeed these languages are essentially non-
deterministic. We introduce a categorical framework for differentiation which does not require additivity
and is compatible with deterministic models such as coherence spaces and probabilistic models such as
probabilistic coherence spaces.
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1. Introduction
The differential λ-calculus has been introduced in Ehrhard and Regnier (2003), starting from
earlier investigations on the semantics of linear logic (LL) in models based on various kinds of
topological vector spaces; see Ehrhard (2002, 2005). Later on, we proposed in Ehrhard and Regnier
(2004), and Ehrhard (2018) an extension of LL featuring differential operations which appear as an
additional structure of the exponentials (the resource modalities of LL), offering a perfect duality
to the standard rules of dereliction, weakening, and contraction. The differential λ-calculus and
differential LL are about computing formal derivatives of programs and from this point of view
are deeply connected to the kind of formal differentiation of programs used in machine learning
for propagating gradients (i.e., differentials viewed as vectors of partial derivatives) within formal
neural networks. As shown by the recent Brunel et al. (2020) andMazza and Pagani (2021), formal
transformations of programs related to the differential λ-calculus can be used for efficiently imple-
menting gradient back-propagation in a purely functional framework. The differential λ-calculus
and the differential LL are also useful as the foundation for an approach to finite approximations
of programs based on the Taylor expansion – see Ehrhard and Regnier (2008) and Barbarossa and
Manzonetto (2020) – which provides a precise analysis of the use of resources during the execu-
tion of a functional program deeply related with implementations of the λ-calculus in abstract
machines such as the Krivine Machine, as explained in Ehrhard and Regnier (2006).

One should insist on the fact that in the differential λ-calculus, derivatives are not taken with
respect to a ground type of real numbers as in Brunel et al. (2020) andMazza and Pagani (2021) but
can be computed with respect to elements of all types. For instance, it makes sense to compute the
derivative of a functionM : (ι⇒ ι)→ ιwith respect to its argument which is a function from ι, the
type of integers, to itself, thus suggesting the possibility of using this formalism for optimization
purposes in a model such as the probabilistic coherence spaces (PCSs) of Danos and Ehrhard
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(2011) where a program of type ι→ ι is seen as an analytic function transforming probability
distributions on the integers. In Ehrhard (2019), it is also shown how such derivatives can be used
to compute the expectation of the number of steps in the execution of a program. Amajor obstacle
on the extension of programming languages with such derivatives is the fact that PCSs are not a
model of the differential λ-calculus in spite of the fact that the morphisms, being analytic, are
obviously differentiable. The main goal of this paper is to circumvent this obstacle, and let us first
understand it better.

These differential extensions of the λ-calculus and of LL require the possibility of adding terms
of the same type. For instance, to define the operational semantics of the differential λ-calculus,
given a term t such that x :A� t : B and a term u such that � � u :A one has to define a term
∂t
∂x · u such that �, x :A� ∂t

∂x · u : B which can be understood as a linear substitution of u for x in
t and is actually a formal differentiation: x has no reason to occur linearly in t, so this operation
involves the creation of linear occurrences of x in t, and this is done applying the rules of ordi-
nary differential calculus. The most important case is when t is an application t = (t1) t2 where
�, x :A� t1 : C ⇒ B and �, x :A� t2 : C. In that case, we set

∂(t1) t2
∂x

· u=
(
∂t1
∂x

· u
)
t2 +

(
Dt1 ·

(
∂t2
∂x

· u
))

t2

where we use differential application which is a syntactic construct of the language: given � � s :
C ⇒ B and � � v : C, we have � �Ds · v : C ⇒ B. This crucial definition involves a sum corre-
sponding to the fact that x can appear free in t1 and in t2: this is the essence of the “Leibniz rule”
(fg)′ = f ′g + fg′ which has nothing to do with multiplication but everything with the fact that both
f and g can have nonzero derivatives with respect to a common variable they share (logically this
sharing is implemented by a contraction rule).

For this reason, the syntax of the differential λ-calculi and LL features an addition operation on
terms of the same type, and accordingly the categorical models of these formalisms are based on
additive categories. Operationally, such sums correspond to a form of finite nondeterminism: for
instance, if the language has a ground type of integers ιwith constants n such that� � n : ι for each
n ∈N, we are allowed to consider sums such as 42+ 57 corresponding to the nondeterministic
superposition of the two integers (and not at all to their sum 99 in the usual sense!). This can be
considered as a weakness of this approach since, even if one has nothing against nondeterminism
per se, it is not satisfactory to be obliged to enforce it for allowing differential operations which
have nothing to do with it a priori. So the fundamental question is:

Does every logical approach to differentiation require nondeterminism?

We ground our negative answer to this question on the observation made in Ehrhard (2019)
that, in the category of PCS, morphisms of the associated cartesian closed category are analytic
functions and therefore admit all iterated derivatives (at least in the “interior” of the domain
where they are defined). Consider for instance in this category an analytic f : 1→ 1 where 1
(the ⊗ unit of LL) is the [0, 1] interval, meaning that f (x)= ∑∞

n=0 anxn with coefficient an ∈R≥0
such that

∑∞
n=0 an ≤ 1. The derivative f ′(x)= ∑∞

n=0 (n+ 1)an+1xn has no reason to map [0, 1]
to [0, 1] and can even be unbounded on [0, 1) and undefined at x= 1 (and there are programs
whose interpretation behaves in that way). Though, if (x, u) ∈ [0, 1]2 satisfy x+ u ∈ [0, 1], then
f (x)+ f ′(x)u≤ f (x+ u) ∈ [0, 1]. This is true actually of any analytic morphism f between two
PCSs X and Y : we can see the differential of f as mapping a summable pair (x, u) of elements of
X to the summable pair (f (x), f ′(x) · u) of elements of Y . Seeing the differential as such a pair of
functions is central in differential geometry as it allows one, thanks to the chain rule, to turn it into
a functor mapping a smooth map f : X → Y (where X and Y are now manifolds) to the function
Tf : TX → TY which maps (x, u) to (f (x), f ′(x) · u) where TX is the tangent bundle of X, a mani-
fold whose elements are the pairs (x, u) of a point x of X and of a vector u tangent to X at x. The
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concept of tangent category has been introduced in Rosický (1984), see also Cockett and Cruttwell
(2014), precisely to describe categorically this construction and its properties.

Content. We base our approach on a concept of summable pair that we axiomatize as a general
categorical notion in Section 3: a summable category is a category L with 0-morphisms1 together
with a functor S : L → L equipped with three natural transformations from SX to X: two pro-
jections and a sum operation. The first projection also exists in the “tangent bundle” functor of
a tangent category, but the two other morphisms do not. Such a summability structure induces
a monad structure on S (a similar phenomenon occurs in tangent categories). In Section 4, we
consider the case where the category is a cartesian SMC (symmetric monoidal category) equipped
with a resource comonad !_ in the sense of LL. In this setting, we present differentiation as a dis-
tributive law between the monad S and the comonad !_. This allows us to extend S to a strong
monad D̃ on the Kleisli category L! which implements differentiation of nonlinear maps. We
choose the notation D̃ and not simply D to avoid a clash of notation with cartesian differential cat-
egories where D is used for a different, though related, operator. See Cockett and Cruttwell (2014),
Section 4.

This functor D̃ acting on L! is formally similar to the functor T of a tangent category, but it is
important to notice that these two notions cannot be compared in terms of generality:

• first because, in a tangent bundle, when (x, u) ∈ TX, it makes no sense to add x and u or to
consider u alone (independently of x), and hence our summability-based framework is not
more general than tangent categories.

• And second because, given (x, u0), (x, u1) ∈ TX, the local sum (x, u0 + u1) ∈ TX is always
defined in a tangent bundle, whereas in our summability setting, when (x, u0), (x, u1) ∈ D̃X,
u0 and u1 are elements of X which are not necessarily summable.2 So tangent categories are
not more general than our summability structures.

In Section 5, we study the case where the functor S can be defined using a more basic structure
of L based on the object 1 & 1 where & is the cartesian product and 1 is the unit of ⊗: this
is actually what happens in the concrete situations we have in mind. Then, the existence of the
summability structure becomes a property ofL and not an additional structure.We also study the
differential structure in this setting, showing that it boils down to a simple !-coalgebra structure
on 1 & 1 satisfying a few simple equations which automatically hold when the exponential is free;
this is the case in many standard models of LL.

As a running example along the presentation of our categorical constructions, we use the cate-
gory of coherence spaces, the first model of LL historically, introduced in Girard (1987). There are
three main reasons for this choice.

• It is one of the most popular models of LL and of functional languages.
• It is a typical example of a model of LL which is not an additive category, in contrast with the
relational model or the models based on profunctors.

• It does not a priori exhibit the usual features of a model of the differential calculus (no coef-
ficients, no vector spaces, etc), and it strongly suggests that our coherent approach to the
differential λ-calculus might be applied to programming languages which have nothing to
do with probabilities, deep learning, or nondeterminism.

In Section 6, we describe the differential structure of the coherence space model, showing that
it provides an example of an elementarily summable differential category. We observe that, in
the uniform setting of Girard’s coherence space, our differentiation does not satisfy the Taylor
formula, but that this formula will hold if we use instead nonuniform coherence spaces of which
we describe the differential structure.
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In Section 7, we consider the situation where the underlying SMC is closed, that is, it has inter-
nal hom objects. In that case, an additional condition on the summability structure is required,
expressing intuitively that two morphisms are summable iff they are summable pointwise.

Related works. As alreadymentioned our approach has strong similarities with tangent categories
which have been a major source of inspiration, we explained above the differences. There are also
strong connections with differential categories; see Blute et al. (2020). The main difference again
is that differential categories are left-additive which is generally not the case of L! in our case,
we explained why. There are also interesting similarities with Cockett et al. (2020) (still in an
additive setting): our distributive law ∂X might play a role similar to the one of the distributive law
introduced in the Section 5 of that paper. This needs further investigations.

The summable categories introduced here have strong similarities with the partially addi-
tive categories introduced in Arbib and Manes (1980); see Remark 26 for a discussion about
the connections between these two notions: although conveying very close intuitions, summable
categories seem more general than partially additive categories.

In Kerjean and Pédrot (2020), a striking connection between Gödel’s Dialectica interpretation
and the differential λ-calculus and differential LL has been exhibited, with applications to gradi-
ent back-propagation in differential programming. One distinctive feature of Pédrot’s approach
to Dialectica in Pédrot (2015) is to use a “multiset parameterized type” M whose purpose is
apparently to provide some control on the summations allowed when performing Pédrot’s ana-
log of the Leibniz rule (under the Dialectica/differential correspondence of Kerjean and Pédrot
2020) and might therefore play a role similar to our summability functor S. The precise technical
connection is not clear at all, but we believe that this analogy will lead to a unified frame-
work for Dialectica interpretation and coherent differentiation of programs and proofs involving
denotational semantics, proof theory, and differential programming.

Change of terminology and notation. Following suggestions by the reviewers of this article, some
important terminology and notation have been changed with respect to earlier versions of this
work available online.

• We use now the expression elementary summable category instead of canonical summable
category as the adjective “canonical” is somehow too generic and could also be misleading in
a differential setting because of its use in differential geometry. This choice is motivated by
the fact that in the setting of Section 5, the summability and differential structures boil down
to very elementary properties of one specific object in the considered category, namely 1 & 1.

• We use now the notation D instead of I for the object 1 & 1 in the elementary summable
setting because the notation I is already way too overloaded, especially in homotopy theory
for denoting the interval object,3 and also in category theory for denoting the unit of the
monoidal product in a monoidal category (our object 1). Moreover, the letterD suggests that
this object has a kind of differential structure and that it is can be understood as an object
of dual numbers; see for instance Section 1.1.3 of Rosenfeld (2013) (two reasons for using
this letter) a bit like in synthetic differential geometry (SDG) and see Kock (2010). There is
a little discrepancy here: our object D seems closer to the line object R than to the object of
infinitesimalsD of SDG which consists of the x ∈ R such that x2 = 0, but using a notation like
R or R for 1 & 1 would have been even more misleading, suggesting an analogy with the real
line. See also Remark 42.

2. Preliminary Notions and Results
This section provides some more or less standard technical material useful to understand the
paper. It can be skipped and used in a call-by-need manner.
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2.1 Finite multisets
A finite multiset on a setA is a functionm :A→N such that the set supp (m)= {a ∈A |m(a) �= 0}
is finite, and we use Mfin(A) for the set of all finite multisets of elements of A. The cardinality ofm
is #m= ∑

a∈A m(a). We use [ ] for the empty multiset (so that supp ([ ])= ∅ where supp (m)=
{a ∈A |m(a) �= 0} is the support ofm) and ifm0,m1 ∈ Mfin(A) thenm0 +m1 ∈ Mfin(A) is defined
by (m0 +m1)(a)=m0(a)+m1(a). If a1, . . . , an ∈A, we use [a1, . . . , an] for them ∈ Mfin(A) such
that m(a) is the number of i ∈ {1, . . . , n} such that ai = a. If m= [a1, . . . , an] ∈ Mfin(A) and p=
[b1, . . . , bp] ∈ Mfin(B), then m× p= [(ai, bj) | i ∈ {1, . . . , n} and j ∈ {1, . . . , p}] ∈ Mfin(A× B). If
M = [m0, . . . ,mn] ∈ Mfin(Mfin(A)) we set�M = ∑n

i=0 mi ∈ Mfin(A).

2.2 The SMCC of pointed sets
Let Set0 be the category of pointed sets. We use 0X or simply 0 for the distinguished point of the
object X. A morphism f ∈ Set0(X, Y) is a function f : X → Y such that f (0X)= 0Y . The terminal
object is the singleton {0}. The cartesian product X & Y is the ordinary cartesian product, with
0X&Y = (0X , 0Y ). The tensor product X ⊗ Y is defined as:

X ⊗ Y = {(x, y) ∈ X × Y | x= 0⇔ y= 0}
with 0X⊗Y = (0X , 0Y ). The unit of the tensor product is the object 1= {0, ∗} of Set0. This category
is enriched over itself, the distinguished point of Set0(X, Y) being the constantly 0Y function.
Actually, it is monoidal closed with X� Y = Set0(X, Y) and 0X�Y defined by 0X�Y (x)= 0Y for
all x ∈ X. A mono in Set0 is a morphism of Set0 which is injective as a function.

Unless explicitly stipulated, all the categories L we consider in this paper are enriched over
pointed sets, so this assumption will not be mentioned any more. In the case of symmetric
monoidal categories, this also means that the tensor product of morphisms is “bilinear” with
respect to the pointed structure, that is, if f ∈ L (X0, Y0) then f ⊗ 0= 0 ∈ L (X0 ⊗ X1, Y0 ⊗ Y1)
and by symmetry we have 0⊗ f = 0.

2.3 Monoidal and resource categories
Following a well-established tradition, if X is an object of a category L we use X to denote the
identity morphism at X in L .

A symmetric monoidal category (SMC) is a category L equipped with a bifunctor L 2 →
L denoted as ⊗, a monoidal unit 1 which is an object of L and λX ∈ L (1⊗ X, X), ρX ∈
L (X ⊗ 1, X), αX0,X1,X2 ∈ L ((X0 ⊗ X1)⊗ X2, X0 ⊗ (X1 ⊗ X2)) and γX0,X1 ∈ L (X0 ⊗ X1, X1 ⊗ X0)
as associated isomorphisms satisfying the usual McLane coherence commutations. Given objects
X0, . . . , Xn−1 and i< j in {0, . . . , n− 1}, we use γi,j for the canonical swapping iso in L (X0 ⊗
· · · ⊗ Xn−1, X0 ⊗ · · · ⊗ Xi−1 ⊗ Xj ⊗ Xi+1 · · · ⊗ Xj−1 ⊗ Xi ⊗ Xj+1 ⊗ · · · ⊗ Xn−1).

2.3.1 Commutative comonoids
Definition 1. In a SMC L (with the usual notations), a commutative comonoid is a tuple
C = (C,wC, cC) where C ∈ L , wC ∈ L (C, 1) and cC ∈ L (C, C ⊗ C) are such that the following
diagrams commute.

C C ⊗ C

1⊗ C

cC

(λC)−1 wC⊗C

C C ⊗ C

C ⊗ C

cC

cC
γC,C
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C C ⊗ C

C ⊗ C (C ⊗ C)⊗ C C ⊗ (C ⊗ C)

cC

cC C⊗cC
cC⊗C αC,C,C

The category L ⊗ of commutative comonoids has these tuples as objects, and an element of
L ⊗(C,D) is an f ∈ L (C,D) such that the two following diagrams commute

C D

1

f

wC
wD

C D

C ⊗ C D⊗D

cC

f

cD
f⊗f

Theorem 1. For any SMC L the category L ⊗ is cartesian. The terminal object is (1, Id1, (λ1)−1)
(remember that λ1 = ρ1) simply denoted as 1 and for any object C the unique morphism C → 1
is wC. The cartesian product of C0, C1 ∈ L ⊗ is the object C0 ⊗ C1 of L ⊗ such that C0 ⊗ C1 =
C0 ⊗ C1 and the structure maps are defined as:

C0 ⊗ C1 1⊗ 1 1

C0 ⊗ C1 C0 ⊗ C0 ⊗ C1 ⊗ C1 C0 ⊗ C1 ⊗ C0 ⊗ C1

wC0⊗wC1 λ1

cC0⊗cC1 γ2,3

The projections pr⊗i ∈ L ⊗(C0 ⊗ C1, Ci) are given by:

C0 ⊗ C1 1⊗ C1 C1

C0 ⊗ C1 C0 ⊗ 1 C0

wC0⊗C1 λC1

C0⊗wC1
ρC0

.

The proof is straightforward. In a commutative monoid M, multiplication is a monoid
morphismM ×M →M. The following is in the vein of this simple observation.

Lemma 2. If C ∈ L ⊗, then wC ∈ L ⊗(C, 1) and cC ∈ L ⊗(C, C ⊗ C).

Proof. The second statement amounts to the following commutation

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C ⊗ C C ⊗ C ⊗ C ⊗ C

cC

cC cC⊗cC
cC⊗cC γ2,3

which results from the commutativity of C. The first statement is similarly trivial.

2.3.2 Resource categories
The notion of resource category is more general than that of a Seely category in the sense ofMelliès
(2009). We keep only the part of the structure and axioms that we need to define our notion of
differential structure and keep our setting as general as possible.

An object X of an SMC L is exponentiable if the functor _⊗ X has a right adjoint, denoted as
X� _. In that case, we use ev ∈ L ((X� Y)⊗ X, Y) for the counit of the adjunction and, given
f ∈ L (Z ⊗ X, Y) we use cur f for the associated morphism cur f ∈ L (Z, X� Y).

We say that the SMC L is closed (is an SMCC) if any object of L is exponentiable.
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A category L is a resource category if

• L is an SMC;
• L is cartesian with terminal object � (so that 0 is the unique element of L (X,�)) and
cartesian product of X0, X1 denoted (X0 & X1, pr0, pr1) and pairing of morphisms (fi ∈
L (Y , Xi))i=0,1 denoted 〈f0, f1〉 ∈ L (Y , X0 & X1);

• andL is equipped with a resource comonad, that is a tuple (!_, der, dig,m0,m2) where !_ is a
functor L → L which is a comonad with counit der (dereliction) and comultiplication dig
(digging), and m0 ∈ L (1, !�) and m2 ∈ L (!X ⊗ !Y , !(X & Y)) are the Seely isomorphisms
subject to conditions that we do not recall here; see for instance Melliès (2009) apart for the
following which explains how dig interacts withm2.

!X0 ⊗ !X0 !!X0 ⊗ !!X1

!(X0 & X1) !!(X0 & X1) !(!X0 & !X1)

digX0⊗digX1

m2
X0,X1

m2
!X0,!X1

digX0&X1 !〈!pr0,!pr1〉
(1)

Then !_ inherits a lax symmetricmonoidalityμ0,μ2 onL (considered as an SMC). Thismeans
that one can defineμ0 ∈ L (1, !1) andμ2

X0,X1
∈ L (!X0 ⊗ !X1, !(X0 ⊗ X1)) satisfying suitable coher-

ence commutations. Explicitly these morphisms are given by:

1 !� !!� !1m0 dig� !(m0)−1

!X0 ⊗ !X1 !(X0 & X1) !!(X0 & X1) !(!X0 ⊗ !X1)

!(X0 ⊗ X1)

m2
X0,X1 digX0&X1 !(m2

X0,X1
)−1

!(derX0⊗derX1 )

Lemma 3. The following diagram commutes:

!X0 ⊗ !X1 !(X0 ⊗ X1)

!(X0 & X1) !�

μ2
X0,X1

m2
X0,X1 !0

!0

Proof. This results from the definition of μ2 and from the following commutation

!X !!X

!�

digX

!0
!0

which results from the observation that !0 ∈ L (!!X, !0) can be written !0= !(0 derX).

For any X ∈ L , it is possible to define a contraction morphism contrX ∈ L (!X, !X ⊗ !X)
and a weakening morphism weakX ∈ L (!X, 1) turning !X into a commutative comonoid. These
morphisms are defined as follows:

!X !� 1!0 (m0)−1

!X !(X & X) !X ⊗ !X!〈Id,Id〉 (m2)−1

.
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Lemma 4. The two following diagrams commute in any resource category L .

