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THE NATURAL TOPOLOGY OF MATLIS REFLEXIVE MODULES

RICHARD BELSHOFF

For a complete local ring R with maximal ideal m, we define a linear topology
on a Matlis reflexive R-module M which coincides with the m-adic topology on
M in case M is finitely generated. We show that a Matlis reflexive module is
complete in this topology.

1. INTRODUCTION

Let (R,m) be a local noetherian ring and let E denote the injective envelope of
R/m. For an R-module M the Matlis dual Hompg (M, E) is denoted M”, and M is
said to be Matlis reflexive if the canonical injection M — M"Y is an isomorphism. It
is well known [6, Theorem 3.7, p.522] that there is a canonical isomorphism R*¥ = ﬁ,
where R denotes the m-adic completion of R, and so any complete local ring R is
a Matlis reflexive R-module. It follows that M** = M if M is a finitely generated
R-module, because in this case, M** = M ®g Homg (E,E) = M ®r R=M.

For the rest of this article R will denote a complete local ring. In this case,
finitely generated and artinian R-modules are Matlis reflexive. Also, M is an artinian
(noetherian) R-module if and only if M¥ is noetherian (artinian). This is the essence
of what is commonly known as “Matlis duality”. See [6, Corollary 4.3, p.528] for more
details. The main results of Matlis [6] are nicely presented in Matsumura’s recent book
{7].

Enochs (5, Proposition 1.3, p.181] has shown that an R-module M is Matlis reflex-
ive if and only if M has a finitely generated submodule § such that M/S is artinian.
This characterisation has proved to be very useful. For example, in [2] it was used
to show that if M and N are Matlis reflexive R-modules, then so are Homg (M, N),
M @g N, and more generally Ext} (M, N) and Tor® (M,N) forall n > 1.

In section 2 we use this characterisation to define a linear topology on a Matlis
reflexive R-module M, which we call the Matlis topology, or the natural topology of
the Matlis reflexive R-module M. This topology is a generalisation of the usual m-adic
topology in the sense that these two topologies coincide when M is finitely generated.
For general references on linear topologies and completions, see [1, 3, or 7]. In Section

Received 10th February 1992.
It is a pleasure to acknowledge the help given to me by Professor Edgar Enochs.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 $A2.00+-0.00.

149

https://doi.org/10.1017/5S000497270001234X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270001234X

150 R. Belshoff [2]

3 we show that for a finitely generated submodule S of a Matlis reflexive R-module
M , the subspace topology that S inherits from M is the same as the m-adic topology
on S. In Section 4 we show that a Matlis reflexive module is complete in its natural
topology.

2. DEFINITION OF THE NATURAL TOPOLOGY

In this section we show that a Matlis reflexive module M has a natural topology
defined in terms of the finitely generated submodules § C M such that M/S is artinian.
If we choose a particular finitely generated submodule S C M with M/S artinian,
then we have § D mS§ D m2§ O .-, a decreasing filtration on M. And so there is a
topology on M such that {m™S} form a fundamental system of neighbourhoods of 0,
called the topology on M defined by the filiration {m™S}. Let M,, = m™S for n 2 0,
and M, = M for n < 0. Then the filtration (M,),cz is such that JM, = M, and
() M, = 0 and so is exhaustive and separated (Hausdorff.)

We begin with an easy Lemma.
LEMMA 1.

1. If S C M is a finitely generated submodule such that M/S is artinian,
then mS C M is also finitely generated with M /mS artinian.

2. If $,,5; C M are two finitely generated submodules with M/S,,M /S,
artinian, then §) NSz C M is also finitely generated and M/S; N S, is
artinian.

PROOF: 1. Clearly mS is finitely generated; and the kernel of the induced surjec-
tion M/mS — M/S — 0 is S/mS, which is a finite dimensional vector space and so
is artinian. Therefore M/mS is artinian.

For 2, it’s clear that S§; N S; is finitely generated. And M/(S, N S2) is isomorphic
to a submodule of the artinian module M/S; x M/S;, and so is artinian. a

If we had chosen another finitely generated submodule T C M with M/T artinian
to define the topology, then by part (3) of the next Lemma, both S and T give rise to
the same topology on M. We will call this topology the natural topology of the Matlis
reflezive module M. So a basic neighbourhood of 0 will be any finitely generated
submodule § C M such that M/S is artinian.

LEMMA 2. Suppose that an R-module M has a finitely generated submodule
S C M such that M/S is artinian. Let T C M be any submodule. Then the following
are equivalent:
(1) T is finitely generated and M /T is artinian.
(2) Both (S+T)/S and (S + T)/T have finite length.
(3) For some integer n, m*S CT and m*T C §.
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PROOF: (1) => (2). Since T is finitely generated, the image T/(SNT) is too.
But T/(SNT) = (5 +7T)/S is also artinian, since it’s a submodule of the artinian
module M/S, and similarly for (S + T)/T.

(2) = (3). If (S+4 T)/T has finite length, then since

($+T)/TO>(mS+T)/TD>(mS+T)/TD---,

we must have (m®S + T')/T = 0 for some integer n. Hence m™S + T = T for some
n and so we have m™S C T. Similarly, if (S + T)/S is of finite length, then use the
descending chain

(S+T)/SDO(S+mT)/S>(S+m*T)/SD---

to get that m™T'C §.