1⊗ !Y 1⊗ 1 1

!� ⊗ !Y !(� ⊗ Y) !�

1⊗weakY

m0⊗!Y

λ1

m0

μ2�,Y !0

!X0 ⊗ !X1 ⊗ !Y !X0 ⊗ !X1 ⊗ !Y ⊗ !Y !X0 ⊗ !Y ⊗ !X1 ⊗ !Y

!(X0 & X1)⊗ !Y !(X0 ⊗ Y)⊗ !(X1 ⊗ Y)

!((X0 & X1)⊗ Y) !((X0 ⊗ Y) & (X1 ⊗ Y))

Id⊗contrY

m2
X0,X1

⊗!Y

γ2,3

μ2
X0,Y

⊗μ2
X1,Y

μ2
X0&X1,Y

m2
(X0⊗Y),(X1⊗Y)

!〈pr0⊗Y ,pr1⊗Y〉

Proof. For the first diagram, we have

!0μ2�,Y (m0 ⊗ !Y)= !0m2�,Y (m0 ⊗ !Y) by Lemma 3
= !0 !〈�, Y〉 λ!Y by the monoidality equations ofm0,m2

= !0 λ!Y
and

m0 λ1 (1⊗weakY )=m0 weakY λ!Y by naturality of λ
= !0 λ!Y by definition of weakY .

For the second diagram, we compute

f1 = !〈pr0 ⊗ Y , pr1 ⊗ Y〉μ2
X0&X1,Y

= !〈pr0 ⊗ Y , pr1 ⊗ Y〉 !(derX0&X1 ⊗ derY ) !(m2
X0&X1,Y )

−1 digX0&X1&Y m2
X0&X1,Y

by definition of μ2

= !((derX0 ⊗ derY ) & (derX1 ⊗ derY )) !〈!pr0 ⊗ !Y , !pr1 ⊗ !Y〉
!(m2

X0&X1,Y )
−1 digX0&X1&Y m2

X0&X1,Y by naturality of der
= !((derX0 ⊗ derY ) & (derX1 ⊗ derY )) f2

where

f2 = !〈!pr0 ⊗ !Y , !pr1 ⊗ !Y〉 !(m2
X0&X1,Y )

−1 digX0&X1&Y m2
X0&X1,Y

= !((m2
X0,Y )

−1 & (m2
X1,Y )

−1) !〈!pr0, !pr1〉 !!q digX0&X1&Y m2
X0&X1,Y

by naturality of m2. In that expression, pri ∈ L (X0 & Y & X1 & Y , Xi & Y) and q=
〈pr0, pr2, pr1, pr2〉 ∈ L (X0 & X1 & Y , X0 & Y & X1 & Y). We have used the commutation of
the following diagram

!(X0 & X1 & Y) !(X0 & Y & X1 & Y) !(X0 & Y)& !(X1 & Y)

!(X0 & X1)⊗ !Y (!X0 ⊗ !Y) & (!X1 ⊗ !Y)

!q

(m2
X0&X1,Y

)−1

〈!pr0,!pr1〉

(m2
X0,Y

)−1&(m2
X1,Y

)−1

〈!pr0⊗!Y ,!pr1⊗!Y〉

which is easily proved by post-composing the two equated morphisms with pri ∈ L ((!X0 ⊗ !Y) &
(!X1 ⊗ !Y), (!Xi ⊗ !Y)) for i= 0, 1.

https://doi.org/10.1017/S0960129523000129 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000129


Mathematical Structures in Computer Science 267

Observe that

!((derX0 ⊗ derY ) & (derX1 ⊗ derY ))
=m2

X0⊗Y ,X1⊗Y (!(derX0 ⊗ derY )⊗ !(derX1 ⊗ derY )) (m2
!X0⊗!Y ,!X1⊗!Y )

−1

by naturality ofm2. For the same reason, the following diagram commutes:

!(!(X0 & Y) & !(X1 & Y)) !((!X0 ⊗ !Y) & (!X1 ⊗ !Y))

!!(X0 & Y)⊗ !!(X1 & Y) !(!X0 ⊗ !Y)⊗ !(!X1 ⊗ !Y)

!
(
(m2

X0,Y
)−1&(m2

X1,Y
)−1

)
(m2

!(X0&Y),!(X1&Y)
)−1 (m2

!X0⊗!Y ,!X1⊗!Y )
−1

(!(m2
X0,Y

)−1⊗!(m2
X1,Y

)−1)

and hence

f1 =m2
X0⊗Y ,X1⊗Y (!(derX0 ⊗ derY )⊗ !(derX1 ⊗ derY )) (m2

!X0⊗!Y ,!X1⊗!Y )
−1

!((m2
X0,Y )

−1 & (m2
X1,Y )

−1) !〈!pr0, !pr1〉 !!q digX0&X1&Y m2
X0&X1,Y

=m2
X0⊗Y ,X1⊗Y (!(derX0 ⊗ derY )⊗ !(derX1 ⊗ derY )) (!(m2

X0,Y )
−1 ⊗ !(m2

X1,Y )
−1)

(m2
!(X0&Y),!(X1&Y))

−1 !〈!pr0, !pr1〉 f3
where, by naturality of dig,

f3 = !!q digX0&X1&Y m2
X0&X1,Y

= digX0&Y&X1&Y !qm2
X0&X1,Y ∈ L (!(X0 & X1)⊗ !Y , !!(X0 & Y & X1 & Y))

and hence, by the diagram (1)

!〈!pr0, !pr1〉 f3 = !〈!pr0, !pr1〉 digX0&Y&X1&Y !qm2
X0&X1,Y

=m2
!(X0&Y),!(X1&Y) (digX0&Y ⊗ digX1&Y ) (m

2
X0&Y ,X1&Y )

−1 !qm2
X0&X1,Y .

It follows that

f1 =m2
X0⊗Y ,X1⊗Y (!(derX0 ⊗ derY )⊗ !(derX1 ⊗ derY )) (!(m2

X0,Y )
−1 ⊗ !(m2

X1,Y )
−1)

(digX0&Y ⊗ digX1&Y ) (m
2
X0&Y ,X1&Y )

−1 !qm2
X0&X1,Y

=m2
X0⊗Y ,X1⊗Y (!(derX0 ⊗ derY )⊗ !(derX1 ⊗ derY )) (!(m2

X0,Y )
−1 ⊗ !(m2

X1,Y )
−1)

(digX0&Y ⊗ digX1&Y ) (m
2
X0,Y ⊗m2

X1,Y )

((m2
X0,Y )

−1 ⊗ (m2
X1,Y )

−1) (m2
X0&Y ,X1&Y )

−1 !qm2
X0&X1,Y

=m2
X0⊗Y ,X1⊗Y (μ2

X0,Y ⊗μ2
X1,Y ) ((m

2
X0,Y )

−1 ⊗ (m2
X1,Y )

−1) (m2
X0&Y ,X1&Y )

−1 !qm2
X0&X1,Y

hence,

f1 (m2
X0,X1 ⊗ !Y)=m2

X0⊗Y ,X1⊗Y (μ2
X0,Y ⊗μ2

X1,Y ) ((m
2
X0,Y )

−1 ⊗ (m2
X1,Y )

−1) (m2
X0&Y ,X1&Y )

−1

!qm2
X0&X1,Y (m2

X0,X1 ⊗ !Y)
=m2

X0⊗Y ,X1⊗Y (μ2
X0,Y ⊗μ2

X1,Y ) (m
4
X0,Y ,X1,Y )

−1 !qm3
X0,X1,Y

=m2
X0⊗Y ,X1⊗Y (μ2

X0,Y ⊗μ2
X1,Y ) γ2,3 (!X0 ⊗ !X1 ⊗ contrY )

by the monoidality properties of the Seely isomorphisms, where we have used mk for their k-ary
version.
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2.3.3 Coalgebras of the resource comonad
A !-coalgebra is a pair P = (P, hP) where P is an object of L and hP ∈ L (P, !P) satisfies

P !P

P

hP

Id
derP

P !P

!P !!P

hP

hP digP
!hP

Given coalgebras P and Q, a coalgebra morphism from P to Q is an f ∈ L (P,Q) such that the
following square commutes

P Q

!P !Q

f

hP hQ
!f

The category so defined is the Eilenberg–Moore category L ! associated with the comonad !_. We
will use the following standard result for which we refer to Melliès (2009).

Theorem 2. The Eilenberg–Moore category L ! of a resource category L is cartesian with
final object (1,μ0) simply denoted as 1 and cartesian product of P0, P1 the coalgebra (P0 ⊗
P1,μ2

P0,P1 (hP0 ⊗ hP1 )) denoted as P0 ⊗ P1 with projection pr⊗0 ∈ L !(P0 ⊗ P1, P0) defined as the
following composition of morphisms

P0 ⊗ P1 !P0 ⊗ P1 1⊗ P1 P1
hP0⊗P1 weakP0⊗P1 λP1

and similarly for pr⊗1 ∈ L !(P0 ⊗ P1, P1). And given fi ∈ L !(Q, Pi) for i= 0, 1, the unique mor-
phism 〈f0, f1〉⊗ ∈ L !(Q, P0 ⊗ P1) such that pr⊗i 〈f0, f1〉⊗ = fi is defined as the following composition
of morphisms

Q !Q !Q⊗ !Q Q⊗Q P0 ⊗ P1
hQ contrQ derQ⊗derQ f0⊗f1

Last, the unique morphism P → 1 in L ! is P !P 1hP weakP .

An immediate consequence of this theorem is the following observation.

Proposition 5. Let P be an object of L !, u ∈ L !(P, 1) and d ∈ L !(P, P ⊗ P) be such that

P P ⊗ P

1⊗ P

d

λP−1 u⊗P

P P ⊗ P

P ⊗ 1

d

ρP−1 P⊗u

commute. Then, u=weakP hP and d = 〈P, P〉⊗ = (derP ⊗ derP) contrP hP and the following
diagram commutes in L .

P P ⊗ P

!P !P ⊗ !P

d

hP hP⊗hP
contrP
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Proof. The first equation results from the universal property of the terminal object. The second
one results from the universal property of the cartesian product and from the commutation of

P P ⊗ P

P

d

P pr⊗i

since pr⊗0 d = λP (weakP ⊗ P) (hP ⊗ P) d = λP (u⊗ P) d = IdP and similarly for pr⊗1 .
For the last commutation, we have

(hP ⊗ hP) d = (hP ⊗ hP) (derP ⊗ derP) contrP hP
= (der!P ⊗ der!P)(!hP ⊗ !hP) contrP hP by naturality of der
= (der!P ⊗ der!P) contr!P !hP hP by naturality of contr
= (der!P ⊗ der!P) contr!P digP hP since hP is a coalgebra structure
= (der!P ⊗ der!P) (digP ⊗ digP) contrP hP by definition of contr and diagram (1)
= contrP hP .

2.3.4 Lafont categories and the free exponential
In many interesting models of LL, the exponential resource modality is completely determined
by the tensor product; in that case, one says that the exponential is free. We provide the precise
definition of such categories and give some of their properties that we will use in the paper.

Let L be an SMC. Remember from Melliès (2009) that L is a Lafont category if the forgetful
functorU : L ⊗ → L has a right adjoint E : L → L ⊗. We use (!X,weakX , contrX ) for the com-
mutative comonoid EX. In that case, we use (!_, der, dig ) for the associated comonad UE called
the free exponential of the SMC L .

More explicitly, this means that for any object X of L , for any commutative comonoid
C = (C,wC : C → 1, cC : C → C ⊗ C) and any f ∈ L (C, X), there is exactly one morphism f⊗ ∈
L /X((C, f ), (!X, derX)) which is a comonoid morphism. In other words, there is exactly one
morphism f⊗ ∈ L (C, !X) such that the three following diagrams commute.

C !X

X

f⊗

f
derX

C !X

1

f⊗

wC
weakX

C !X

C ⊗ C !X ⊗ !X

f⊗

cC contrX
f⊗⊗f⊗

Lemma 6. Let L be a Lafont category. For any commutative comonoid C, there is exactly one
morphism δC ∈ L (C, !C) such that the following diagrams commute.

C !C

C

δC

Id
derC

C !C

1

δC

wC
weakC

C !C

C ⊗ C !C ⊗ !C

δC

cC contrC
δC⊗δC

Moreover (C, δC) is a !-coalgebra.

Proof. The first part of the statement is just a special case of the universal property with X = C
and f = IdX . For the second part, we only have to prove
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C !C

!C !!C

δC

δC !δC
digC

Setting f1 = !δC δC and f2 = digC δC, observe first that f1, f2 ∈ L ⊗(C, (!!C, c!C,w!C)) because
both are defined by composing morphisms in that category. The equation f1 = f2 follows by
universality, observing that

C !!C

!C

fi

δC
der!C

for i= 1, 2, which readily results from the naturality of der and from the definition of a
comonad.

Here are two important special cases of the above. First, there is exactly one morphism μ0 ∈
L (1, !1) such that

1 !1

1

μ0

Id
der1

1 !1

1

μ0

wC
Id

1 !1

1⊗ 1 !1⊗ !1

μ0

(λ1)−1 contr1
μ0⊗μ0

Next, there is exactly one morphism μ2
X,Y ∈ L (!X ⊗ !Y , !(X ⊗ Y)) such that

!X ⊗ !Y !(X ⊗ Y)

X ⊗ Y

μ2
X,Y

derX⊗derY derX⊗Y

!X ⊗ !Y !(X ⊗ Y)

1⊗ 1 1

μ2
X,Y

weakX⊗weakY weakX⊗Y
λ1

!X ⊗ !Y !(X ⊗ Y)

!X ⊗ !X ⊗ !Y ⊗ !Y !X ⊗ !Y ⊗ !X ⊗ !Y !(X ⊗ Y)⊗ !(X ⊗ Y)

μ2
X,Y

contrX⊗contrY contrX⊗Y
γ2,3 μ2

X,Y⊗μ2
X,Y

These two morphisms turn !_ into a lax monoidal comonad on the SMC L .
The correspondenceC �→ (C, δC) can be turned into a functor A : L ⊗ → L ! acting as the iden-

tity on morphisms. Let indeed f ∈ L ⊗(C,D), it suffices to prove that δD f = !f δC ∈ L (C, !D). Let
f0 = δD f and f1 = !f δC. By the universal property, it suffices to prove that the three following
diagrams commute for i= 0, 1:

C !D

D

fi

f
derD

C !D

1

fi

wC
weakD

C !D

C ⊗ C !D⊗ !D

fi

cC contrD
fi⊗fi

These commutations follow from the commutations satisfied by δC and δD and from the fact that
f ∈ L ⊗(C,D). As an example of these computations, we have
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contrD f0 = contrD δD f
= (δD ⊗ δD) cD f
= (δD ⊗ δD) (f ⊗ f ) cC
= (f0 ⊗ f0) cC

and
contrD f1 = contrD !f δC

= (!f ⊗ !f ) contrC δC
= (!f ⊗ !f ) (δC ⊗ δC) cC
= (f1 ⊗ f1) cC .

Conversely given a !-coalgebra P = (P, hP), one can define a commutative comonoid structure
on P by the following two morphisms:

P !P 1

P !P !P ⊗ !P P ⊗ P

hP weakP

hP contrP derP⊗derP

that we respectively denote as wP and cP. This correspondence P �→M(P)= (P,wP, cP) can be
turned into a functor M : L ! → L ⊗ acting as the identity on morphisms.

Theorem 3. For any Lafont SMC L , the functors A and M define an isomorphism of categories
between L ⊗ and L !.

Proof. Let C ∈ L ⊗ and let P = A(C) so that P = C and hP = δC. Let D=M(P) so that D= C,
wD =weakP hP =weakC δC =wC

cD = (derP ⊗ derP) contrP hP
= (derC ⊗ derC) contrC δC
= (derC ⊗ derC)(δC ⊗ δC) contrC
= contrC .

Conversely let P ∈ L !. Let C =M(P) so that C = P, wC =weakP hP and cC = (derP ⊗ derP)
contrP hP. Let Q= A(C)= (P, δC). To prove that δC = hP, it suffices to show that the following
diagrams commute

C !C

C

hP

Id
derC

C !C

1

hP

wC
weakC

C !C

C ⊗ C !C ⊗ !C

hP

cC contrC
hP⊗hP

which results from the definition of C and from the fact that P is a coalgebra. Let us check for
instance the last one:

(hP ⊗ hP) cC = (hP ⊗ hP) (derP ⊗ derP) contrP hP
= (der!P ⊗ der!P) (!hP ⊗ !hP) contrP hP
= (der!P ⊗ der!P) contr!P !hP hP
= (der!P ⊗ der!P) contr!P digP hP
= (der!P ⊗ der!P)(digP ⊗ digP) contrP hP
= contrC hP
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where we have used in particular the fact that for any X ∈ L , one has digX ∈ L ⊗(E(X), E(!X)) by
the fact that the comonad !_ is induced by the adjunction U � E.

This shows that M and A define a bijective correspondence on objects and since both functors
act as the identity on morphisms, our contention is proven.

In that way, we retrieve the fact thatL ! is cartesian sinceL ⊗ is always cartesian by Theorem 1
(even if L is not Lafont). Remember that in the general (not necessarily Lafont) case the fact
that L ! is cartesian could be proven under the additional assumption that L is a resource cate-
gory. Remember also that a cartesian Lafont SMC is automatically a resource category; see Melliès
(2009).

Lemma 7. Let C0, C1 ∈ L ⊗. Remember that we use C0 ⊗ C1 for the cartesian product of C0 and
C1 in L ⊗ (see Theorem 1). Then, we have

δ1 =μ0 δC0⊗C1 =μ2
C0,C1 (δC0 ⊗ δC1 ) ∈ L (C0 ⊗ C1, !(C0 ⊗ C1)) .

Proof. One just checks that the right-handmorphisms satisfy the three diagrams of Lemma 6.

Theorem 4. Let L be a Lafont category and let C ∈ L ⊗. Then the following diagrams commute

C !C

1 !1

δC

wC !wC
μ0

C !C

C ⊗ C !C ⊗ !C !(C ⊗ C)

δC

cC !cC
δC⊗δC μ2

C,C

Proof. We deal with the second diagram, the argument for the first one being completely
similar. By Lemma 2 we have cC ∈ L ⊗(C, C ⊗ C) and hence (since A is the identity on mor-
phisms) we have cC ∈ L !(A(C), A(C ⊗ C)) which is exactly the diagram under consideration by
Lemma 7.

2.3.5 Resource Lafont categories
A resource Lafont category is a resource category L where the exponential arises in the way
explained above; in that case one says that !_ is the free exponential (it is unique up to unique
iso since it is defined by a universal property). This is equivalent to requiring that

• L is a Lafont SMC
• and L is cartesian.

Indeed when these conditions hold, the Seely isomorphisms are uniquely defined by the uni-
versal property of the Lafont SMC L . The lax monoidality (μ0,μ2) induced by these Seely
isomorphisms coincide with the one which is directly induced by the Lafont property (again by
universality). This is why we used the same notations for both.

2.4 The category of sets and relations
This category is a well-known categorical model of classical LL that we briefly recall here. It is
perhaps the simplest example of a Lafont resource category.

The category Rel has sets as objects and Rel (X, Y)= P (X × Y), that is, a morphism from the
set X to the set Y is a relation from X to Y . The identity morphism IdX is the diagonal relation on
X and composition is the usual composition of relations. An iso in Rel is a relation which is (the
graph of) a bijection.
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The category Rel is monoidal with monoidal product X0 ⊗ X1 = X0 × X1 and monoidal unit
1= {∗}. Given si ∈Rel (Xi, Yi) for i= 0, 1, the relation s0 ⊗ s1 ∈Rel (X0 ⊗ X1, Y0 ⊗ Y1) is defined
as:

s0 ⊗ s1 = {((a0, a1), (b0, b1)) | (ai, bi) ∈ si for i= 0, 1}
which turns ⊗ into a functor and Rel into a SMC (with obvious symmetric monoidality isos). It is
also closed with X� Y = X × Y as internal hom object and evaluation morphism:

ev= {(((a, b), a), b) | a ∈ X and b ∈ Y} ∈Rel ((X� Y)⊗ X, Y) .

With dualizing object ⊥ = 1, this category is ∗-autonomous.
The category Rel is not complete, but it is cartesian. Given a family (Xi)i∈I of sets, their

product is

( &
i∈I

Xi, (pri)i∈I)

where &i∈I Xi = ⋃
i∈I{i} × Xi and the projections are pri = {((i, a), a) | i ∈ I and a ∈ Xi} ∈

Rel (&j∈I Xj, Xi). Given a family of morphisms (si ∈Rel (Y , Xi))i∈I , the unique morphism 〈si〉i∈I ∈
Rel (Y , &i∈I Xi) such that pri 〈sj〉j∈I = si is

〈si〉i∈I = {(b, (i, a)) | i ∈ I and (b, a) ∈ si} .
The terminal object is � = ∅.

As an SMC, Rel is a Lafont category. The associated resource comonad (!, der, dig) on Rel is
given by !X = Mfin(X) (see Section 2.1) with functorial action given by:

!s= {([a1, . . . , an], [b1, . . . , bn]) | n ∈N and ∀i (ai, bi) ∈ s} ∈Rel (!X, !Y)

for s ∈Rel (X, Y). The counit is derX = {([a], a) | a ∈ X} ∈Rel (!X, X) and the comultiplica-
tion is digX = {(m1 + · · · +mk, [m1, . . . ,mk]) | k ∈N andm1, . . . ,mk ∈ !X}. Its strong symmet-
ric monoidality from the SMC (Rel, &,�) to the SMC (Rel,⊗, 1) is given by the isos m0 ∈
Rel (1, !�) andm2

X0,X1
∈Rel (!X0 ⊗ !X1, !(X0 & X1)) given bym0 = {(∗, [ ])} and

m2
X0,X1 = {(([a01, . . . , a0n0 ], [a11, . . . , a1n1 ]), [(0, a01), . . . , (0, a0n0 ), (1, a11), . . . , (1, a1n1 )])

| n0, n1 ∈N, a01, . . . , a0n0 ∈ X0 and a11, . . . , a1n1 ∈ X1} .

3. Summable Categories
Let L be a category. We develop a categorical axiomatization of a concept of finite summabil-
ity in L which will induce an enrichment of L over partial commutative monoids, in the sense
of Poinsot et al. (2010). The main idea is to equip L with a functor S which has the flavor of a
monad4 and intuitively maps an object X to the object SX of all pairs (x0, x1) of elements of X
whose sum x0 + x1 is well defined. This is another feature of our approach which is to give a cru-
cial role to such pairs, which are the values on which derivatives are computed, very much in the
spirit of dual numbers. However, contrarily to dual numbers, our structures also axiomatize the
actual summation of such pairs.

� Example 3.1. In order to illustrate the definitions and constructions of the paper, we will use
the category Coh of coherence spaces of Girard (1987) as a running example. An object of this
category is a pair E= (|E|,¨E ) where |E| is a set (the web of E) and¨E is a symmetric and reflexive
relation on |E|. The set of cliques of a coherence space E is

Cl(E)= {x⊆ |E| | ∀a, a′ ∈ x a¨E a′} .
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Equipped with⊆ as order relation, Cl(E) is a complete partial order (cpo). Given coherence spaces
E and F, we define the coherence space E� F by |E� F| = |E| × |F| and

(a, b)¨E�F (a′, b′) if a¨E a′ ⇒ (b¨F b′ and b= b′ ⇒ a= a′) .

Lemma 8. If s ∈ Cl(E� F) and t ∈ Cl(F�G), then t s (the relational composition of t and s)
belongs to Cl(E�G) and the diagonal relation IdE belongs to Cl(E� E).

In that way, we have turned the class of coherence spaces into a categoryCohwithCoh(E, F)=
Cl(E� F) and Coh is enriched over pointed sets, with 0= ∅. This category is cartesian with
E0 & E1 given by |E0 & E1| = {0} × |E0| ∪ {1} × |E1|, (i, a)¨E0&E1 (j, b) if i= j⇒ a¨Ei b and pri ={((i, a), a) | a ∈ |Ei|} for i= 0, 1 and, given si ∈Coh(F, Ei) (for i= 0, 1),

〈s0, s1〉 = {(b, (i, a)) | i ∈ {0, 1} and (b, a) ∈ si} .
Given s ∈Coh(E, F) and x ∈ Cl(E), one defines s · x ∈ Cl(F) by s · x= {b ∈ |F| | a ∈ x and (a, b) ∈ s}.
Given x0, x1 ∈ Cl(E), we use x0 + x1 to denote x0 ∪ x1 if x0 ∪ x1 ∈ Cl(E) and x0 ∩ x1 = ∅. Notice
that the use of the notation x0 + x1 means in particular that these conditions (disjointedness and
compatibility) hold for x0 and x1. This notation is justified by the following observation by Girard
in Girard (1995).

Lemma 9. Let E and F be coherence spaces and let s⊆ |E| × |F|. Then s ∈ Cl(E� F) iff
s · ∅ = ∅ and ∀x0, x1 ∈ Cl(E) s · (x0 + x1)= s · x0 + s · x1 ∈ Cl(F) ,

the second statement meaning that if x0, x1 ∈ Cl(E) are disjoint and satisfy x0 ∪ x1 ∈ Cl(E) then s ·
x0, s · x1 are disjoint and satisfy s · x0 ∪ s · x1 = s · (x0 ∪ x1) ∈ Cl(F).

This lemma expresses that the linear maps between coherence spaces are exactly those which
preserve these partially defined “sums.” �

Definition 10. A pre-summability structure on L is a tuple (S, π0, π1, σ ) where S : L → L is a
functor which preserves the enrichment ofL over Set0 (that is S0= 0) and π0, π1 and σ are natural
transformation from S to the identity functor such that for any two morphisms f , g ∈ L (Y , SX), if
πi f = πi g for i= 0, 1, then f = g. In other words, π0 and π1 are jointly monic.

� Example 3.2. We give a pre-summability structure on coherence spaces. Given a coherence
space E, the coherence space S(E) is defined by |S(E)| = {0, 1} × |E| and (i, a)¨S(E) (i′, a′) if i= i′
and a¨E a′, or i �= i′ and a˝E a′. Remember that a˝E a′ means that a¨E a′ and a �= a′ (strict
coherence relation). Notice that SE= (1 & 1� E) where 1 is the coherence space whose web is a
chosen singleton {∗}. We will see in Section 5 that it is often possible to define S in that particular
way.

Lemma 11. The cpo (Cl(SE),⊆ ) is isomorphic to the poset of all pairs (x0, x1) ∈ Cl(E)2 such that
x0 + x1 is defined (that is x0 ∩ x1 = ∅ and x0 ∪ x1 ∈ Cl(E)), equipped with the product order.

Given s ∈Coh(E, F), we define Ss⊆ |SE� SF| by:
Ss= {((i, a), (i, b)) | i ∈ {0, 1} and (a, b) ∈ s} .

Then it is easy to check that Ss ∈Coh(SE, SF) and that S is a functor. This is due to the definition
of s which entails s · (x0 + x1)= s · x0 + s · x1.

The additional structure is defined as follows:
πi = {((i, a), a) | a ∈ |E|} and σ = {((i, a), a) | i ∈ {0, 1} and a ∈ |E|}
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which are easily seen to belong toCoh(SE, E). Notice that σ = π0 + π1. Of course πi · (x0, x1)= xi
and σ · (x0, x1)= x0 + x1. �

From now on, we assume that we are given such a structure. We say that fi ∈ L (X, Y) (for
i= 0, 1) are summable if there is a morphism g ∈ L (X, SY) such that

X SY

Y

g

fi
πi

for i= 0, 1. By definition of a pre-summability structure, there is only one such g if it exists, we
denote it as 〈f0, f1〉S. When this is the case we set f0 + f1 = σ 〈f0, f1〉S ∈ L (X, Y). We sometimes
call 〈f0, f1〉S the witness of the summability of f0 and f1 and f0 + f1 their sum.

� Example 3.3. In the case of coherence spaces, saying that s0, s1 ∈Coh(E, F) are summable
simply means that s0 ∩ s1 = ∅ and s0 ∪ s1 ∈Coh(E, F). This property is equivalent to

∀x ∈ Cl(X) (s0 · x, s1 · x) ∈ Cl(SE)
and in that case the witness is defined exactly in the same way as 〈s0, s1〉 ∈Coh(E, F & F). �

Lemma 12. Assume that f0, f1 ∈ L (X, Y) are summable and that g ∈ L (U, X) and h ∈ L (Y , Z).
Then h f0 g and h f1 g are summable with witness (Sh) 〈f0, f1〉S g ∈ L (U, SZ) and sum h (f0 + f1) g ∈
L (U, Z).

The proof boils down to the naturality of πi and σ . An easy consequence is that the application
of S to a morphism can be written as a witness.

Lemma 13. If f ∈ L (X, Y), then f π0, f π1 ∈ L (SX, Y) are summable with witness Sf and sum
f σ . That is, Sf = 〈f π0, f π1〉S.

Now using this notion of pre-summability structure, we start introducing additional conditions
to define a summability structure. As a general principle, and unless specified otherwise, each time
we introduce an axiom, we assume that it holds in the considerations which follow.

Notice that by definition, π0 and π1 are summable with Id as witness and σ as sum. Here is our
first axiom.
(S-com) π1 and π0 are summable and the witness 〈π1, π0〉S ∈ L (SX, SX) satisfies σ 〈π1, π0〉S =
σ .

Notice that this witness is an involutive iso since πi 〈π1, π0〉S 〈π1, π0〉S = πi for i= 0, 1.

Lemma 14. If f0, f1 ∈ L (X, Y) are summable, then f1, f0 are summable with witness 〈π1, π0〉S
〈f0, f1〉S and we have f0 + f1 = f1 + f0.

Our next axiom expresses that the 0-morphisms are neutral for this partially defined addition.
(S-zero) For any f ∈ L (X, Y), the morphisms f and 0 ∈ L (X, Y) are summable and their sum is
f , that is σ 〈f , 0〉 = f .

By (S-com), this implies that 0 and f are summable with 0+ f = f .
Notice that we have four morphisms π0π0, π1π1, π0π1, π1π0 ∈ L (S2X, X).

Lemma 15. If f , f ′ ∈ L (X, S2Y) satisfy πi πj f = πi πj f ′ for all i, j ∈ {0, 1}, then f = f ′, that is, the
πi πj are jointly monic.
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This is an easy consequence of the fact that π0, π1 are jointly monic.
The next axiom will allow us in particular to show that our partially defined addition is

associative.
(S-witness) Let f0, f1 ∈ L (X, SY). If σ f0, σ f1 are summable, then f0, f1 are summable.

Notice that the converse implication holds by Lemma 12. This axiom means that the summa-
bility of witnesses boils down to that of the associated sums.

Lemma 17 requires a little preparation. By Lemma 12, the pairs of morphisms (π0π0, π0π1)
and (π1π0, π1π1) are summable with sums π0 σ and π1 σ , respectively. By the same lemma,
these two morphisms are summable (with sum σ σ ∈ L (S2X, X)). By Axiom (S-witness), it
follows that the witnesses 〈π0π0, π0π1〉S, 〈π1π0, π1π1〉S ∈ L (S2X, SX) are summable, let cX =
〈〈π0π0, π0π1〉S, 〈π1π0, π1π1〉S〉S ∈ L (S2X, S2X) be the corresponding witness.

Lemma 16. The morphism cX = 〈〈π0π0, π0π1〉S, 〈π1π0, π1π1〉S〉S ∈ L (S2X, S2X) is an involutive
natural iso in L .

The proof is easy, using Lemma 15. Notice that c (which is similar to the flip of a tangent bundle
functor) is completely characterized by:

∀i, j ∈ {0, 1} πi πj c= πj πi .

It will be called the standard flip on S2X.

Lemma 17. The following diagram commutes:

S2X S2X

SX

c

σSX
SσX

Proof. For i ∈ {0, 1}, we have πi SσX = σX πi by naturality of πi and πi σSX = σX Sπi by naturality
of σ . So by the fact that π0, π1 are jointly monic it suffices to prove that the following diagram
commutes:

S2X S2X

SX

c

πi
Sπi

We use again the fact that π0, π1 are jointly monic. Let j ∈ {0, 1}, we have πj Sπi = πi πj by
naturality of πj. The required commutation follows from πi πj c= πj πi.

Notice that if f0, f1 ∈ L (X, SY) are summable, then
πi (f0 + f1)= πi f0 + πi f1 for i= 0, 1 (2)

by Lemma 12, that is, if we set fij = πj fi for i, j ∈ {0, 1}, so that fi = 〈fi0, fi1〉S for i= 0, 1,
Equations (2) mean that

〈f00, f01〉S + 〈f10, f11〉S = 〈f00 + f10, f01 + f11〉S .
In other words, addition of summable witnesses is performed componentwise.

Lemma 18. Let f0, f1 ∈ L (Y , SX) be summable. Then the morphisms (f ′i = πi c 〈f0, f1〉S ∈
L (Y , SX))i=0,1 are summable and satisfy

σX f ′0 + σX f ′1 = σX f0 + σX f1 ,
the two sums being well defined by Lemma 12.
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Proof. The morphisms f ′0, f ′1 are summable with witness 〈f ′0, f ′1〉S = c 〈f0, f1〉S ∈ L (Y , S2X) by their
very definition. We have

σX f ′0 + σX f ′1 = σX 〈σX f ′0, σX f ′1〉S
= σX SσX 〈f ′0, f ′1〉S by Lemma 12

= σX SσX c 〈f0, f1〉S
= σX σSX 〈f0, f1〉S by Lemma 17

= σX SσX 〈f0, f1〉S by naturality of σ

= σX 〈σX f0, σX f1〉S by Lemma 12

= σX f0 + σX f1 .

Let us explain what this means. Setting fij = πj fi for i, j ∈ {0, 1}, we have fi = 〈fi0, fi1〉S for i=
0, 1, so 〈f0, f1〉S = 〈〈f00, f01〉S, 〈f10, f11〉S〉S and 〈f ′0, f ′1〉S = c 〈f0, f1〉S = 〈〈f00, f10〉S, 〈f01, f11〉S〉S. The
lemma tells us that

(f00 + f10)+ (f01 + f11)= (f00 + f01)+ (f10 + f11) .

Lemma 19. Let f0, f1, f2 ∈ L (X, Y) be such that (f0, f1) is summable and (f0 + f1, f2) is summable.
Then, (f1, f2) is summable and (f0, f1 + f2) is summable, and we have (f0 + f1)+ f2 = f0 + (f1 + f2).

Proof. By (S-zero) we know that 0, f2 are summable and 0+ f2 = f2. So by (S-witness), we have
that 〈f0, f1〉S and 〈0, f2〉S are summable. Hence, by Lemma 18, 〈f0, 0〉S, 〈f1, f2〉S are summable and
we have (f0 + f1)+ f2 = f0 + (f1 + f2).

� Example 3.4. All these properties are easy to check in coherence spaces and boil down to the
standard algebraic properties of set unions. �

Definition 20. A summability structure onL is a pre-summability structure which satisfies axioms
(S-com), (S-zero), and (S-witness). We call summable category a tuple (L , S, π0, π1, σ ) consisting
of a category L equipped with a summability structure.

We define a general notion of summable family of morphisms (fi)ni=1 in L (X, Y) together with
its sum f1 + · · · + fn by induction on n:

• if n= 0 then (fi)ni=1 if summable with sum 0;
• if n> 0 then (fi)ni=1 is summable if (fi)n−1

i=1 is summable and f1 + · · · + fn−1, fn are summable,
and then f1 + · · · + fn = (f1 + · · · + fn−1)+ fn.

Of course we use the standard notation
∑n

i=1 fi for f1 + · · · + fn.

Lemma 21. If (fi)ni=1 is summable with n> 0 then (fi)ni=2 is summable and f1,
∑n

i=2 fi are summable
and f1 + ∑n

i=2 fi =
∑n

i=1 fi.

Proof. By induction on n. If n= 0, there is nothing to prove so assume n> 0. If n= 1 the state-
ment results from (S-zero), so we assume that n≥ 2. By definition, we know that f1, . . . , fn−1
is summable and

∑n−1
i=1 fi + fn = ∑n

i=1 fi. So by inductive hypothesis f2, . . . , fn−1 is summable,
f1,

∑n−1
i=2 fi are summable and f1 + ∑n−1

i=2 fi = ∑n−1
i=1 fi. So we can apply Lemma 19 to f1,

∑n−1
i=2 fi, fn
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and hence
∑n−1

i=2 fi, fn are summable which by definition means that f2, . . . , fn is summable and∑n
i=2 fi =

∑n−1
i=2 fi + fn, and moreover f1,

∑n
i=2 fi are summable and f1 + ∑n

i=2 fi =
∑n−1

i=1 fi +
fn = ∑n

i=1 fi as contended.

Now we prove that summability is invariant by permutations. For this, we consider first a
circular permutation and then a transposition.

Lemma 22. If f1, . . . , fn are summable, then f2, . . . , fn, f1 is summable and
∑n

i=1 fi = f2 + · · · +
fn + f1.

Proof. This is obvious if n≤ 1, so we can assume n≥ 2. By Lemma 21 f2, . . . , fn are summable and
f1,

∑n
i=2 fi are summable with f1 + ∑n

i=2 fi =
∑n

i=1 fi. So
∑n

i=2 fi, f1 are summable by Lemma 14
and hence f2, . . . , fn, f1 is summable (by definition) with sum equal to

∑n
i=1 fi.

Lemma 23. If the family f1, . . . , fn is summable, with n≥ 2, then f1, . . . , fn−2, fn, fn−1 is summable
with the same sum.

Proof. By our assumption, f1, . . . , fn−2 is summable (let us call g its sum), g, fn−1 are summable
and g + fn−1, fn are summable. Moreover (g + fn−1)+ fn = ∑n

i=1 fi. It follows by Lemma 19 that
fn−1, fn are summable and hence fn, fn−1 are summable with fn + fn−1 = fn−1 + fn by Lemma 14. So
we know by Lemma 19 that g, fn + fn−1 are summable and hence by the same lemma that g, fn are
summable and that g + fn, fn−1 are summable with (g + fn)+ fn−1 = g + (fn + fn−1)= ∑n

i=1 fi. By
definition, it follows that f1, . . . , fn−2, fn is a summable family whose sum is g + fn, and then that
f1, . . . , fn−2, fn, fn−1 is a summable family whose sum is

∑n
i=1 fi, as announced.

Proposition 24. For any p ∈Sn (the symmetric group) and any family of morphisms (fi)ni=1, the
family (fi)ni=1 is summable iff the family (fp(i))ni=1 is summable and then

∑
i∈I fi =

∑
i∈I fp(i).

Proof. Remember that Sn is generated by the permutations (1, . . . , n− 2, n, n− 1) (transposi-
tion) and (2, . . . , n, 1) (circular permutation) and apply Lemmas 23 and 22.

So we define a finite family (fi)i∈I (where I is an arbitrary finite set) to be summable if any of its
enumerations (fi1 , . . . , fin) is summable and then we set

∑
i∈I fi =

∑n
k=1 fik .

Theorem 5. A finite family of morphisms (fi)i∈I in L (X, Y) is summable iff for any family of
pairwise disjoint sets (Ij)j∈J such that ∪j∈J Ij = I:

• for each j ∈ J the restricted family (fi)i∈Ij is summable with sum
∑

i∈Ij fi ∈ L (X, Y)
• the family (

∑
i∈Ij fi)j∈J is summable

and then we have
∑

i∈I fi =
∑

j∈J
∑

i∈Ij fi.

Proof. By induction on k= #J ≥ 1. If k= 1, the property trivially holds so assume k> 1. Upon
choosing enumerations, we can assume that I = {1, . . . , n} and J = {1, . . . , k}, with n, k ∈N.
Thanks to Proposition 24, we can choose these enumerations in such a way that Ik = {l+ 1, . . . , n}
for some l ∈ {1, . . . , n}. Then by an iterated application of the definition of summability and
of Lemma 19, we know that the families f1, . . . , fl and fl+1, . . . , fk are summable and that
(
∑l

i=1 fi)+ (
∑k

j=l+1 fi)=
∑n

i=1 fi. We conclude the proof by applying the inductive hypothesis
to (Ij)k−1

j=1 which satisfies
⋃k−1

j=1 Ij = {1, . . . , l}.
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Remark 25. These properties strongly suggest to consider summability as an n-ary notion, axiom-
atized in an operadic way. However, in the sequel, we will see that the differential operations
use SX as a space of pairs, and there it is not clear that such an operadic approach would be so
convenient. This is why we stick (at least for the time being) to this “binary” axiomatization.

Remark 26. Theorem 5 expresses exactly that L (X, Y) is a partial commutative monoid5 in the
sense of Arbib and Manes (1980). And actually L is enriched over partial commutative monoids
by Lemma 12. Contrarily to what we suggested in an earlier version of this article, it does not seem
always possible to describe L as a partially additive category in the sense of Arbib and Manes
(1980) Section 3 (even restricting this notion to finite sums) for the first obvious reason that we
do not need L to have coproducts. More fundamentally, assuming now that L has coproducts,
we can read Theorem 9 of Arbib and Manes (1980) as expressing that if L is partially additive
then it has a summability structure (in our sense) given by the endofunctor SX = X ⊕ X (where
X ⊕ Y is the coproduct of X and Y) equipped with π0 = [X, 0], π1 = [0, X] and σ = [X, X] where[
f0, f1

] ∈ L (X0 ⊕ X1, Y) is the copairing of the (fi ∈ L (Xi, Y))i=0,1. So, as far as we understand
partially additive categories, the cocartesian category Coh seems to be an example of a summable
category which is not partially additive, since SE and E⊕ E are very far from being isomorphic in
general. Indeed Cl(E⊕ E)= {(x, ∅), (∅, x) | x ∈ Cl(E)} to be compared with Cl(SE) which contains
many more elements in general, see Lemma 11.

Another interesting consequence of Lemma 17 is that S preserves summability.