(3) = (1). Since m™T C S and S is finitely generated, then m™T is finitely
generated. And M/m"™T is artinian. Then T/m™T C M/m™T is also artinian. And
T/m™T is a module over R/m™, an artinian ring. So T/m™T is finitely generated. Then
it follows that T is finitely generated. The induced onto homomorphism M/m"*S§ —
M/T — 0 and the fact that M/m™$§ is artinian show that M/T is artinian. 0

The next result is a generalisation of “Chevalley’s theorem”. The theorem states
that if (R, m) is a complete local ring, M is a finitely generated R-module and (S¢);2,

is a nonincreasing sequence of submodules such that (] $; = 0, then for every n there
t=1
exists t(n) such that Sy,) C m"M.

In other words given a finitely generated module over a complete local ring, if a
nonincreasing sequence of submodules has intersection 0 then the terms are eventually
contained in a large power of the maximal ideal times the module. (See (4, 7, Exercise
8.7, p.63, or 8).)

We show next that Chevalley’s theorem is true not only for finitely generated
modules but also for Matlis reflexive modules. So Chevalley’s theorem is valid in the
special case when M is artinian.

PROPOSITION 1. Let M be an R-module with a finitely generated submodule
T such that M/T is artinian. If

$:108 D285 D8+1D---

o0
is any chain of submodules of M such that (| S, = 0, then for every n there exists
n=1
an integer s(n) such that S,,y C m"T.
PROOF: If the conclusion is not true, then there exists an integer ng so that for
every 8, S, ¢ m™T for all n > ny. Since M/m™T is artinian for every n, the chain

M/w™T D> (S + m"T)/m"T O (S + m"T)/m™*T D ---
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stabilises, so for each n there exists an integer s(n) such that
Sc(n) +m"T = S.(n)+1 +m*T = S‘(n)+2 +m™ T =-..

Note that we can take s(0) < s(1) < s(2) < ---. Also note that since S, ¢ m™T for
all s and for all n > ng, we have S, + m*7T # m™T for all s and for all n 2> no.

Next we construct a sequence. There exists an element z,, € S,(ny) With zp, &
m™T. Since

Su(ng) + M™T = Sying)41 +MOT =+ = Sy(noq1y + MOT = -+,

there exists Zng+1 € Si(ng+1) sSuch that zny = zn 41+ Yn, for some y,, € m™°T. And

since
Suno+1) + W™ NT = S,y +mmo M T = .. =5, gy + T = ..

there exists Zny42 € S,(ng+2) such that za 41 = Zpo42 + Yno+1 for some ynyp41 €
m™*+1T. Continuing in this way we get a sequence Zny,Zng+1,Zno+2, - Of points of
T such that £,y4k — Zng+k+1 € m™+AT for all integers k > 0 and so this sequence is
a Cauchy sequence.

Since T is finitely generated over a complete local ring R, then T is complete and
so there exists an element z = lim; o0 2ny+i- Note that z € S,(no44) forall £ 2> 0,

and 80 € () S,(ng+i)- Therefore z = 0.
=0

And by definition of limit, there exists an N so that for i > N we have z,,,4; €
m”T. But we have

z,.°+m“°T=z,,o+1+m"°T=:c,,o+2+m"°T=---=z,.°+N+m"°T=--'=

and so, since Zp,4+n € M™T we see that z,, € m™T, a contradiction. 0

3. COMPARISON OF TOPOLOGIES

Given a Matlis reflexive module M, choose a finitely generated submodule T C M
with M/T artinian so that {m™T} is a fundamental system of neighbourhoods of 0.
Let S C M be any finitely generated submodule. Then S has two topologies, 7 and
T', both given by systems of neighbourhoods of 0. One is the neighbourhood base
{m™S} of 0 giving us the topology 7, the usual m-adic topology on S. Another is
the induced neighbourhood base {m™T N S} giving an induced topology 7', when S
is thought of as a subspace of M with its natural topology. We first show that these
two topologies on S, 7 and T', are the same.
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By Proposition 1, given any n there exists an integer s(n) so that m* (") § c m"T.
Therefore m*(™)§ C m»T'NS. This shows that any set which is open in 7", the induced
Matlis topology on §, is also open in 7', the m-adic topology on §. Thatis 7' C T,
or T is finer than T'.

To show that 7’ is finer than T it would be enough to prove the Artin-Rees
Lemma, that is, for some no,

1) m*(m™TNS)=mt"TNng
for all n. Since given any neighbourhood m*S, we certainly have

m*(m™T N S) C mts;
but then by (1) we would get
mtET N g c mks.

We now prove (1). Since R is noetherian, the graded ring R* = @32 ,m" is also
noetherian. And the graded module T = @32 ¢m™T is a finitely generated R*-module.
Now we look at the filtration on §,

SO>TNSO>mTNSOmMTNSD---

where we set S, :=m"T NS for n 2 0. Then mS, C Sn41, and so §* := B2 ,S5, is
an R*-module. In fact, §* is an R*-submodule of T*, and so is a finitely generated
R*-module. Hence [1, Lemma 10.8, p.107] for some ny we have mS, = S,4; for all

n 2 ng. So we have
m(m™TNS)=m™*"TNnS

which proves (1). So the two topologies 7 and 7' on the finitely generated submodule
S are the same.

4. A REFLEXIVE MODULE 1S COMPLETE

Suppose now that (z,) is a Cauchy sequence in M, a Matlis reflexive R-module,
where M is given its natural Matlis topology. This means that given any basic neigh-
bourhood S of 0, there exists an ny so that z, —z,, € § for n, m > ny. In particular
ZTpny—Tm € § for all m > no. Hence o is in the finitely generated module S+ Rz, for
all m > ny. So the entire Cauchy sequence (z,) is in the finitely generated submodule
S=8+ Rz,, + -+ + Rzz + Rz,. We know that this finitely generated module S is
complete with the m-adic topology, and so by the above it is complete with the induced
subspace topology it inherits from M. Since S is complete the sequence converges.
Hence M is complete.
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