Theorem 6. Let f0, f1 ∈ L (X, Y) be summable. Then, Sf0, Sf1 ∈ L (SX, SY)
are summable, with witness 〈Sf0, Sf1〉S ∈ L (SX, S2Y) given by 〈Sf0, Sf1〉S =
c S〈f0, f1〉S. And one has Sf0 + Sf1 = S(f0 + f1).

Proof. This could be derived from Lemme 13, we prefer to give a direct argument. We must prove
that πi c S〈f0, f1〉S = Sfi. For this, we use the fact that π0, π1 ∈ L (SY , Y) are jointly monic. We
have

πj πi c S〈f0, f1〉S = πi πj S〈f0, f1〉S
= πi 〈f0, f1〉S πj by naturality

= fi πj = πj Sfi by naturality.
This shows that πi c S〈f0, f1〉S = Sfi for i= 0, 1 and hence Sf0, Sf1 are summable with witness
c S〈f0, f1〉S. And we have

Sf0 + Sf1 = σSY 〈Sf0, Sf1〉S by definition

= σSY c S〈f0, f1〉S
= SσY c2 S〈f0, f1〉S by Lemma 17

= SσY S〈f0, f1〉S since c is involutive

= S(σY 〈f0, f1〉S) by functoriality

= S(f0 + f1) .

Notice that taking X = SY and fi = πi for i= 0, 1, this result gives us another expression for the
standard flip:

c= 〈Sπ0, Sπ1〉S .
We will use the notations ι0 = 〈X, 0〉S ∈ L (X, SX) and ι1 = 〈0, X〉S ∈ L (X, SX).
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Lemma 27. The morphisms ι0, ι1 ∈ L (X, SX) are natural in X.

Proof. Let f ∈ L (X, Y). For i= 0, 1, we haveπi Sf 〈Id, 0〉S = f πi 〈Id, 0〉S which is equal to f if i= 0
and to 0 if i= 1 since f 0= 0. On the other hand, πi 〈Id, 0〉S f is equal to f if i= 0 and to 0 if i= 1
since 0 f = 0. The naturality follows by the fact that π0, π1 are jointly monic.

Notice that if L has products X & Y and coproducts X ⊕ Y , then we have

X ⊕ X SX X & X[ι0,ι1] 〈π0,π1〉

where [ι0, ι1] is the co-pairing of ι0 and ι1, locating SX somewhere in between the coproduct and
the product ofX with itself. In many cases, as in coherence spaces, SX is neither the productX & X
nor the coproduct X ⊕ X.

In contrast, if L has biproducts, then we necessarily have SX = X & X = X ⊕ X with obvious
structural morphisms, and L is additive. Of course, this is not the situation we are primarily
interested in!

3.1 Amonad structure on S
We already noticed that there is a natural transformation ι0 ∈ L (X, SX). As also men-
tioned the morphisms πi πj ∈ L (S2X, X) (for all i, j ∈ {0, 1}) are summable so that
the morphisms π0 π0, π1 π0 + π0 π1 ∈ L (S2X, SX) are summable by Theorem 5, let
τ = 〈π0 π0, π1 π0 + π0 π1〉S ∈ L (S2X, SX) be the witness of this summability.

Theorem 7. The tuple (S, ι0, τ ) is a monad on L , and we have τ c= τ .

Proof. The proof is easy and uses the fact that π0, π1 are jointly monic. Let us prove that τ is
natural so let f ∈ L (X, Y), we have π0 (Sf ) τX = f π0τX by naturality of π0 and hence π0 (Sf ) τX =
f π0 π0, and π0 τY (S2f )= π0 π0 (S2f )= f π0 π0 by naturality of π0.

Similarly, using the naturality of π1, we have π1 (Sf ) τX = f π1τX = f (π0 π1 + π1 π0)=
f π0 π1 + f π1 π0 and π1 τY (S2f )= (π0 π1 + π1 π0) (S2f )= π0 π1 (S2f )+ π1 π0 (S2f )=
f π0 π1+
f π1 π0. The other naturalities are proved in the same way.

One proves τX τSX = τX SτX by showing in the same manner that π0 τX τSX = π0 π0 π0 =
π0 τX SτX and that π1 τX τSX = π0 π0 π1 + π0 π1 π0 + π1 π0 π0 = π1 τX SτX . The commutations
involving τ and ι0 are proved in the same way. The last equation results from πi πj c= πj πi

� Example 3.5. In our coherence space running example, we have ι0 · x= (x, ∅) and τ ·
((x, u), (y, v))= (x, u+ y); notice indeed that since ((x, u), (y, v)) ∈ Cl(S2E) we have x+ u+ y+
v ∈ Cl(E). �

Just as in tangent categories, this monad structure will be crucial for expressing that the
differential is a linear morphism.

3.2 Summable symmetric monoidal category
We assume now that L is a SMC, with monoidal product ⊗, unit 1 and isomorphisms ρX ∈
L (X ⊗ 1, X), λX ∈ L (1⊗ X, X), αX0,X1,X2 ∈ L ((X0 ⊗ X1)⊗ X2, X0 ⊗ (X1 ⊗ X2)) and γX0,X1 ∈
L (X0 ⊗ X1, X1 ⊗ X0). Most often these isos will be kept implicit to simplify the presentation.

Assume that L is also equipped with a summability structure. We assume now that the fol-
lowing property holds, which expresses that the tensor distributes over the (partially defined)
sum.
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(S⊗-dist) If (f00, f01) is a summable pair of morphisms in L (X0, Y0) and f1 ∈ L (X1, Y1), then
(f00 ⊗ f1, f01 ⊗ f1) is a summable pair of morphisms in L (X0 ⊗ X1, Y0 ⊗ Y1), and moreover

f00 ⊗ f1 + f01 ⊗ f1 = (f00 + f01)⊗ f1
As a consequence, using the symmetry of ⊗, if (f00, f01) is summable in L (X0, Y0) and

(f10, f11) is summable in L (X1, Y1), the family (f00 ⊗ f10, f00 ⊗ f11, f01 ⊗ f10, f01 ⊗ f11) is summable
in L (X0 ⊗ X1, Y0 ⊗ Y1) and we have

(f00 + f01)⊗ (f10 + f11)= f00 ⊗ f10 + f00 ⊗ f11 + f01 ⊗ f10 + f01 ⊗ f11 .

We can define a natural transformation ϕ1X0,X1
∈ L (X0 ⊗ SX1, S(X0 ⊗ X1)) by setting ϕ1X0,X1

=
〈X0 ⊗ π0, X0 ⊗ π1〉S which is well defined by (S⊗-dist). We use ϕ0X0,X1

∈ L (SX0 ⊗ X1, S(X0 ⊗
X1)) for the natural transformation defined from ϕ1 using the symmetry isomorphism of the SMC,
that is, ϕ0X0,X1

= ϕ1X1,X0
γ = 〈π0 ⊗ X1, π1 ⊗ X1〉S ∈ L (SX0 ⊗ X1, S(X0 ⊗ X1)).

Lemma 28. σ ϕ1X0,X1
= X0 ⊗ σX1 .

Proof. We have σ ϕ1X0,X1
= X0 ⊗ π0 + X0 ⊗ π1 = X0 ⊗ (π0 + π1) by (S⊗-dist), and we have π0 +

π1 = σX1 .

Theorem 8. The natural transformation ϕ1 is a strength for the monad (S, ι0, τ ) and the following
diagram commutes:

SX0 ⊗ SX1 S(SX0 ⊗ X1)

S(X0 ⊗ SX1) S2(X0 ⊗ X1) S2(X0 ⊗ X1)

ϕ1SX0,X1

ϕ0X0,SX1
Sϕ0X0,X1

Sϕ1X0,X1 cX0⊗X1

Therefore, equipped with the strength ϕ1, the monad (S, ι0, τ ) is commutative.

Proof. The fact that ϕ1 is a strength means that the following two diagrams commute:

X0 ⊗ X1

X0 ⊗ SX1 S(X0 ⊗ X1)

X0⊗ι0 ι0

ϕ1

X0 ⊗ S2X1 S(X0 ⊗ SX1) S2(X0 ⊗ X1)

(X0 ⊗ SX1) S(X0 ⊗ X1)

ϕ1

X0⊗τ

Sϕ1

τ

ϕ1

Let us prove for instance the second one. We have
τ (Sϕ1) ϕ1 = 〈π0 π0, π1 π0 + π0 π1〉S 〈ϕ1 π0, ϕ1 π1〉S ϕ1 by def. of τ and Lemma 13

= 〈π0 ϕ1 π0, π1 ϕ1π0 + π0ϕ
1π1〉S ϕ1 by Lemma 12

= 〈(X0 ⊗ π0) π0 ϕ1, (X0 ⊗ π1) π0 ϕ1 + (X0 ⊗ π0) π1 ϕ1〉S by def. of ϕ1

= 〈(X0 ⊗ π0) (X0 ⊗ π0), (X0 ⊗ π1) (X0 ⊗ π0)+ (X0 ⊗ π0) (X0 ⊗ π1)〉S = X0 ⊗ τ .

The fact that (S, ι0, τ , ϕ1) is a commutative monad means that, moreover, the following diagram
commutes:

SX0 ⊗ SX1 S(SX0 ⊗ X1) S2(X0 ⊗ X1)

S(X0 ⊗ SX1) S2(X0 ⊗ X1) S(X0 ⊗ X1)

ϕ1SX0,X1

ϕ0X0,SX1

Sϕ0X0,X1

τ

Sϕ1X0,X1 τ
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which results from a stronger property, namely that, as announced, the following diagram
commutes:

SX0 ⊗ SX1 S(SX0 ⊗ X1)

S(X0 ⊗ SX1) S2(X0 ⊗ X1) S2(X0 ⊗ X1)

ϕ1SX0,X1

ϕ0X0,SX1
Sϕ0X0,X1

Sϕ1X0,X1 cX0⊗X1

and from Theorem 7. This commutation is proved as follows:
πi πj (Sϕ0X0,X1 ) ϕ

1
SX0,X1 = πi ϕ

0
X0,X1 πj ϕ

1
SX0,X1 by nat. of πj

= (πi ⊗ X1) (SX0 ⊗ πj) by def. of ϕ1 and ϕ0

= πi ⊗ πj

πi πj c (Sϕ1X0,X1 ) ϕ
0
X0,SX1

= πj πi (Sϕ1X0,X1 ) ϕ
0
X0,SX1

by def. of c

= πj ϕ
1
X0,X1 πi ϕ

0
X0,SX1

= (X0 ⊗ πj) (πi ⊗ SX1)
= πi ⊗ πj .

We set
LX0,X1 = τ (Sϕ0X0,X1 ) ϕ

1
SX0,X1

= τ (Sϕ1X0,X1 ) ϕ
0
X0,SX1

= 〈π0 ⊗ π0, π1 ⊗ π0 + π0 ⊗ π1〉S
∈ L (SX0 ⊗ SX1, S(X0 ⊗ X1)) .

It is well known that in such a commutative monad situation, the associated tuple (S, ι0, τ , L) is a
symmetric monoidal monad on the SMC L . In particular, we will use the following equation:

L (SX0 ⊗ ι0)= ϕ0X0,X1 = 〈π0 ⊗ X1, π1 ⊗ X1〉S ∈ L (SX0 ⊗ X1, S(X0 ⊗ X1)) (3)
and symmetrically for L (ι0 ⊗ SX1).

Definition 29. When the summability structure of the SMC L satisfies (S⊗-dist), we say that L
is a summable SMC.

4. Differentiation in a Summable Resource Category
We have now enough material about our summability structures to be able to introduce coherent
differentiation. As in differential LL, differentiation will be associated with a resource modality we
assume our category to be equipped with.

4.1 Differential structure
Definition 30. A resource category L (see Section 2.3) is a summable resource category if it is a
summable SMC and satisfies the following additional condition of compatibility with the cartesian
product.
(S&-pres) The functor S preserves all finite cartesian products. In other words, the morphisms 0 ∈
L (S�,�) and 〈Spr0, Spr1〉 ∈ L (S(X0 & X1), SX0 & SX1) are isos.
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A differential structure on a summable resource categoryL consists of a natural transformation
∂X ∈ L (!SX, S!X) which satisfies the following conditions:

(∂-local)
!SX S!X

!X

∂X

!π0
π0

Remark 31. This condition is required only for π0 and not for π1. In some sense, it is only with
the differential structure that we start breaking the symmetry between the “two sides” of the S
functor. Notice that the definition of the monad structure of S in Section 3.1 has the same kind of
asymmetry, but it is not a condition on the categorical structure, just a construction.

(∂-lin)
!X

!SX S!X

!ι0
ι0

∂X

!S2X S!SX S2!X

!SX S!X

∂SX

!τ

S∂X

τ

∂X

It is standard that this condition allows one to extend (in the sense of Power and Watanabe
2002, Definition 4.5) the functor !_ to the Kleisli category LS of the monad S. In this Kleisli cat-
egory, a morphism X → Y can be seen as a pair (f0, f1) of two summable morphisms in L (X, Y),
and composition is defined by g ◦ f = (g0 f0, g1 f0 + g0 f1), a definition which is very reminiscent
of the multiplication of dual numbers.

(∂-chain)
!SX S!X

SX

∂X

derSX
S derX

!SX S!X

!!SX !S!X S!!X

∂X

digSX S digX
!∂X ∂!X

This condition allows us to extend the functor S to the Kleisli category L!. We obtain in that
way the functor D̃ : L! → L! defined as follows: on objects, we set D̃X = SX. Next, given f ∈
L!(X, Y)= L (!X, Y), the morphism D̃f ∈ L!(SX, SY)= L (!SX, SY) is defined by D̃f = (Sf ) ∂X .
The purpose of the two commutations is precisely tomake this operation functorial, and this func-
toriality is a categorical version of the chain rule of calculus, exactly as in tangent categories since,
as we will see, this functor D̃ essentially computes the derivative of f .

(∂-&)
!S� S!�

!� 1 S1

∂�

!0 S(m0)−1

(m0)−1
ι0

!S(X0 & X1) S!(X0 & X1) S(!X0 ⊗ !X1)

!(SX0 & SX1) !SX0 ⊗ !SX1 S!X0 ⊗ S!X1

∂X0&X1

!〈Spr0,Spr1〉

S(m2)−1

(m2)−1 ∂X0⊗∂X1
L!X0,!X1

In other words, we have explicit expressions for ∂� and ∂X0&X1 :

∂� = Sm0 ι0 (m0)−1 !0 (4)

∂X0&X1 = Sm2
X0,X1 L!X0,!X1 (∂X0 ⊗ ∂X1 ) (m

2
SX0,SX1 )

−1 !〈Spr0, Spr1〉 . (5)

Theorem 9. (Leibniz rule). If (∂-&) holds then the following diagrams commute.

!SX S!X

1 S1

∂X

weakSX S weakX
ι0

!SX S!X

!SX ⊗ !SX S!X ⊗ S!X S(!X ⊗ !X)

∂X

contr!SX S contrX
∂X⊗∂X L!X,!X

Proof. This is an easy consequence of the naturality of ∂ and of the definition ofweakX and contrX
which is based on the cartesian products and on the Seely isomorphisms.
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(∂-Schwarz)
!S2X S!SX S2!X

!S2X S!SX S2!X

∂SX

!c

S∂X

c

∂SX S∂X

This diagram, involves the canonical flip c and expresses a kind of commutativity of the second
derivative.

Definition 32. A differentiation in a summable resource category L is a natural transformation
∂X ∈ L (!SX, S!X)which satisfies (∂-local), (∂-lin), (∂-chain), (∂-&), and (∂-Schwarz). A summable
resource category given together with a differentiation is a differential summable resource category.

We assume that L is a differential summable resource category.

4.2 Derivatives and partial derivatives in the Kleisli category
The Kleisli category L! of the comonad (!, der, dig) is well known to be cartesian, where we use
“◦” for the composition of morphisms. In general, it is not a differential cartesian category in
the sense of Alvarez-Picallo and Lemay (2020) because it is not required to be left additive.6 Our
running example of coherence spaces is an example of such a category which is not a differential
category.

There is an inclusion functor Der : L → L! which maps X to X and f ∈ L (X, Y) to f derX ∈
L!(X, Y), and it is faithful but not full in general and allows us to see any morphism of L as a
“linear morphism” of L!.

We have already mentioned the functor D̃ : L! → L!, remember that D̃X = SX and D̃f =
(Sf ) ∂X when f ∈ L!(X, Y). Then we have D̃ ◦ Der= Der ◦ S which allows us to extend simply the
monad structure of S to D̃ by setting ζX = Der ι0 ∈ L!(X, D̃X) and θX = Der τ ∈ L!(̃D2X, D̃X).

Theorem 10. The morphisms ζX ∈ L!(X, D̃X) and θX ∈ L!(̃D2X, D̃X) are natural and turn the
functor D̃ into a monad on L!.

Proof. This result can be seen as a consequence of Corollary 4.9 of Power and Watanabe (2002),
we provide the proof for convenience. The only non-obvious property is naturality, the monadic
diagram commutations resulting from those of (S, ι0, σ ) on L and of the functoriality of Der. Let
f ∈ L!(X, Y), that is, f ∈ L (!X, Y). We must first prove that D̃f ◦ ζX = ζY ◦ f . We have

D̃f ◦ ζX = (Sf ) ∂X !ζX digX
= (Sf ) ∂X !ι0 !derX digX by definition of ζ

= (Sf ) ∂X !ι0
= (Sf ) ι0 by (∂-lin)

= ι0 f by naturality

= ζY ◦ f .
Similarly,

D̃f ◦ θX = (Sf ) ∂X !θX digX
= (Sf ) ∂X !τX !derX digX by definition of θ

= (Sf ) τ!X (S∂X) ∂SX by (∂-lin)

= τY (S2f ) (S∂X) ∂SX by naturality
= θY ◦ D̃2f
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Since S preserves cartesian products, we can equip easily this monad (̃D, ζ , θ) on L! with a
commutative strength ψ1

X0,X1
∈ L!(X0 & D̃X1, D̃(X0 & X1)) which is the following composition in

L :

!(X0 & SX1) X0 & SX1 SX0 & SX1 S (X0 & X1)
der ι0&SX1 η

where η= 〈Spr0, Spr1〉−1 is the canonical iso of (S&-pres).
Given f ∈ L!(X0 & X1, Y), we can define the partial derivatives D̃0f ∈ L!(̃DX0 & X1, D̃Y) and

D̃1f ∈ L!(X0 & D̃X1, D̃Y) as D̃f ◦ψ0 and D̃f ◦ψ1 where we use ψ0 for the strength D̃X0 & X1 →
D̃ (X0 & X1) defined from ψ1 using the symmetry of &. We have

D̃0f = Sf ∂X0&X1 !η !(SX0 & ι0)

= Sf Sm2
X0,X1 L!X0,!X1 (∂X0 ⊗ ∂X1 ) (m

2
SX0,SX1 )

−1 !〈Spr0, Spr1〉 !η !(SX0 & ι0) by Eq. (5)

= Sf Sm2
X0,X1 L!X0,!X1 (∂X0 ⊗ ∂X1 ) (m

2
SX0,SX1 )

−1 !(SX0 & ι0)

= Sf Sm2
X0,X1 L!X0,!X1 (∂X0 ⊗ ∂X1 ) (!SX0 ⊗ !ι0) (m2

SX0,X1 )
−1 by naturality

= Sf Sm2
X0,X1 L!X0,!X1 (∂X0 ⊗ ι0) (m2

SX0,X1 )
−1 by (∂-lin)

= Sf Sm2
X0,X1 L!X0,!X1 (S!X0 ⊗ ι0) (∂X0 ⊗ !X1) (m2

SX0,X1 )
−1

= Sf Sm2
X0,X1 〈π0 ⊗ !X1, π1 ⊗ !X1〉S (∂X0 ⊗ !X1) (m2

SX0,X1 )
−1 by Equation (3)

= Sf Sm2
X0,X1 〈!π0 ⊗ !X1, π1 ∂X0 ⊗ !X1〉S (m2

SX0,X1 )
−1 by Lemma 13 and (∂-local)

= Sf 〈!(π0 & X1),m2 (π1 ∂X0 ⊗ !X1) (m2)−1〉S by Lemma 13 and naturality ofm2 .
In other words, D̃0f is fully characterized by the two following equations:

π0 D̃0f = f !(π0 & X1) (6)
π1 D̃0f = f m2

X0,X1 (π1 ∂X0 ⊗ !X1) (m2
SX0,X1 )

−1 (7)

and of course there are symmetric equations characterizing D̃1f .

Remark 33. (Connection with differential categories). Not surprisingly, any resource category
which is a model of differential LL (see Blute et al. 2020; Ehrhard 2018; Fiore 2007) and is therefore
additive and has biproducts is a differential summable category (in the sense of Definition 32). It
suffices to take SX = X & X = X ⊕ X (identifying products and coproducts to the biproduct) with
morphisms π0, π1, σ defined in the obvious way and to define

∂X = 〈d0, d1〉 : !(X & X)→ !X & !X
where d0 = !pr0 and d1 is the following composition of morphisms:

!(X & X) !X ⊗ !X !X ⊗ X !X ⊗ !X !X
m2

X,X
−1

!X⊗derX !X⊗derX contrX

where derX : X → !X is the codereliction morphism and contrX is the cocontraction morphism of
the differential LLmodel structure.

This fact has been proven in Spring 2021 by Aymeric Walch during his Master Internship and
the proof will be made available soon.

4.3 Deciphering the diagrams
After this rather terse list of categorical axioms, it is fair to provide the reader with intuitions about
their mathematical meaning; this is the purpose of this section.
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One should think of the objects of L as partial commutative monoids (with additional struc-
tures depending on the considered category), and SX as the object of pairs (x, u) of elements
x, u ∈ X such that x+ u ∈ X is defined. The morphisms in L are linear in the sense that they pre-
serve 0 and these partially defined sums, whereas the morphisms of L! should be thought of as
functions which are not linear but admit a “derivative.” More precisely, f ∈ L!(X, Y) can be seen
as a function X → Y and, given (x, u) ∈ SX we have

D̃f (x, u)= (f (x),
df (x)
dx

· u) ∈ SY ,

where df (x)
dx · u is just a notation for the second component of the pair D̃f (x, u) which, by construc-

tion, is such that the sum f (x)+ df (x)
dx · u is a well-defined element of Y . Now we assume that this

derivative df (x)
dx · u obeys the standard rules of differential calculus, and we will see that the above

axioms about ∂ correspond to these rules.

Remark 34. The equations we are using in this section as intuitive justifications for the diagrams
of Section 4.1 refer to the standard laws and properties of the differential calculus that we assume
the reader to be acquainted with. They do hold exactly as written here in the model Pcoh where
derivatives are computed as in calculus as we will show in a forthcoming paper.

Remark 35. We use the well-established notation df (x)
dx · u which must be understood properly:

in particular, the expression df (x)
dx · u is a function of x (the point where the derivative is com-

puted) and of u (the linear parameter of the derivative). When required we use df (x)
dx (x0) · u for the

evaluation of this derivative at point x0 ∈ X.

• (∂-local) means that the first component of D̃f (x, u) is f (x), justifying our intuitive notation:

D̃f (x, u)= (f (x),
df (x)
dx

· u) ∈ SY .
• The first diagram of (∂-chain) means that if f ∈ L!(X, Y) is linear7 in the sense that there is
g ∈ L (X, Y) such that f = g derX = Der g, then df (x)

dx · u= f (u). Notice that it prevents dif-
ferentiation from being trivial by setting df (x)

dx · u= 0 for all f and all x, u. Consider now
f ∈ L!(X, Y) and g ∈ L!(Y , Z); the second diagram means that D̃(g ◦ f )= D̃g ◦ D̃f , which
amounts to

dg(f (x))
dx

· u= dg(y)
dy

(f (x)) · (df (x)
dx

· u)

which is exactly the chain rule.
• The “second derivative” D̃2f ∈ L!(S2X, S2Y) of f ∈ L!(X, Y) is (S2f ) (S∂X) ∂SX . Remember
that D̃f (x, u)= (f (x), df (x)dx · u), therefore applying the standard rules of differential calculus
we have

D̃2f ((x, u), (x′, u′))= (̃Df (x, u),
dD̃f (x, u)
d(x, u)

· (x′, u′))

= ((f (x),
df (x)
dx

· u), ∂(f (x),
df (x)
dx · u)

∂x
· x′ + ∂(f (x), df (x)dx · u)

∂u
· u′)

= ((f (x),
df (x)
dx

· u), (df (x)
dx

· x′, d
2f (x)
dx2

· (u, x′)+ df (x)
dx

· u′))
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where we have used the fact that f (x) does not depend on u and that df (x)
dx · u is linear in

u. We have used (∂-lin) to prove Theorem 10 whose main content is the naturality of ζ
and θ . This second naturality means that D̃f ◦ θX = θY ◦ D̃2f , that is, by the computation
above df (x)

dx · (u+ x′)= df (x)
dx · u+ df (x)

dx · x′ since, intuitively, θX((x, u), (x′, u′))= (x, u+ x′).
Similarly, the naturality of ζ means that df (x)

dx · 0= 0. So the condition (∂-lin) means that the
derivative is a function which is linear with respect to its second parameter.

• We have assumed that L is cartesian and hence L! is also cartesian. Intuitively, X0 & X1 is
the space of pairs (x0, x1) with xi ∈ Xi, and our assumption (S&-pres) means that S (X0 & X1)
is the space of pairs ((x0, x1), (u0, u1)) such that (xi, ui) ∈ SXi, and the sum of such a pair
is (x0 + u0, x1 + u1) ∈ X0 & X1. Then, given f ∈ L!(X0 & X1, Y) the second diagram of (∂-&)
means that

df (x0, x1)
d(x0, x1)

· (u0, u1)= ∂f (x0, x1)
∂x0

· u0 + ∂f (x0, x1)
∂x1

· u1
which can be seen by the following computation of π1 D̃f :

π1 D̃f = π1 (Sf ) ∂X0&X1 by definition of D̃f

= π1 (Sf ) Sm2
X0,X1 L!X0,!X1 (∂X0 ⊗ ∂X1 ) (m

2
SX0,SX1 )

−1 !〈Spr0, Spr1〉 by Equation (5)

= f m2
X0,X1 π1 L!X0,!X1 (∂X0 ⊗ ∂X1 ) (m

2
SX0,SX1 )

−1 !〈Spr0, Spr1〉 by naturality

= f m2
X0,X1 (π1 ⊗ π0 + π0 ⊗ π1) (∂X0 ⊗ ∂X1 ) (m

2
SX0,SX1 )

−1 !〈Spr0, Spr1〉 by def. of L

= f m2
X0,X1 (π1 ∂X0 ⊗ π0 ∂X1 ) (m

2
SX0,SX1 )

−1 !〈Spr0, Spr1〉
+ f m2

X0,X1 (π0 ∂X0 ⊗ π1 ∂X1 ) (m
2
SX0,SX1 )

−1 !〈Spr0, Spr1〉
= f m2

X0,X1 (π1 ∂X0 ⊗ !π0) (m2
SX0,SX1 )

−1 !〈Spr0, Spr1〉
+ f m2

X0,X1 (!π0 ⊗ π1 ∂X1 ) (m
2
SX0,SX1 )

−1 !〈Spr0, Spr1〉 by (∂-local)

= f m2
X0,X1 (π1 ∂X0 ⊗ !X1) (!SX0 ⊗ !π0) (m2

SX0,SX1 )
−1 !〈Spr0, Spr1〉

+ f m2
X0,X1 (!X0 ⊗ π1 ∂X1 ) (!π0 ⊗ !SX1) (m2

SX0,SX1 )
−1 !〈Spr0, Spr1〉

= f m2
X0,X1 (π1 ∂X0 ⊗ !X1) (m2

SX0,X1 )
−1 !(SX0 & π0) !〈Spr0, Spr1〉

+ f m2
X0,X1 (!X0 ⊗ π1 ∂X1 ) (m

2
X0,SX1 )

−1 !(π0 & SX1) !〈Spr0, Spr1〉 by naturality
= π1 D̃0f !〈Spr0, pr1π0〉 + π1D̃1f !〈pr0π0, Spr1〉 by naturality and Equation (7).

Then Theorem 9 means that df (x,x)
dx · u= ∂f (x0,x1)

∂x0 (x, x) · u+ ∂f (x0,x1)
∂x1 (x, x) · u which is the

essence of the Leibniz rule of calculus.
• The object S2X consists of pairs ((x, u), (x′, u′)) such that x, u, x′ and u′ are globally
summable. Then c ∈ L (S2X, S2X) maps ((x, u), (x′, u′)) to ((x, x′), (u, u′)). Therefore, using
the same computation of D̃2f ((x, u), (x′, u′)) as in the case of (∂-lin), we see that (∂-Schwarz)
expresses that d2f (x)

dx2 · (u, x′)= d2f (x)
dx2 · (x′, u) (upon taking u′ = 0). So this diagram means

that the second derivative is a symmetric bilinear function, a property of sufficiently regular
differentiable functions often referred to as Schwarz Theorem.

4.4 A differentiation in coherence spaces
Now we exhibit such a differentiation in Coh. We define !E as follows: |!E| is the set of finite
multisets8 m of elements of |E| such that supp (m) ∈ Cl(E) (such anm is called a finitemulticlique).
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Given m0,m1 ∈ |!E|, we have m0 ¨!E m1 if m0 +m1 ∈ |!E|. This operation is a functor Coh→
Coh: given s ∈Coh(E, F) one sets

!s= {([a1, . . . , an], [b1, . . . , bn]) | n ∈N, (ai, bi) ∈ s for i= 1, . . . , n and [a1, . . . , an] ∈ |!E|}
which actually belongs to Cl(!E� !F) because s ∈ Cl(E� F). The comonad structure of this
functor and the associated commutative comonoid structure are given by:

• derE = {([a], a) | a ∈ |E|}
• digE = {(m, [m1, . . . ,mn]) ∈ |!E� !!E| |m=m1 + · · · +mn}
• weakE = {([ ], ∗)}
• and contrE = {(m, (m1,m2)) ∈ |!E� (!E⊗ !E)| |m=m1 +m2}.

Composition in Coh! can be described directly as follows: let s ∈ Cl(!E� F) and t ∈ Cl(!F�G),
then t ◦ s ∈ L (!E�G) is {(m, c) ∈ |!E�G| | ∃n ∈N ∃(m1, b1), . . . , (mn, bn) ∈ s m1 + · · · +
mn =m and ([b1, . . . , bn], c) ∈ t}. Amorphism s ∈Coh!(E, F) induces a function ŝ : Cl(E)→ Cl(F)
by ŝ(x)= {b | ∃m ∈ Mfin(x) (m, b) ∈ s}. The functions f : Cl(E)→ Cl(F) definable in that way are
exactly the stable functions: f is stable if for any x ∈ Cl(E) and any b ∈ f (x) there is exactly one
minimal subset x0 of x such that b ∈ f (x0), and moreover this x0 is finite. When moreover this x0
is always a singleton f is said to be linear and such linear functions are in bijection with Coh(E, F)
(given t ∈Coh(E, F), and the associated linear function Cl(E)→ Cl(F) is the map x �→ t · x).

Notice that for a given stable function f : Cl(E)→ Cl(F), there can be infinitely many s ∈
Coh!(E, F) such that f = ŝ since the definition of ŝ does not take into account the multiplici-
ties in the multisets m such that (m, b) ∈ s. For instance, if a ∈ |E| and b ∈ |F| then {([a], b)} and
{([a, a], b)} define exactly the same stable (actually linear) function.

Up to trivial iso we have |!SE| = {(m0,m1) ∈ |!E| | supp (m0)∩ supp (m1)= ∅ andm0 +m1 ∈
|!E|} and (m00,m01)¨!SE (m10,m11) if m00 +m01 +m10 +m11 ∈ |!X| and supp (m00 +m10)∩
supp (m01 +m11)= ∅. With this identification, we define ∂E ⊆ |!SE� S!E| as follows:
∂E = {((m0, [ ]), (0,m0)) |m0 ∈ |!E|}

∪ {((m0, [a]), (1,m0 + [a])) |m0 + [a] ∈ |!E| and a /∈ supp (m0)} . (8)

We think useful to check directly that ∂E ∈Coh(!SE, S!E) although this checking is not neces-
sary since we will see in Section 5.6 that this property results from a much simpler one. Let
((mj0,mj1), (ij,mj)) ∈ ∂E for j= 0, 1 and assume that

(m00,m01)¨!SE (m10,m11) . (9)

By symmetry, there are three cases to consider.

• If i0 = i1 = 0 then, we have mj1 = [ ] and mj0 =mj for j= 0, 1. Then, we have (0,m0)¨S!E
(0,m1) by our assumption (9), and if (0,m0)= (0,m1) then (m00,m01)= (m10,m11).

• Assume now that i0 = i1 = 1. We have mj1 = [aj] for aj ∈ |E|, with aj /∈ supp (mj0)
and mj =mj0 + [aj]. Our assumption (9) means that m00 +m10 + [a0, a1] ∈ |!E| and
supp (m00 +m10)∩ {a0, a1} = ∅. Therefore, m0 +m1 ∈ |!E| and hence (1,m0)¨S!E (1,m1).
Assume moreover that m0 =m1, that is, m00 + [a0]=m10 + [a1]. This implies m00 =m10
and a0 = a1 since we know that a1 /∈ supp (m00) and a0 /∈ supp (m10).

• Last assume that i0 = 1 and i1 = 0. So we have m01 = [a] with a /∈ supp (m00) and m0 =
m00 + [a]; m11 = [ ] and m1 =m10. By (9), we know that supp (m0 +m1) ∈ Cl(!E). Coming
back to the definition of the coherence in SF (for a coherence space F), we must also prove
thatm0 �=m1: this results from (9) which entails that a /∈ supp (m1)=m10, whereas we know
that a ∈ supp (m0).
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We do not prove the required commutations for the already mentioned reason that they will be
reduced in Section 5.6 to a much simpler verification.

Given x ∈ Cl(E), we can define a coherence space Ex (the local sub-coherence space at x) as
follows: |Ex| = {a ∈ |E| \ x | x ∪ {a} ∈ Cl(X)} and a0 ¨Ex a1 if a0 ¨E a1. Then, given s ∈Coh!(E, F),
we can define the differential of s at x as:

ds(x)
dx

= {(a, b) ∈ |Ex| × |F| | ∃m ∈ |!E| (m+ [a], b) ∈ s and supp (m)⊆ x} ⊆ |Ex � Y| .
Theorem 11. Let s ∈Coh!(E, F). Then D̃s ∈Coh!(SE, SF) satisfies

∀(x, u) ∈ Cl(SE) ̂̃Ds(x, u)= (̂s(x),
ds(x)
dx

· u)

Proof. Let (x, u) ∈ Cl(SE) and (i, b) ∈ |SF| with i ∈ {0, 1} and b ∈ |F|. We have (i, b) ∈ ̂̃Ds(x, u)
iff there is (m0,m1) ∈ |!SE| such that supp (m0)⊆ x, supp (m1)⊆ u and ((m0,m1), (i, b)) ∈ D̃s=
∂E Ss. This latter condition holds iff

• either i= 0,m1 = [ ], and (m0, b) ∈ s,
• or i= 1, m1 = [a] for some a ∈ |E| \ supp (m0) such that m0 + [a] ∈ Cl(E), and (m0 +
[a], b) ∈ s.

Assume first that (i, b) ∈ ̂̃Ds(x, u) and let (m0,m1) be as above. If i= 0, we have (m0, b) ∈ s and
supp (m)0 ⊆ x and hence b ∈ ŝ(x), that is (i, b) ∈ (̂s(x), ds(x)dx · u). If i= 1 let a ∈ |E| \ supp (m0) be
such that m1 = [a], m0 + [a] ∈ |!E|, (m0 + [a], b) ∈ s and supp (m0, [a])⊆ (x, u) (remember that
we consider the elements of Cl(SE) as pairs of cliques), that is supp (m0)⊆ x and a ∈ u. Then we
know that a ∈ |Ex| since x ∪ u ∈ Cl(E) and x ∩ u= ∅. Therefore, (i, b) ∈ (̂s(x), ds(x)dx · u).

We have proven ̂̃Ds(x, u)⊆ (̂s(x), ds(x)dx · u), and we prove the converse inclusion. Let (i, b) ∈
(̂s(x), ds(x)dx · u). If i= 0, we have b ∈ ŝ(x), and hence there is a uniquely definedm0 ∈ |!E| such that
supp (m0)⊆ x and (m0, b) ∈ s. It follows that ((m0, [ ]), (0, b)) ∈ ∂E Ss and hence (i, b) ∈ ̂̃Ds(x, u).
Assume now that i= 1 so that b ∈ ds(x)

dx · u, and hence there is a ∈ u (which implies a /∈ x) such
that (a, b) ∈ ds(x)

dx . So there is m0 ∈ |!E| such that supp (m0)⊆ x and (m0 + [a], b) ∈ s (notice that
a /∈ supp (m0) since supp (m0)⊆ x and a /∈ x). It follows that ((m0, [a]), (1,m0 + [a])) ∈ ∂E and
hence ((m0, [a]), (1, b)) ∈ (Ss) ∂E so that (1, b) ∈ ̂̃Ds(x, u).
Remark 36. The definition of D̃s depends on s and not only on ŝ: for instance if s= {([a], b)} then
D̃s= {(([a], [ ]), (0, b)), (([ ], [a]), (1, b))} and if s′ = {([a, a], b)} then D̃s′ = {(([a, a], [ ]), (0, b))}; in
that case the derivative vanishes, whereas ŝ= ŝ′ are the same function.

Remark 37. Theorem 11 shows in particular that ds(x)
dx ∈Coh(Ex, F̂s(x)) since ds(x)

dx = π1 ◦ D̃f ◦ ι1
and also that this derivative is stable with respect to the point x where it is computed, and thus
differentiation of stable functions can be iterated. However, Remark 36 indicates a peculiarity of
this derivative which has as a consequence that the morphisms in Coh! do not coincide with their
Taylor expansion that one can define using this iteration of derivatives (the expansion of s is s
whereas the expansion of s′ is ∅).

This is an effect of the uniformity of the construction !E, that is, of the fact that form ∈ Mfin(|E|)
to be in |!E|, it is required that supp (m) be a clique. Indeed, it is only because of this uniformity
requirement in the definition of !E that a coherence space E can be defined by means of a reflex-
ive coherence relation ¨E (or an antireflexive strict coherence relation ˝E) in the sense that one
cannot define, in these coherence spaces, a resource modality !E such that |!E| = Mfin(|E|). But an
effect of this simplicity in the axiomatization of coherence is that the summability of two cliques
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requires their disjointedness, and a consequence of this is the slightly unsatisfactory behavior of
differentiation explained in Remark 36. Do well notice however that this peculiarity does not
prevent coherence spaces from satisfying all of our new axioms of summability and differentiation.

This can be remedied, without breaking the main feature of our construction, namely that it is
compatible with the determinism9 of the model, by using nonuniform coherence spaces instead,
where it becomes possible to take |!E| = Mfin(E), see Bucciarelli and Ehrhard (2001), Boudes
(2011), but where the coherence relation is no more necessarily reflexive (nor antireflexive), see
Section 6.1.

5. Elementarily Summable Categories
The concept of summable category applies typically to models of LL in the sense of Seely
(see Melliès 2009): such a model is based on an SMC L whose morphisms are intuitively con-
sidered as linear, and the summability structure makes this linearity more explicit. In most known
models of LL featuring the above described coherent differential structure10 – typically (proba-
bilistic) coherence spaces, the summability structure boils down to a more basic structure which
is always present in such a model: the functor SX is defined on objects by:

SX = (1 & 1� X) ,
and similarly for morphisms. A priori, given a categorical model of LL L , this functor does
not necessarily define a summability structure. The purpose of this section is to examine under
which conditions this is the case and to express the differential structure introduced above in this
particular and important setting.

Let L be a cartesian11 SMC where the object D= 1 & 1 is exponentiable, that is, the functor
SD : X �→ X ⊗D has a right adjoint SD : X �→ (D� X). We use ev ∈ L ((D� X)⊗D, X) for the
corresponding evaluation morphism and, given f ∈ L (Y ⊗D, X) we use cur f for the associated
Curry transpose of f which satisfies cur f ∈ L (Y ,D� X). Being a right adjoint, SD preserves all
limits existing in L (and in particular the cartesian product).

We will use the construction provided by the following lemma.

Lemma 38. Let ϕ ∈ L (1,D). For any object X of L let nt(ϕ)X ∈ L (D� X, X) be the following
composition of morphisms:

(D� X) (D� X)⊗ 1 (D� X)⊗D X
ρ−1
D�X (D�X)⊗ϕ ev

Then (nt(ϕ)X)X∈L is a natural transformation.
Let f ∈ L (Y ⊗D, X), so that cur f ∈ L (Y ,D� X). Then one has

nt(ϕ)X ( cur f )= f (Y ⊗ ϕ) ρY−1 ∈ L (Y , X) .

Proof. Naturality results from the naturality of ρ and functoriality of D� _. Let us prove the
second part of the lemma, we have

nt(ϕ)X (cur f )= ev ((D� X)⊗ ϕ) (ρD�X)−1 (cur f )
= ev ((D� X)⊗ ϕ) ((cur f )⊗ 1) ρY−1

= ev ((cur f )⊗D) (Y ⊗ ϕ) ρY−1

= f (Y ⊗ ϕ) ρY−1 .

For i= 0, 1 we have amorphism π i ∈ L (1,D) given by π0 = 〈Id1, 0〉 and π1 = 〈0, Id1〉. We also
have a diagonal morphism�= 〈Id1, Id1〉 ∈ L (1,D). Using these, we define the following natural
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transformations SDX → X:

πi = nt(π i) for i= 0, 1
σ = nt(�) .

Definition 39. The category L is elementarily summable if (SD, π0, π1, σ ) is a summability
structure.

Remark 40. Elementary summability is a property of L and not an additional structure, which
is however defined in a rather implicit manner. We exhibit three elementary conditions that are
necessary and sufficient for guaranteeing elementary summability.

Lemma 41. The following conditions are equivalent

• for any X ∈ L , the morphisms X ⊗ π0, X ⊗ π1 are jointly epic
• (SD, π0, π1, σ ) is a pre-summability structure on L .

Proof. Assume that X ⊗ π0, X ⊗ π1 are jointly epic and let fj ∈ L (X, SDY) for j= 0, 1 be such
that πi f0 = πi f1 for i= 0, 1. Let f ′j = ev (fj ⊗D) ∈ L (X ⊗D, Y) so that fj = cur f ′j , for j= 0, 1.
We have

πi fj = nt(π i) (cur f ′j )

= f ′j (X ⊗ π j) ρX−1 by Lemma 38.

So we have f ′0 = f ′1 by our assumption on the π j’s and hence f0 = f1.
Assume conversely that π0, π1 are jointly monic and let f0, f1 ∈ L (X ⊗D, Y) be such that

f0 (X ⊗ π i)= f1 (X ⊗ π i) for i= 0, 1. By Lemma 38, again we have fj (X ⊗ π i)= πi ( cur fj) ρX and
hence cur f0 = cur f1 and hence f0 = f1 which proves that X ⊗ π0, X ⊗ π1 are jointly epic.

Theorem 12. Let L be a cartesian SMC where the object D= 1 & 1 is exponentiable. Setting πi =
nt(π i) for i= 0, 1 and σ = nt(�), the two following statements are equivalent.

(1) For any X ∈ L , the morphisms X ⊗ π0, X ⊗ π1 are jointly epic (we call (ES-epi) this
condition) and (SD, π0, π1, σ ) satisfies (S-witness), see Section 3.

(2) (SD, π0, π1, σ ) is a summable category that is, L is elementarily summable.

Proof. The implication (2)⇒ (1) results immediately from Lemma 41 so let us prove the converse.
We assume that (1) holds. By Lemma 41, we know that π0, π1 are jointly monic, so we are left with
proving (S-com), (S-zero), and (S⊗-dist).
� (S-com). Let f = cur g ∈ L (SDX, SDX) where g is the following composition of morphisms:

(D� X)⊗D (D� X)⊗D X
Id⊗〈pr1,pr0〉 ev

We have

πi f = g ((D� X)⊗ π i) ρ−1 by Lemma 38
= ev ((D� X)⊗ π1−i) ρ−1 by definition of g
= π1−i

and similarly

σ f = g ((D� X)⊗�) ρ−1 = ev ((D� X)⊗�) ρ−1 = σ .
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� (S-zero). Let f ∈ L (X, Y). Let h= cur (f ρX (X ⊗ pr0)) ∈ L (X, SDY). We have

πi h= f ρX (X ⊗ pr0) (X ⊗ π i) ρX−1 by Lemma 38

=
{
f if i= 0
0 otherwise

which shows that f , 0 are summable with 〈f , 0〉S = h. Moreover,

σ h= f ρX (X ⊗ pr0) (X ⊗�) ρX−1 = f .

� (S⊗-dist). Let (f00, f01) be a summable pair of morphisms in L (X0, Y0) so that we have the
witness 〈f00, f01〉S ∈ L (X0, SDY0), and let f1 ∈ L (X1, Y1). Let h= cur h′ ∈ L (X0 ⊗ X1, SD(Y0 ⊗
Y1)) where h′ is the following composition of morphisms:

X0 ⊗ X1 ⊗D (D� Y0)⊗D⊗ X1 Y0 ⊗ Y1.
〈f00,f01〉S⊗γ ev⊗f1

We have

πi h= (ev⊗ f1) (〈f00, f01〉S ⊗ γX1,D) (X0 ⊗ X1 ⊗ π i) ρX0⊗X1
−1 by Lemma 38

= (ev⊗ f1) (〈f00, f01〉S ⊗ π i ⊗ X1) (X0 ⊗ γX1,1) ρX0⊗X1
−1

= (( ev (〈f00, f01〉S ⊗ π i))⊗ f1) (X0 ⊗ γX1,1) ρX0⊗X1
−1

= (f0i ⊗ f1) (ρX0 ⊗ X1) (X0 ⊗ γ ) ρX0⊗X1
−1

= f0i ⊗ f1.

which shows that f00 ⊗ f1, f01 ⊗ f1 are summable with

〈f00 ⊗ f1, f01 ⊗ f1〉S = h.

We have by a similar computation:

σ h= (( ev (〈f00, f01〉S ⊗�))⊗ f1) (X0 ⊗ γX1,1) ρX0⊗X1
−1

= ((f00 + f01)⊗ f1) (ρX0 ⊗ X1) (X0 ⊗ γX1,1) ρX0⊗X1
−1

= (f00 + f01)⊗ f1.

There are cartesian SMC where D is exponentiable and which are not elementarily summable.
The category Set0 provides probably the simplest example of that situation.

� Example 5.1. We refer to Section 2.2, we have 1= {0, ∗} and henceD= {0, ∗}2 with 0D = (0, 0).
We have the functor SD : Set0 → Set0 defined by SDX = (D� X). An element of SDX is a func-
tion z : {0, ∗}2 → X such that z(0, 0)= 0. The projections πi : SDX → X are characterized by
π0(z)= z(∗, 0) and π1(z)= z(0, ∗), so 〈π0, π1〉 is not injective, since 〈π0, π1〉(z)= (z(∗, 0), z(0, ∗))
does not depend on z(∗, ∗) which can take any value. So (SD, π0, π1, σ ) is not even a presumma-
bility structure in Set0. This failure of injectivity is due to the fact that D lacks an addition which
would satisfy (∗, 0)+ (0, ∗)= (∗, ∗) and, preserved by z, would enforce injectivity. �

There are also cartesian SMC where D is exponentiable, where (ES-epi) holds but where
(SD, π0, π1, σ ) does not satisfy (S-witness).

� Example 5.2. LetB be the category whose objects are the finite-dimensional real Banach space.
By this, we mean pairs (V , ‖_‖V ) where V is a finite-dimensional real vector space and ‖_‖V is a
norm on V . In B, a morphism V →W is a linear map such that ∀v ∈V ‖f (v)‖W ≤ ‖v‖V . This
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category is a cartesian symmetric monoidal closed category with U �V defined as the space of
all linear maps f :U →V and

‖f ‖U�V = sup{‖f (u)‖V | u ∈U and ‖u‖U ≤ 1} .
Indeed since we consider only finite-dimensional spaces, all linear maps are continuous (for the
product topology induced by any choice of basis, which is the same as the one induce by the
norm) and hence bounded. The tensor product classifies bilinear maps (with norm defined by
sups as for linear maps) and satisfies ‖u⊗ v‖U⊗V = ‖u‖U‖v‖V for all u ∈U and v ∈V . The unit
of this tensor product is 1=R with ‖a‖1 = |a| for all a ∈R. The cartesian product is the standard
direct product of vector spaces with ‖(u, v)‖U&V =max (‖u‖V , ‖v‖V ). Notice that there is also
a coproduct U ⊕V , with the same underlying vector space and ‖(u, v)‖U⊕V = ‖u‖U + ‖v‖V . So
U &V and U ⊕V are not isomorphic in B which is not an additive category.

We have D= 1 & 1=R
2 with ‖(a0, a1)‖D =max ( |a0| , |a1| ). The functor SD : B → B maps

U to V = SDU =U ×U and

‖(u0, u1)‖V = sup{‖a0u0 + a1u1‖U | (a0, a1) ∈ [− 1, 1]× [− 1, 1]}
The natural transformations πi are the obvious projections and σ (u0, u1)= u0 + u1.

Then, taking U = 1=R:

• −1/2 and 1/2 are summable in 1 because
∣∣∣− a

2 + b
2

∣∣∣ ≤ 1 for all a, b ∈ [− 1, 1]
• −1/2+ 1/2= 0 and 1 are summable in 1
• but 1/2 and 1 are not summable in 1.

So B is not elementarily summable. �

This example shows that the condition (S-witness) cannot be disposed of and speaks not only
of associativity of partial sums but also of some kind of “positivity” of morphisms in L .

5.1 The comonoid structure ofD
We assume thatL is an elementarily summable cartesian SMC. Themorphismsπ0, π1 ∈ L (1,D)
are summable with π0 + π1 =�, with witness Id ∈ L (D,D). As a consequence of (S⊗-dist),
the morphisms (π0 ⊗ π0) ρ−1, (π0 ⊗ π1) ρ−1 and (π1 ⊗ π0) ρ−1 are summable inL (1,D⊗D).
Therefore, (π0 ⊗ π0) ρ−1 and (π0 ⊗ π1) ρ−1 + (π1 ⊗ π0) ρ−1 are summable in L (1,D⊗D), so
there is a uniquely defined L ∈ L (D,D⊗D) such that L π0 = (π0 ⊗ π0) ρ−1 and L π1 = (π0 ⊗
π1) ρ−1 + (π1 ⊗ π0) ρ−1 .

Theorem 13. Equipped with pr0 ∈ L (D, 1) as counit and L ∈ L (D,D⊗D) as comultiplication,D
is a cocommutative comonoid in the SMC L .

Proof. To prove the required commutations, we use (ES-epi). Here are two examples of these
computations.

ρ (D⊗ pr0) L π0 = ρ (D⊗ pr0) (π0 ⊗ π0) ρ−1 = ρ (π0 ⊗ 1) ρ−1 = π0

and

ρ (D⊗ pr0) L π1 = ρ (D⊗ pr0) (π0 ⊗ π1 + π1 ⊗ π0) ρ−1 = ρ (π1 ⊗ 1) ρ−1 = π1

since pr0 π i is equal to Id1 if i= 0 and to 0 otherwise. Hence, ρ (D⊗ pr0) L=D. Next

(D⊗ L) L π0 = (D⊗ L) (π0 ⊗ π0) ρ−1 = (π0 ⊗ (π0 ⊗ π0)) (D⊗ ρ−1) ρ−1
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and
(D⊗ L) L π1 = (D⊗ L) (π0 ⊗ π1 + π1 ⊗ π0) ρ−1

= (π0 ⊗ (π0 ⊗ π1)+ π0 ⊗ (π1 ⊗ π0)+ π1 ⊗ (π0 ⊗ π0)) (D⊗ ρ−1) ρ−1 .

Similar computations show that (L⊗D) L π0 = ((π0 ⊗ π0)⊗ π0) (ρ−1 ⊗D) ρ−1 and (L⊗D)
L π1 = ((π0 ⊗ π0)⊗ π1 + (π0 ⊗ π1)⊗ π0 + (π1 ⊗ π0)⊗ π0) (ρ−1 ⊗D) ρ−1 . Therefore α (L⊗
D) L π i = (D⊗ L) L π i for i= 0, 1 and L is coassociative. Cocommutativity is proven simi-
larly.

Remark 42. This comonoid structure of D has some similarity with the fact that the algebra
k[X]/X2 of dual numbers (where k is a field) can be described as the vector space k× k equipped
with the multiplication (a0, a1)(b0, b1)= (a0b0, a0b1 + a1b0), with the difference that dual num-
bers are a commutativemonoid in the category of k-vector spaces, whereas ourD is a commutative
comonoid. The analogy is strong because if L were a kind of SMC of vector spaces, then 1 would
be the “field of coefficients” and D would be the direct (cartesian) product of this field with itself
just as the algebra of dual numbers, with the same kind of meaning for the two components of
this product.

5.2 Strongmonad structure of SD
Therefore, the functor SD defined at the beginning of Section 5 has a canonical comonad structure
given by ρ (X ⊗ pr0) ∈ L (SDX, X) and α (X ⊗ L) ∈ L (SDX, S

2
D
X). Through the adjunction SD �

SD, the functor SD inherits a monad structure which is exactly the same as the monad structure of
Section 3.1. This monad structure (ι0, τ ) can be described as the Curry transpose of the following
morphisms (the monoidality isos are implicit):

X ⊗D X
X⊗pr0

(D� (D� X))⊗D (D� (D� X))⊗D⊗D (D� X)⊗D XId⊗L ev⊗D ev .

Similarly, the trivial costrength α ∈ L (SD(X ⊗ Y), X ⊗ SDY) induces the strength ϕ1 ∈ L (X ⊗
SDY , SD(X ⊗ Y)) of SD (the same as the one defined in the general setting of Section 4). We have
seen in Section 4 that equipped with this strength SD is a commutative monad and recalled that
there is therefore an associated lax monoidality LX0,X1 ∈ L (SDX0 ⊗ SDX1, SD(X0 ⊗ X1)) which
can be seen as arising from L by transposing the following morphism (again we keep the monoidal
isos implicit):

(D� X0)⊗ (D� X1)⊗D (D� X0)⊗ (D� X1)⊗D⊗D X0 ⊗ X1
Id⊗L ev⊗ev .

5.3 Elementarily summable SMCC
In a SMCC, the conditions of Theorem 12 admit a slightly simpler formulation.

Theorem 14. A cartesian SMCC is elementarily summable if and only if the condition
(ECS-epi) π0 and π1 are jointly epic
holds and (SD, π0, π1, σ ) satisfies (S-witness).

� Example 5.3. The SMCCCoh is elementarily summable, actually the summability structure we
have considered on this category is exactly its elementary summability structure. Let us check the
three conditions.
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The coherence space D= 1 & 1 is given by |D| = {0, 1} with 0˝D 1. Then π i = {(∗, i)} and
�= {(∗, 0), (∗, 1)}. If s ∈Coh(D, F), then (i, b) ∈ s⇔ (∗, b) ∈ s π i for i= 0, 1 and hence π0, π1 are
jointly epic so Coh satisfies (ECS-epi).

The functor SD defined by SDE= (D� E) (and similarly for morphisms) coincides exactly
with the functor S described in Example 3.2. Therefore, the associated summability is the one
described in Example 3.3.

We check that (S-witness) holds in Coh. Let si ∈Coh(D, E) for i= 0, 1. Let ti = si �= {(∗, a) ∈
|1� E| | ((0, a) ∈ si or (1, a) ∈ si}. Assume that t0 and t1 are summable, that is, t0 ∩ t1 = ∅ and t0 ∪
t1 ∈Coh(1, E), we must prove that s0 ∩ s1 = ∅ and s0 ∪ s1 ∈Coh(D, E). Let (ji, ai) ∈ si for i= 0, 1.
We have (∗, ai) ∈ ti and hence a0 �= a1 from which it follows that (j0, a0) �= (j1, a1). Since j0 ¨D j1
and (j0, a0), (j1, a1) ∈ s0 ∪ s1 ∈Coh(D, E), we have a0 ¨E a1. Hence, s0 and s1 are summable. �

5.4 Differentiation in an elementarily summable category
Let L be a resource category (see the beginning of Section 4.1) which is elementarily summable.
The next lemma is an instance of the general notion of mate in the general two-categorical the-
ory of adjunctions; see Kelly and Street (2006). It relies only on the adjunction SD � SD and on
the functoriality of !_. Let ηX ∈ L (X, SDSDX) and εX ∈ L (SDSDX, X) be the unit and counit of
this adjunction. Let ϕX : L (!SDX, SD!X) be a natural transformation, then we define a natural
transformation ϕ−

X ∈ SD!X → !SDX as the following composition of morphisms:

SD!X SD!SDSDX SDSD!SDX !SDX .SD!ηX SDϕSDX ε!SDX

Conversely given a natural transformation ψX ∈ L (SD!X, !SDX), we define a natural transforma-
tion ψ+

X ∈ L (!SDX, SD!X) as the following composition of morphisms:

!SDX SDSD!SDX SD!SDSDX SD!X .
η!SDX SDψSDX SD!εX

Lemma 43. With the notations above, ϕ−+ = ϕ and ψ+− =ψ .

Proof. Simple computation using the basic properties of adjunctions and the naturality of the
various morphisms involved.

Lemma 44. Let ∂X ∈ L (SD!X, !SDX) be a natural transformation. The associated natural trans-
formation ∂+

X ∈ L (!SDX, SD!X) satisfies (∂-chain) iff the two following diagrams commute
(E∂-chain)

SD!X !SDX

SDX

∂X

SDderX
derSDX

SD!X !SDX

SD!!X !SD!X !!SDX

∂X

SDdigX digSDX

∂ !X !∂X

in other words ∂X is a co-distributive law SD!X → !SDX.

Proof. Consists of computations using naturality and adjunction properties. As an example,
assume the second commutation and let us prove the second diagram of (∂-chain):

!SDX SD!X

!!SDX !SD!X SD!!X

∂X
+

digSDX SDdigX
!∂X

+
∂ !X

+
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We have

(SD digX ) ∂X
+ = (SD digX ) (SD!εX) (SD∂SDX) η!SDX by definition

= (SD!!εX) (SD digSDSDX ) (SD∂SDX) η!SDX by naturality of dig

= (SD!!εX) (SD!∂SDX) (SD∂ !SDX) (SDSD digSDX ) η!SDX by our assumption on ∂

= (SD!!εX) (SD!∂SDX) (SD∂ !SDX) η!!SDX digSDX by naturality of η

= (SD!!εX) (SD!∂SDX) (SD!εSD!SDX) (SD!SDη!SDX) (SD∂ !SDX) η!!SDX digSDX

by SD � SD
= (SD!!εX) (SD!ε!SDSDX) (SD!SDSD∂SDX) (SD∂SDSD!SDX) (SDSD!η!SDX) η!!SDX digSDX

by naturality of ε and of ∂

= (SD!ε!SDX) (SD!SDSD!εX) (SD!SDSD∂SDX) (SD∂SDSD!SDX) η!SDSD!SDX !η!X digSDX

by naturality of ε and of η

= (SD!ε!SDX) (SD!SDSD!εX) (SD∂SD!SDSDX) (SDSD!SD∂SDX) η!SDSD!SDX !η!SDX digSDX

by naturality of ∂

= (SD!ε!SDX) (SD∂SD!X) (SDSD!SD!εX) η!SD!SDSDX (!SD∂SDX) !η!SDX digSDX

by naturality of ∂ and of η

= (SD!ε!SDX) (SD∂SD!X) η!SD!X (!SD!εX) (!SD∂SDX) !η!SDX digSDX

by naturality of η

= ∂
+
!X !∂+

X digSDX

The other computations are similar.

Let ∂X ∈ L (!X ⊗D, !(X ⊗D)) satisfying (E∂-chain). We introduce additional conditions. We
keep implicit some of the monoidal isos associated with ⊗ to increase readability.

(E∂-local)

!X ⊗D !(X ⊗D)

!X ⊗ 1 !X !(X ⊗ 1)

∂X

!X⊗π0

ρ!X !ρX−1
!(X⊗π0)

(E∂-lin)

!X ⊗D !(X ⊗D)

!X ⊗ 1 !X !(X ⊗ 1)

∂X

!X⊗pr0 !(X⊗pr0)
ρ!X !ρX−1

!X ⊗D !X ⊗D⊗D !(X ⊗D)⊗D

!(X ⊗D) !(X ⊗D⊗D)

!X⊗L

∂X

∂X⊗D

∂X⊗D

!(X⊗L)
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(E∂-&)

1⊗D 1

!� ⊗D !(� ⊗D) !�

1⊗pr0

m0⊗D m0

∂� !0

!X0 ⊗ !X1 ⊗D !X0 ⊗D⊗ !X1 ⊗D !(X0 ⊗D)⊗ !(X1 ⊗D)

!(X0 & X1)⊗D !((X0 & X1)⊗D) !((X0 ⊗D) & (X0 ⊗D))

γ2,3(Id⊗L)

m2⊗D

∂X0⊗∂X1

m2

∂X0&X1 !〈pr0⊗D,pr1⊗D〉

(E∂-Schwarz)

!X ⊗D⊗D !(X ⊗D)⊗D !(X ⊗D⊗D)

!X ⊗D⊗D !(X ⊗D)⊗D !(X ⊗D⊗D)

∂X⊗D

!X⊗γD,D

∂X⊗D

!(X⊗γD,D)
∂X⊗D ∂X⊗D

Theorem 15. Let ∂X ∈ L (!X ⊗D, !(X ⊗D)) be a natural transformation. The two following
conditions are equivalent.

• ∂ satisfies (E∂-chain), (E∂-local), (E∂-lin), (E∂-&) and (E∂-Schwarz).
• ∂+ is a differentiation in (L , SD) (in the sense of Definition 32).

Proof. Simple categorical computations: there is a simple direct correspondence between the
conditions (E∂-chain), (E∂-local), (E∂-lin), (E∂-&), and (E∂-Schwarz) on ∂ and the conditions
(∂-chain), (∂-local), (∂-lin), (∂-&), and (∂-Schwarz) on ∂+ through the adjunction SD � SD.

Definition 45. A differential elementarily summable resource category is an elementarily
summable resource category L equipped with a natural transformation ∂X ∈ L (!X ⊗D, !(X ⊗D))
satisfying (E∂-chain), (E∂-local), (E∂-lin), (E∂-&), and (E∂-Schwarz). Then we set ∂ = ∂

+.

We show now that this differential structure boils down to a much simpler one.

5.5 A !-coalgebra structure onD induced by an elementary differential structure
Let ∂X ∈ L (!X ⊗D, !(X ⊗D)) be a natural transformation which satisfies the conditions of
Definition 45.

Lemma 46. Given objects X0, X1 of L , the following diagram commutes:

!X0 ⊗ !X1 ⊗D !X0 ⊗ !(X1 ⊗D)

!(X0 & X1)⊗D !((X0 & X1)⊗D) !(X0 & (X1 ⊗D))

!X0⊗∂X1

m2
X0,X1

⊗D m2
X0,X1⊗D

∂X0&X1 !q0

where q0 = 〈ρX0 (pr0 ⊗ pr0), pr1 ⊗D〉 ∈ L ((X0 & X1)⊗D, X0 & (X1 ⊗D)); remember indeed that
D= 1 & 1.

Proof. Observe first that q0 = (
ρX0 (X0 ⊗ pr0) & (X1 ⊗D)

) 〈pr0 ⊗D, pr1 ⊗D〉. We have

!q0 ∂X0&X1 (m
2
X0,X1 ⊗D)

= !(ρX0 (X0 ⊗ pr0) & (X1 ⊗D)) !〈pr0 ⊗D, pr1 ⊗D〉 ∂X0&X1 (m
2
X0,X1 ⊗D)

= !(ρX0 (X0 ⊗ pr0) & (X1 ⊗D))m2
X0⊗D,X1⊗D

(∂X0 ⊗ ∂X1 ) γ2,3 (!X0 ⊗ !X1 ⊗ L)
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by (E∂-&), and notice that γ2,3 ∈ L (!X0 ⊗ !X1 ⊗D⊗D, !X0 ⊗D⊗ !X1 ⊗D). So we have

!q0 ∂X0&X1 (m
2
X0,X1 ⊗D)

=m2
X0,X1⊗D

(!(ρX0 (X0 ⊗ pr0))⊗ !(X1 ⊗D)) (∂X0 ⊗ ∂X1 ) γ2,3 (!X0 ⊗ !X1 ⊗ L)

=m2
X0,X1⊗D

((ρ!X0 (!X0 ⊗ pr0))⊗ ∂X1 ) γ2,3 (!X0 ⊗ !X1 ⊗ L) by (E∂-lin)

=m2
X0,X1⊗D

(ρ!X0 ⊗ ∂X1 ) (!X0 ⊗ pr0 ⊗ !X1 ⊗D) γ2,3 (!X0 ⊗ !X1 ⊗ L)

=m2
X0,X1⊗D

(ρ!X0 ⊗ ∂X1 ) γ2,3 (!X0 ⊗ !X1 ⊗ pr0 ⊗D) (!X0 ⊗ !X1 ⊗ L)

=m2
X0,X1⊗D

(ρ!X0 ⊗ ∂X1 ) γ2,3 (!X0 ⊗ !X1 ⊗ λD
−1) since pr0 is coneutral for L

=m2
X0,X1⊗D

(!X0 ⊗ ∂X1 ) (ρ!X0 ⊗ !X1 ⊗D) γ2,3 (!X0 ⊗ !X1 ⊗ λD
−1)

=m2
X0,X1⊗D

(!X0 ⊗ ∂X1 ) .

The next result will be technically useful in the sequel and has also its own interest as it deals
with differentiation with respect to a tensor product, showing essentially that it boils down to
differentiation with respect to one of the components of the tensor product.

Theorem 16. The following diagram commutes, for all objects X0, X1 of L .

!X0 ⊗ !X1 ⊗D !X0 ⊗ !(X1 ⊗D)

!(X0 ⊗ X1)⊗D !(X0 ⊗ X1 ⊗D)

!X0⊗∂X1

μ2
X0,X1

⊗D μ2
X0,X1⊗D

∂X0⊗X1

Proof. We recall that μ2
X,Y ∈ L (!X ⊗ !Y , !(X ⊗ Y)) is defined as the following composition of

morphisms:

!X ⊗ !Y !(X & Y) !!(X & Y) !(!X ⊗ !Y) !(X ⊗ Y)
m2

X,Y digX&Y !(m2
X,Y )

−1 !(derX⊗derY )

so that we have, starting to introduce notations f0, f1 . . . for subexpressions,

μ2
X0,X1⊗D

(!X0 ⊗ ∂X1 )= !(derX0 ⊗ derX1⊗D) !(m2
X0,X1⊗D

)−1 digX0&(X1⊗D) m
2
X0,X1⊗D

(!X0 ⊗ ∂X1 )

= !(derX0 ⊗ derX1⊗D) !(m2
X0,X1⊗D

)−1 digX0&(X1⊗D) f0
where, using by Lemma 46,

f0 =m2
X0,X1⊗D

(!X0 ⊗ ∂X1 )= !q0 ∂X0&X1 (m
2
X0,X1 ⊗D)

where q0 = 〈ρX0 (pr0 ⊗ pr0), pr1 ⊗D〉 ∈ L ((X0 & X1)⊗D, X0 & (X1 ⊗D)). Then

f1 = digX0&(X1⊗D) f0 = !!q0 dig(X0&X1)⊗D ∂X0&X1 (m
2
X0,X1 ⊗D)= !!q0 f2 (m2

X0,X1 ⊗D) .
by naturality of dig. Next,

f2 = dig(X0&X1)⊗D ∂X0&X1 = !∂X0&X1 ∂ !(X0&X1) (digX0&X1 ⊗D)
by (E∂-chain). By Lemma 46 again (applied under the functor !_), we have

f3 = !(m2
X0,X1&D)

−1 f1
= !(m2

X0,X1&D)
−1 !!q0 !∂X0&X1 ∂ !(X0&X1) (digX0&X1 ⊗D) (m2

X0,X1 ⊗D)

= !(!X0 ⊗ ∂X1 ) !((m
2
X0,X1 )

−1 ⊗D) ∂ !(X0&X1) (digX0&X1 ⊗D) (m2
X0,X1 ⊗D)

= !(!X0 ⊗ ∂X1 ) ∂ !X0⊗!X1 (!(m
2
X0,X1 )

−1 ⊗D) (digX0&X1 ⊗D) (m2
X0,X1 ⊗D) by nat. of ∂ .
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Finally, we have

μ2
X0,X1⊗D

(!X0 ⊗ ∂X1 )= !(derX0 ⊗ derX1⊗D) f3
= !(derX0 ⊗ derX1⊗D) !(!X0 ⊗ ∂X1 ) ∂ !X0⊗!X1 (!(m

2
X0,X1 )

−1 ⊗D) (digX0&X1 ⊗D) (m2
X0,X1 ⊗D)

= !(derX0 ⊗ derX1 ⊗D) ∂ !X0⊗!X1 (!(m
2
X0,X1 )

−1 ⊗D) (digX0&X1 ⊗D) (m2
X0,X1 ⊗D)

by (E∂-chain)
= ∂X0⊗X1 (!(derX0 ⊗ derX1 )⊗D) (!(m2

X0,X1 )
−1 ⊗D) (digX0&X1 ⊗D) (m2

X0,X1 ⊗D)
by naturality of ∂

= ∂X0⊗X1 (μ
2
X0,X1 ⊗D)

by definition of μ2
X0,X1

.

We define ∂̃ ∈ L (D, !D) as the following composition of morphisms:

D 1⊗D !1⊗D !(1⊗D) !D .λD
−1 μ0⊗D ∂1 !λD

Then the whole natural transformation ∂ can be retrieved from this single morphism ∂̃ .

Theorem 17. The following diagram commutes:

!X ⊗D !X ⊗ !D

!(X ⊗D)

!X⊗∂̃

∂X
μ2
X,D

Proof. We have

μ2
X,D (!X ⊗ ∂̃)=μ2

X,D (!X ⊗ !λD) (!X ⊗ ∂1) (!X ⊗μ0 ⊗D) (!X ⊗ λD
−1)

= !(X ⊗ λD)μ2
X,1⊗D

(!X ⊗ ∂1) (!X ⊗μ0 ⊗D) (!X ⊗ λD
−1)

= !(X ⊗ λD) ∂X⊗1 (μ2
X,1 ⊗D) (!X ⊗μ0 ⊗D) (!X ⊗ λD

−1)

by Theorem 16. We obtain the announced equation by μ2
X,1 (!X ⊗μ0)= !(ρX)−1 ρ!X , the natural-

ity of ∂ and the fact that ρX ⊗ Y = X ⊗ λY ∈ L (X ⊗ 1⊗ Y , X ⊗ Y).

Theorem 18. The morphism ∂̃ is a !-coalgebra structure on D. Moreover, the following commuta-
tions hold.
(∂ca-local)

D !D

1 !1

∂̃

μ0
π0 !π0

(∂ca-lin)

D !D

1 !1

∂̃

pr0 !pr0
μ0

D !D

D⊗D !D⊗ !D !(D⊗D)

∂̃

L !L
∂̃⊗∂̃ μ2

In other words, π0, pr0, and L are coalgebra morphisms.
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Proof. We have, using the fact that (1,μ0) is a !-coalgebra,

derD ∂̃ = derD !λ ∂1 (μ0 ⊗D) λ−1

= λ der1⊗D ∂1 (μ0 ⊗D) λ−1

= λ (der1 ⊗D) (μ0 ⊗D) λ−1 by (E∂-chain)

= λ λ−1 = Id

and

digD ∂̃ = digD !λ ∂1 (μ0 ⊗D) λ−1

= !!λ !∂1 ∂ !1 (dig1 ⊗D) (μ0 ⊗D) λ−1 by (E∂-chain)

= !!λ !∂1 ∂ !1 (!μ0 ⊗D) (μ0 ⊗D) λ−1 as (1,μ0) is a !-coalg.

= !!λ !∂1 !(μ0 ⊗D) ∂1 (μ0 ⊗D) λ−1 by nat. of ∂

and observe now that ∂1 (μ0 ⊗D)= !λ−1 ∂̃ λ by definition of ∂̃ . It follows that

digD ∂̃ = !!λ !(!λ−1 ∂̃ λ)!λ−1 ∂̃ λ λ−1 = !̃∂ ∂̃ .

We have proven that (D, ∂̃) is a !-coalgebra.
Let us prove that π0 ∈ L !((1,μ0), (D, ∂̃)). We have

∂̃ π0 = !λ ∂1 (μ0 ⊗D) λ−1 π0

= !λ ∂1 (μ0 ⊗D) (1⊗ π0) λ−1

= !λ ∂1 (!1⊗ π0) (μ0 ⊗ 1) λ−1

= !λD !(1⊗ π0) !ρ1−1 ρ!1 (μ0 ⊗ 1) λ1−1 by (E∂-local)

= !λD !(1⊗ π0) !ρ1−1 μ0 ρ1 λ1
−1

= !π0 !λ1 !ρ1−1 μ0 ρ1 λ1
−1

= !π0 μ
0

since ρ1 = λ1.
Let us prove that pr0 ∈ L !((D, ∂̃), (1,μ0)). We have

!pr0 ∂̃ = !pr0 !λD ∂1 (μ0 ⊗D) λD−1

= !λ1 !(1⊗ pr0) ∂1 (μ0 ⊗D) λD−1

= !λ1 !ρ1−1 ρ!1 (!1⊗ pr0) (μ0 ⊗D) λD−1 by (E∂-lin)

= !λ1 !ρ1−1 ρ!1 (μ0 ⊗ 1) (1⊗ pr0) λD−1

= !λ1 !ρ1−1 μ0 ρ1 λ1
−1 pr0

=μ0 pr0
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Last we prove that L ∈ L !((D, ∂̃), (D, ∂̃)⊗ (D, ∂̃)). We have

!L ∂̃ = !L !λD ∂1 (μ0 ⊗D) λD−1

= !λD⊗D !(1⊗ L) ∂1 (μ0 ⊗D) λD−1

= !λD⊗D ∂1⊗D (∂1 ⊗D) (!1⊗ L) (μ0 ⊗D) λD−1 by (E∂-lin)

= !λD⊗D μ
2
1⊗D,D (!(1⊗D)⊗ ∂̃) ((μ2

1,1 (!1⊗ ∂̃))⊗D) (!1⊗ L) (μ0 ⊗D) λD−1

by Th. 17, twice

= !λD⊗D μ
2
1⊗D,D (!(1⊗D)⊗ ∂̃) (μ2

1,D ⊗D) (!1⊗ ∂̃ ⊗D) (!1⊗ L) (μ0 ⊗D) λD−1

= !λD⊗D μ
2
1⊗D,D (μ2

1,D ⊗D) (!1⊗ !D⊗ ∂̃) (!1⊗ ∂̃ ⊗D) (!1⊗ L) (μ0 ⊗D) λD−1

= !λD⊗D μ
2
1⊗D,D (μ2

1,D ⊗D) (μ0 ⊗ !D⊗ !D) (1⊗ ∂̃ ⊗ ∂̃) (1⊗ L) λD−1

by functoriality of ⊗
= !λD⊗D μ

2
1⊗D,D (μ2

1,D ⊗D) (μ0 ⊗ !D⊗ !D) λ!D⊗!D
−1 (̃∂ ⊗ ∂̃) L

= (̃∂ ⊗ ∂̃) L

by standard properties of the lax monoidality structure (μ0,μ2) of !_.

5.6 From a coalgebra structure onD to an elementary differential structure.
Assume now conversely that L is an elementarily summable resource category (see
Definition 45) where D is exponentiable and let ∂̃ ∈ L (D, !D). We can define a morphism
∂X ∈ L (!X ⊗D, !(X ⊗D)) as the following composition of morphisms:

!X ⊗D !X ⊗ !D !(X ⊗D)!X⊗∂̃ μ2
X,D

This morphism is natural in X by the naturality of μ2.

Theorem 19. If ∂̃ satisfies the following properties:

(1) (D, ∂̃) is a !-coalgebra
(2) (∂ca-local)
(3) and (∂ca-lin)

then the natural transformation ∂ satisfies (E∂-chain), (E∂-local), (E∂-lin), (E∂-&), and (E∂-
Schwarz).
Proof. � (E∂-chain). We have

derX⊗D ∂X = derX⊗D μ2
X,D (!X ⊗ ∂̃)

= (derX ⊗ derD) (!X ⊗ ∂̃)
= derX ⊗D by assumption (1) ((D, ∂̃) is a !-coalgebra).

https://doi.org/10.1017/S0960129523000129 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000129


302 Thomas Ehrhard

and

digX⊗D ∂X = digX⊗D μ2
X,D (!X ⊗ ∂̃)

= !μ2
X,D μ

2
!X,!D (digX ⊗ digD) (!X ⊗ ∂̃)

= !μ2
X,D μ

2
!X,!D (digX ⊗ (!̃∂ ∂̃)) by assumption (1) ((D, ∂̃) is a !-coalgebra).

= !μ2
X,D μ

2
!X,!D (!!X ⊗ !̃∂) (digX ⊗ ∂̃)

= !μ2
X,D !(!X ⊗ ∂̃)μ2

!X,D (digX ⊗ ∂̃) by naturality of μ2

= !μ2
X,D !(!X ⊗ ∂̃)μ2

!X,D (!!X ⊗ ∂̃) (digX ⊗D)

= !∂X ∂ !X (digX ⊗D)

as required.
� (E∂-local). We have

∂X (!X ⊗ π0)=μ2
X,D (!X ⊗ (̃∂ π0))

=μ2
X,D (!X ⊗ (!π0 μ

0)) by assumption (2) (∂ca-local).

= !(X ⊗ π0)μ2
X,1 (!X ⊗μ0)

= !(X ⊗ π0) !ρX−1 ρ!X

by the properties of the lax monoidality (μ2,μ0).
� (E∂-lin). We have

!(X ⊗ pr0) ∂X = !(X ⊗ pr0)μ2
X,D (!X ⊗ ∂̃)

=μ2
X,1 (!X ⊗ !pr0) (!X ⊗ ∂̃)

=μ2
X,1 (!X ⊗μ0) (!X ⊗ pr0) by assumption (3) (∂ca-lin).

= !ρX−1 ρ!X (!X ⊗ pr0)

and

!(X ⊗ L) ∂X = !(X ⊗ L)μ2
X,D (!X ⊗ ∂̃)

=μ2
X,D⊗D

(!X ⊗ !L) (!X ⊗ ∂̃)

=μ2
X,D⊗D

(!X ⊗μ2
D,D) (!X ⊗ ∂̃ ⊗ ∂̃) (!X ⊗ L) by assumption (3) (∂ca-lin).

=μ2
X⊗D,D (μ2

X,D ⊗ !D) (!X ⊗ ∂̃ ⊗ ∂̃) (!X ⊗ L)

=μ2
X⊗D,D (!(X ⊗D)⊗ ∂̃) (μ2

X,D ⊗D) (!X ⊗ ∂̃ ⊗D) (!X ⊗ L)

= ∂X⊗D (∂X ⊗D) (!X ⊗ L) .

� (E∂-&). By Proposition 5, we have pr0 =weakD ∂̃ and L= (derD ⊗ derD) contrD ∂̃ . We use
these expressions in the next computations.

For the first diagram, we have

m0 λ1 (1⊗ pr0)=m0 λ1 (1⊗weakD) (1⊗ ∂̃)
= !0μ2

�,D (m0 ⊗ !D) (1⊗ ∂̃) by Lemma 4

= !0μ2
�,D (!� ⊗ ∂̃) (m0 ⊗D)

= !0 ∂� (m0 ⊗D) .
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And the second one is proved by the following computation:

m2
X0⊗D,X1⊗D

(∂X0 ⊗ ∂X1 ) γ2,3 (!X0 ⊗ !X1 ⊗ L)

=m2
X0⊗D,X1⊗D

(μ2
X0,D ⊗μ2

X0,D) γ2,3
(!X0 ⊗ !X1 ⊗ (̃∂ derD )⊗ (̃∂ derD )) (!X0 ⊗ !X1 ⊗ contrD ) (!X0 ⊗ !X1 ⊗ ∂̃)
expanding ∂ and L

=m2
X0⊗D,X1⊗D

(μ2
X0,D ⊗μ2

X0,D) γ2,3
(!X0 ⊗ !X1 ⊗ ( der!D !̃∂)⊗ ( der!D !̃∂)) (!X0 ⊗ !X1 ⊗ contrD ) (!X0 ⊗ !X1 ⊗ ∂̃)
by naturality of der

=m2
X0⊗D,X1⊗D

(μ2
X0,D ⊗μ2

X0,D) γ2,3
(!X0 ⊗ !X1 ⊗ der!D ⊗ der!D ) (!X0 ⊗ !X1 ⊗ contr!D ) (!X0 ⊗ !X1 ⊗ (!̃∂ ∂̃))
by naturality of contr

=m2
X0⊗D,X1⊗D

(μ2
X0,D ⊗μ2

X0,D) γ2,3
(!X0 ⊗ !X1 ⊗ der!D ⊗ der!D ) (!X0 ⊗ !X1 ⊗ contr!D ) (!X0 ⊗ !X1 ⊗ ( digD ∂̃))
because ∂̃ is a coalgebra structure

=m2
X0⊗D,X1⊗D

(μ2
X0,D ⊗μ2

X0,D) γ2,3
(!X0 ⊗ !X1 ⊗ ( der!D digD )⊗ ( der!D digD )) (!X0 ⊗ !X1 ⊗ contrD ) (!X0 ⊗ !X1 ⊗ ∂̃)
basic property of dig and contr

=m2
X0⊗D,X1⊗D

(μ2
X0,D ⊗μ2

X0,D) γ2,3 (!X0 ⊗ !X1 ⊗ contrD ) (!X0 ⊗ !X1 ⊗ ∂̃)

= !〈pr0 ⊗D, pr1 ⊗D〉μ2
X0&X1,D (m2

X0,X1 ⊗ !D) (!X0 ⊗ !X1 ⊗ ∂̃) by Lemma 4

= !〈pr0 ⊗D, pr1 ⊗D〉μ2
X0&X1,D (!(X0 & X1)⊗ ∂̃) (m2

X0,X1 ⊗D)

= !〈pr0 ⊗D, pr1 ⊗D〉 ∂X0&X1 (m
2
X0,X1 ⊗D) by definition of ∂ ,

as required.
� (E∂-Schwarz). We have

!(X ⊗ γD,D) ∂X⊗D (∂X ⊗D)
= !(X ⊗ γD,D)μ2

X⊗D,D (!(X ⊗D)⊗ ∂̃) (μ2
X,D ⊗D) (!X ⊗ ∂̃ ⊗D)

= !(X ⊗ γD,D)μ3
X,D,D (!X ⊗ ∂̃ ⊗ ∂̃) where μ3 is the ternary version of μ

= !(X ⊗ γD,D)μ2
X,D⊗D

(!X ⊗μ2
D,D) (!X ⊗ ∂̃ ⊗ ∂̃)

=μ2
X,D⊗D

(!X ⊗ !γD,D) (!X ⊗μ2
D,D) (!X ⊗ ∂̃ ⊗ ∂̃) by naturality of μ2

=μ2
X,D⊗D

(!X ⊗μ2
D,D) (!X ⊗ γ!D,!D) (!X ⊗ ∂̃ ⊗ ∂̃) by symmetry of μ2

=μ2
X,D⊗D

(!X ⊗μ2
D,D) (!X ⊗ ∂̃ ⊗ ∂̃) (!X ⊗ γD,D) by naturality of γ

=μ2
X⊗D,D (μ2

X,D ⊗ !X) (!X ⊗ ∂̃ ⊗ ∂̃) (!X ⊗ γD,D)

=μ2
X⊗D,D (∂X ⊗ ∂̃) (!X ⊗ γD,D) by definition of ∂X

=μ2
X⊗D,D (!(X ⊗D)⊗ ∂̃) (∂X ⊗D) (!X ⊗ γD,D)

= ∂X⊗D (∂X ⊗D) (!X ⊗ γD,D) by definition of ∂X⊗D .

We can summarize the results obtained in this section as follows.
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Theorem 20. Let L be an elementarily summable resource category. There is a bijective correspon-
dence between

• the differential structures (∂X)X∈L on the elementary summability structure (SD, π0, π1, σ )
of L

• and the !-coalgebra structures ∂̃ on D which satisfy (∂ca-local) and (∂ca-lin).

In the second situation, the associated differentiation ∂X ∈ L (!SDX, SD!X) is cur d where d is the
following composition of morphisms:

!(D� X)⊗D !(D� X)⊗ !D !((D� X)⊗D) !X!(D�X)⊗∂̃ μ2
D�X,D !ev .

Remark 47. This correspondence can certainly be made functorial, and this is postponed to
further work.

Now, we consider the case where L is Lafont; see Section 2.3.5. In this case, the situation is
particularly simple.

Theorem 21. If L is a Lafont resource category which is elementarily summable, then there is
exactly one differential structure on the elementary summability structure of L .

Proof. Since (D, pr0, L) is a commutative comonoid, we know by Lemma 6 that there is exactly
one morphism ∂̃ ∈ L (D, !D) such that the following diagrams commute:

D !D

D

∂̃

Id
derD

D !D

1

∂̃

pr0
weakD

D !D

D⊗D !D⊗ !D

∂̃

L contrD
∂̃⊗∂̃

By Theorem 4 ∂̃ satisfies (∂ca-lin) and hence we are left with proving (∂ca-local). This read-
ily follows from the bijective correspondence of Theorem 3 and from the fact that π0 ∈
L ⊗(1, (D, pr0, L)). Indeed pr0 π0 = Id1 and L π0 = π0 ⊗ π0.

Remark 48. Up to suitable applications of the _op operation on the involved categories, this result
generalizes Theorem 3.4 of Blute et al. (2016) to the elementarily summable case. In that article,
commutative monoids instead of comonoids are considered and, more importantly, the ambient
category is additive.

6. The Differential Structure of Coherence Spaces
Equipped with the multiset exponential introduced in Section 4.4, it is well known that Coh is a
Lafont resource category (see Section 2.3.5) as observed initially by Van de Wiele (unpublished,
see Melliès 2009). Since Coh is elementarily summable as shown in Example 5.3, we already know
that it has a unique differential structure by Theorem 21. We will show that we retrieve in that
way the differential structure outlined in Section 4.4.

Remember that D= 1 & 1 so that |D| = {0, 1} with 0˝D 1. The comonoid structure of
D= 1 & 1 is given by pr0 = {(0, ∗)} ∈Coh(D, 1) and L= {(0, (0, 0)), (1, (1, 0)), (1, (0, 1))} ∈
Coh(D,D⊗D). The n-ary comultiplication of this comonoid is L̃(n) ∈Coh(D,D⊗n) given by:

L̃(n) = {(0, (0, . . . , 0))} ∪ {(1, (
k−1︷ ︸︸ ︷

0, . . . , 0, 1,
n−k︷ ︸︸ ︷

0, . . . , 0 )) | k ∈ {1, . . . , n}}
= {(i, (i1, . . . , in)) ∈ |D| × |D|n | i= i1 + · · · + in} .
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The unique ∂̃ ∈Coh(D, !D) specified by Theorem 21 is given by:

∂̃ = {(i, [i1, . . . , ik]) ∈ |D| × Mfin(|D|) | k ∈N and i= i1 + · · · + in} ,
observe indeed that |!D| = Mfin(|D|) due to the coherence relation of D. The associated natural
transformation ∂E ∈Coh(!SDE, ) is cur d where d is the following composition of morphisms:

!(D� E)⊗D !(D� E)⊗ !D !((D� E)⊗D) !E!(D�E)⊗∂̃ μ2
D�E,D !ev .

Since μ2
E0,E1 ∈Coh(!E0 ⊗ !E1, !(E0 ⊗ E1)) is given by:

μ2
E0,E1 = {(([a1, . . . , an], [b1, . . . , bn]), [(a1, b1), . . . , (an, bn)]) |

[a1, . . . , an] ∈ |!E0| and [b1, . . . , bn] ∈ |!E1|}
and since for ev ∈Coh((D� E)⊗D, E) we have
!ev= {([((i1, a1), i1), . . . , ((in, an), in)], [a1, . . . , an]) | [a1, . . . , an] ∈ |!E| and i1, . . . , in ∈ |D|}

it follows that

d = {(([(i1, a1), . . . , (in, an)], i), [a1, . . . , an]) | [a1, . . . , an] ∈ |!E|,
i1, . . . , in, i ∈ |D| and i1 + · · · + in = i} .

Upon identifying |!(D� E)| with
{(m0,m1) ∈ |!E|2 |m0 +m1 ∈ |!E| and supp (m0)∩ supp (m1)= ∅}

we get

∂E = {((m0, [ ]), (0,m0)) |m0 ∈ |!E|}
∪ {((m0, [a]), (1,m0 + [a])) |m0 + [a] ∈ |!E| and a /∈ supp (m0)}

which is exactly the definition announced in Equation (8). The proviso that a /∈ supp (m0) in this
expression of ∂E arises from the uniformity of the exponential since, setting m0 = [a1, . . . , an]
we must have [(0, a1), . . . , (0, an), (1, a)] ∈ |!(D� E)|, that is, {0} × {a1, . . . , an} ∪ {(1, a)} ∈
Cl(D� E). The fact that this is a natural transformation satisfying all the commutations required
to turn Coh into a differential summable category results from Theorem 15.

6.1 Differentiation in nonuniform coherence spaces
In Remark 37, we have pointed out that the uniform definition of !E in coherence spaces makes
our differentials “too thin” in general, although they are nontrivial and satisfy all the required rules
of the differential calculus. We show briefly how this situation can be remedied using nonuniform
coherence spaces.

A nonuniform coherence space (NUCS) is a triple E= (|E|,˝E,ˇE ) where |E| is a set and˝E andˇE are two disjoint binary symmetric relations on |E| called strict coherence and strict incoherence.
The important point of this definition is not what is written but what is not: contrarily to usual
coherence spaces we do not require the complement of the union of these two relations to be the
diagonal, it can be any (of course symmetric) binary relation on |E|. We call this relation neutrality
and denote it as ≡E (warning: it needs not even be an equivalence relation!). Then we define
coherence as ¨E = (˝E ∪ ≡E) and incoherence ˚E = (ˇE ∪ ≡E) and any pair of relations among
these five (with suitable relation between them such as ≡E ⊆˚E), apart from the two trivially
complementary ones (ˇE,¨E) and (˝E,˚E), are sufficient to define such a structure.

Cliques are defined as usual: Cl(E)= {x⊆ |E| | ∀a, a′ ∈ x a¨E a′}. Then, (Cl(E),⊆) is a cpo
(a dI-domain actually) but now there can be some a ∈ |E| such that aˇE a, and hence {a} /∈
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Cl(E) (we show below that this really happens). Given NUCS E and F, we define E� F
by |E� F| = |E| × |F| and: (a0, b0)¨E�F (a1, b1) if a0 ¨E a1 ⇒ (b0 ¨F b1 and b0 ≡F b1 ⇒ a0 ≡E
a1) and (a0, b0)≡E�F (a1, b1) if a0 ≡E a1 and b0 ≡F b1. Then, we define a category NCoh by
NCoh(E, F)= Cl(E� F), taking the diagonal relations as identities and ordinary composition of
relations as composition of morphisms.

This is a cartesian SMCC with tensor product given by |E0 ⊗ E1| = |E0| × |E1| and
(a00, a01)¨E0⊗E1 (a10, a11) if a0j ¨Ej a1j for j= 0, 1, and ≡E0⊗E1 is defined similarly; the unit is
1 with |1| = {∗} and ∗ ≡1 ∗ (so that 1⊥ = 1 meaning that the model satisfies a strong form of the
MIX rule of LL). The object of linear morphisms from E to F is of course E� F and NCoh is
∗-autonomous with 1 as dualizing object. The dual E⊥ is given by |E⊥| = |E|, ˝E⊥ =ˇE and
ˇE⊥ =˝E. The cartesian product &i∈I Ei of a family (Ei)i∈I of NUCS is given by |&i∈I Ei| =
∪i∈I{i} × |Ei| with (i0, a0)≡&i∈I Ei (i1, a1) if i0 = i1 = i and a0 ≡Ei a1, and (i0, a0)¨&i∈I Ei (i1, a1)
if i0 = i1 = i⇒ a0 ¨Ei a1. We do not give the definition of the operations on morphisms as they
are exactly the same as in Rel (see Section 2.4). Notice that in the object Bool= 1⊕ 1= (1 & 1)⊥ ,
the two elements 0, 1 of the web satisfy 0ˇBool 1 so that {0, 1} /∈ Cl(Bool) which is expected in a
model of deterministic computations.

We come to the most interesting feature of this model, which is the possibility of defining a
nonuniform exponential !E; we choose here the one of Boudes (2011) which is the free exponential
(so that NCoh is a Lafont resource category). One sets |!E| = Mfin(|E|) (without any uniformity
restrictions),m0 ¨!E m1 if ∀a0 ∈ supp (m0), a1 ∈ supp (m1) a0 ¨E a1, andm0 ≡!E m1 ifm0 ¨!E m1
andmj = [aj1, . . . , ajn] (for j= 0, 1) with ∀i ∈ {1, . . . , n} a0i ≡E a1i (in particularm0 andm1 must
have the same size).

Remark 49. We have [0, 1] ∈ |!Bool| and [0, 1]ˇ!Bool [0, 1] which illustrates the fact that ˇ!Bool
is not antireflexive. This is an essential feature of this model because it is easy to write, in
a suitable deterministic programming language functional language like PCF, a term of type
Bool→ Bool whose interpretation in nCoh is a clique t of !Bool� Bool which contains
([0, 1], 0) and ([0, 1], 1). So, since 0ˇBool 1, it is only because [0, 1]ˇ!Bool [0, 1] that we can have
([0, 1], 0)¨!Bool�Bool ([0, 1], 1), which is required since t must be a clique, being the interpreta-
tion of a term. Notice however that, as observed by Boudes, when we use the free exponential,
we can assume that all NUCS E satisfy the property that a≡E b⇒ a= b and that ≡E is a partial
equivalence relation, these properties being preserved by all constructions. TheNUCS exponential
described in Bucciarelli and Ehrhard (2001) is not compatible with these assumptions.

The action of the functor !_ on morphisms is defined as in Rel: if s ∈NCoh(E, F), then !s=
{([a1, . . . , an], [b1, . . . , bn]) | n ∈N and ∀i (ai, bi) ∈ s} ∈NCoh(!E, !F).

The object D= 1 & 1 is characterized by |D| = {0, 1} and 0˝D 1, i≡D i for i ∈ |D|. The injec-
tions π0, π1 ∈NCoh(1,D) are given by π i = {(∗, i)} and are clearly jointly epic. Two cliques
x0, x1 ∈ Cl(E) are summable if there is x ∈ Cl(D� E) such that xi = x π i, that is, if {0} × x0 ∪ {1} ×
x1 ∈ Cl(D� E) which means that

∀a0 ∈ x0, a1 ∈ x1 a0 ˝E a1 .

This implies x0 ∪ x1 ∈ Cl(E) but not x0 ∩ x1 = ∅ since we can have a˝E a in a nonuniform
coherence space.

The condition (S-witness) holds: let xij ∈ Cl(E) for i, j ∈ {0, 1} and assume that xi0, xi1 are
summable for i= 0, 1 and that moreover x00 ∪ x01, x10 ∪ x11 are summable, we check that {0} ×
x00 ∪ {1} × x01 and {0} × x10 ∪ {1} × x11 are summable in D� E. Let (i, a) ∈ {0} × x00 ∪ {1} ×
x01 and (j, b) ∈ {0} × x10 ∪ {1} × x11. If i= j, then either a, b ∈ xil for some l ∈ {0, 1} and then
a¨E b, or a ∈ xil and b ∈ xil′ with l �= l′ and then a˝E b since xil, xil′ are summable. In both
cases a¨E b and hence (i, a)¨D�E (i, b). If i= 0 and j= 1, then a ∈ x00 ∪ x01 and b ∈ x10 ∪ x11
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and hence a˝E b by our assumption that are x00 ∪ x01, x10 ∪ x11 are summable. It follow that
(i, a)˝D�E (j, b), as required.

The comonoid structure (pr0, L) is exactly the same as in Coh and therefore the morphism
∂̃ ∈NCoh(D, !D) (whose existence and properties result from the fact that NCoh is Lafont) is
defined exactly as in Coh:

∂̃ = {(0, k[0]) | k ∈N} ∪ {(1, k[0]+ [1]) | k ∈N} .
The functor SD can be described as follows: |SDE| = {0, 1} × |E| and (i0, a0)≡SDE (i1, a1) if i0 =

i1 and a0 ≡E a1, and (i0, a0)¨SDE (i1, a1) if (a0 ¨E a1 and a0 ≡E a1 ⇒ i0 = i1). Given s ∈ L (E, F),
we have SDs= {((i, a), (i, b)) | i ∈ {0, 1} and (a, b) ∈ s}. By the same computation as in Coh (but
now without the uniformity restrictions of Coh), we get that
∂E = {((m0, [ ]), (0,m0)) |m0 ∈ Mfin(|E|)} ∪ {((m0, [a]), (1,m0 + [a])) |m0 + [a] ∈ Mfin(|E|)}

which is in NCoh(!SDE, SD!E) and satisfies all the required properties by Theorem 15.

Remark 50. This means that the issue with Girard’s uniform coherence spaces with respect to
differentiation that we explained in Remarks 36 and 37 disappears in the nonuniform coherence
space setting, at least if we use the exponentials introduced in Boudes (2011)12 so that any mor-
phism will coincide with its Taylor expansion in this model. This nonuniform model preserves
the main feature of coherence spaces, namely that in the type Bool for instance, the only possible
values are true and false (and not the nondeterministic superposition of these values as in the
model Rel shortly described in Section 2.4) as we have seen above with the description of 1⊕ 1.

Remark 51. The category Rel is a model of differential LL because it is a Lafont additive category
(see Remark 48) and therefore is also a differential summable resource category. That model is
actually exactly the same as nCoh where objects are stripped from their coherence structure: the
logical constructs in Rel coincide with the constructs we perform on the webs of the objects of
nCoh. For instance, given a set X, the object !X in Rel is simply Mfin(X). And similarly for the
operation on morphisms: as constructions on relations, they are exactly the same as in nCoh.
This identification extends even to ∂̃ and hence to ∂X . So one of the outcomes of this paper is the
fact that the constructions of differential LL in Rel are compatible with the coherence structure
of nCoh, if we are careful enough with morphism addition. This is all the point of our categorical
axiomatization to explain what this carefulness means.

7. Summability in a SMCC
Assume now that L is a summable resource category which is closed with respect to its monoidal
product ⊗ so that L! is cartesian closed. We use X� Y for the internal hom object and
ev ∈ L ((X� Y)⊗ X, Y) for the evaluation morphism. If f ∈ L (Z ⊗ X, Y), we use cur f for its
transpose ∈ L (Z, X� Y).

We can define a natural morphism ϕ� = cur ((S ev ) ϕ0X�Y ,X) ∈ L (S(X� Y), X� SY)
where ev ∈ L ((X� Y)⊗ X, Y).

Lemma 52. We have (X� πi) ϕ� = πi for i= 0, 1 and (X� σY) ϕ� = σX�Y .

Proof. The first two equations come from the fact that πi ϕ0 = πi ⊗ X. The last one results from
Lemma 28.

Then we introduce a further axiom, required in the case where L is closed with respect to ⊗.
Its intuitive meaning is that two morphisms f0, f1 are summable if they map any element to a pair
of summable elements, and that their sum is computed pointwise.
(S⊗-fun) The morphism ϕ� is an iso.

https://doi.org/10.1017/S0960129523000129 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000129


308 Thomas Ehrhard

Lemma 53. If (S⊗-fun) holds, then f0, f1 ∈ L (Z ⊗ X, Y) are summable iff cur f0 and cur f1 are
summable. Moreover when this property holds, we have cur (f0 + f1)= cur f0 + cur f1.

Proof. Assume that f0, f1 are summable so that we have the witness 〈f0, f1〉S ∈ L (Z ⊗ X, SY)
and hence cur〈f0, f1〉S ∈ L (Z, X� SY), so let h= (ϕ�)−1 cur〈f0, f1〉S ∈ L (Z, S(X� Y)).
By Lemma 52, we have πi h= (D� πi) cur〈f0, f1〉S = cur fi for i= 0, 1. Conversely if
cur f0, cur f1 are summable, we have the witness 〈cur f0, cur f1〉S ∈ L (Z, S (X� Y) ) and
hence ϕ� 〈cur f0, cur f1〉S ∈ L (Z, X� SY) so that g = ev ((ϕ� 〈cur f0, cur f1〉S)⊗ X) ∈ L (Z ⊗
X, SY). Then by naturality of ev and by Lemma 52, we get πi g = fi for i= 0, 1 and hence f0, f1 are
summable.

Assume that these equivalent properties hold so that 〈cur f0, cur f1〉S = (ϕ�)−1 cur 〈f0, f1〉S.
Then,

cur f0 + cur f1 = σX�Y〈cur f0, cur f1〉S
= (D� σY) cur 〈f0, f1〉S
= cur (σY 〈f0, f1〉S)
= cur (f0 + f1) .

Theorem 22. If L is elementarily summable, then the axiom (S⊗-fun) holds.
Proof. In this case, we know from Section 5.2 that ϕ� is the double transpose of the following
morphism of L

(D� (X� Y))⊗ X ⊗D (D� (X� Y))⊗D⊗ X (X� Y)⊗ X YId⊗γ ev⊗X ev

and therefore is an iso.

We know that L! is a cartesian closed category, with internal hom-object (X ⇒ Y , Ev ) (with
X ⇒ Y = (!X� Y) and Ev defined using ev). Then if L is a differential summable resource
category which is closed with respect to ⊗ and satisfies (S⊗-fun), we have a canonical iso
between D̃(X ⇒ Y) and X ⇒ D̃Y and two morphisms f0, f1 ∈ L!(Z & X, Y) are summable (in L )
iff Cur f0, Cur f1 ∈ L!(Z, X ⇒ Y) are summable and then Cur f0 + Cur f1 = Cur (f0 + f1).

8. Conclusion
This work suggests a coherent setting for the formal differentiation of functional programs,
allowing us to integrate differentiation as an ordinary construct in any functional programming
language, without breaking the determinism of its evaluation, contrarily to the original differential
λ-calculus, whose operational meaning was unclear due essentially to its nondeterminism. Such
a coherent differential extension of the standard language PCF of Scott and Plotkin is developed
in Ehrhard (2022). Moreover, the coherent differential constructs feature commutative monadic
structures suggesting to consider coherent differentiation as an effect, and this idea needs further
investigations.

The fact that this differentiation is compatible with models such as (nonuniform) coherence
spaces which have nothing to do with the ordinary “analytic” differentiation suggests that it could
also be used for other operational goals, more internal to the scope of general purpose functional
languages.
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Notes
1 That is, whose hom sets are pointed sets and composition is compatible with this structure.
2 For this informal discussion to really make sense, we have to assume that the Kleisli category L! can be described as a
category whose objects are sets with an additional structure, and morphisms are some kind of functions.This is typically the
case if L = Pcoh.
3 Notice however that there is a similarity between D and the interval object.
4 And will actually be shown to have a canonical monad structure.
5 In Arbib and Manes (1980), one also considers infinite countable sums from the very beginning, but it seems quite clear
that a theory of finitary partial monoids and partially additive category can perfectly be developed along the very same lines.
6 We postpone the precise axiomatization of this kind of partially additive differential category to further work. Of course it
will be based on the concept of summability structure.
7 This notion of linearity implies the commutation with the partial algebraic structure introduced by S as shown by
Lemma 12.
8 There is also a definition using finite sets instead of finite multisets, and this is the one considered by Girard in Girard
(1987), but it does not seem to be compatible with differentiation; see Remark 36.
9 Remember that by this we mean that, in the type of booleans 1⊕ 1 for instance, the only cliques are ∅, {t}, and {f}.
10 Actually all (at the date of publication of this article), but the general theory developed above has the right level of gen-
erality for allowing comparisons with other categorical settings such as tangent categories or differential categories and also
suggests new differential extensions of the lambda-calculus as can be seen in Ehrhard (2022).
11 Actually we do not need all cartesian products, only all n-ary products of 1.
12 This is also true with the exponential of Bucciarelli and Ehrhard (2001).
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