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0. Introduction

Let M" be an n-dimensional smooth compact Riemannian manifold. By a theorem of
Nash, we can think of it as an isometrically immersed submanifold in some higher
dimensional Euclidean space IR"+m. Viewing in this way we can compare the intrinsic
geometry of M to its extrinsic geometry. Classically, the Gauss equation

K(X,Y) = <B(X,X),B(Y,Y)}-\\B(X,Y)\\2

where K(X, Y) denotes the sectional curvature in M corresponding to the plane spanned
by the two orthonormal vectors X, Y and B denotes the second fundamental form gives
one of the most important relations between the intrinsic and extrinsic geometries of M.
In this note we shall prove the following.

Theorem. Let M" be a smooth, compact, isometrically immersed submanifold in a
Euclidean space W+m. If for all p in M and all orthonormal vectors X, Y in TMp, we have

K(X,Y)>\\B(X,Y)\\2

then M" is homeomorphic to a sphere.

Suppose now we take an orthonormal basis vu...,vm for the normal space at p and
let At denote the shape operator corresponding to vh then we have

and so if || B(X, Y) ||2 is large, we would expect to have more terms in the summation
and this means a larger codimension. Therefore it seems natural to expect that the
codimension will be large when we have an immersion of a compact manifold with
positive sectional curvature into an Euclidean space if the manifold is not
homeomorphic to a sphere. This can be seen for example in the case of the real
projective space with constant sectional curvature 1 immersed in an Euclidean space.
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Conversely, if we have a compact manifold with positive sectional curvature immersed
in an Euclidean space with low codimension, then we would expect to find the topology
of the manifold to be quite close to that of a sphere. This is indeed true and was proved
by J. D. Moore [3]. More precisely, Moore proved that any compact manifold with
positive sectional curvature immersed in an Euclidean space with codimension 2 must
be a sphere topologically.

We shall prove our theorem by using the method of stable currents due to Lawson
and Simons [2]. We shall show that under the hypothesis in our theorem, the manifold
M" does not admit any stable currents of dimension p with 1 ^ p ^ n — 1 and hence it
follows that

7 r 1 (M) = 0 a n d H1(M,Z)= ••• =Hn_1(M,Z) = 0

where n^M) denotes the fundamental group and Hi(M,Z) the ith homology group with
integer coefficients. From this it follows from the Hurewicz theorem and the Whitehead
theorem that M" is a homotopy sphere ([4] p. 406, Theorem 25). Hence for the case
n#3 , we conclude that M is homeomorphic to a sphere. (« = 2 is well-known, n = 4 due
to Freedman, n^5 due to Smale.) For the case « = 3, by a recent theorem due to
Hamilton [1], we conclude that M is a three dimensional spherical space form and
hence since 7r1(M) = 0, it is homeomorphic to a sphere.

We remark that the non-existence of stable currents is a stronger property than the
vanishing of homology group. For example on the surface in the shape of a dumb-bell
there are stable closed geodesies and yet it is simply-connected. It seems natural to
conjecture the following stronger form of the theorem of J. D. Moore.

Conjecture. There are no stable currents in a compact codimension two submanifold
in the Euclidean space if the submanifold has positive sectional curvatures.

In the last section of this note, we shall discuss the above conjecture for the case of a
hypersurface.

1. Preliminaries [2]

Let M" be a n-dimensional compact Riemannian manifold.
Denote by V the connection on M.
Let y be a p-dimensional current on M. We can define a Borel measure | | ^ | | on

subsets of M so that J M d | | ^ | | gives the "volume" of £f. In the following, all
integrations will be over M and with respect to this measure.

At almost every point xeSf we have a p-dimensional tangent space to Of and we let
{e1,...,ep} be an orthonormal basis. We extend this to {ei,...,ep,nl,...,nq} an
orthonormal basis of TMX so that p + q = n and nl,...,np are all normal to Sf at x.

We shall agree on the following range of indices and summation over repeated indice
is assumed.
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Proposition 1. [2] / / y is a stable p-dimensional current, then for any vector field V
which is the gradient of a function on M, we have

)Ke,>-Z| |Vey| | 2}^0 (1)

where R{V,X)V = VVVXV-VXVVV-V{V^ V is the curvature tensor on M.

Proposition 2. [2] If there are no stable p-dimensional current in M, then Hp{M, Z) = 0.
In particular, when p=l, we also have n1(M) = 0.

2. Submanifolds of Euclidean space

From now on we consider M" to be a compact submanifold of the Euclidean space

We shall denote by V the connection on R"+m and by T and N the tangential and
normal projections of vectors in Rn+m to M.

The second fundamental form B e Horn (TM x TM, NM) is defined by B(X, Y) =
(WXY)N. It is a symmetric bilinear form.

For any VeNM the shape operator corresponding to Vdenoted by AveHom(TM, TM)
is defined by

AV(X)=-(VXV)T

and we have A" is symmetric and satisfies

Now we consider a parallel vector field V in W+m. VT is the gradient of the function
(x) = <x, u> on M where x denotes the position vector of points on M.
We have

Therefore
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and

= £ <>l""(cf), ej}2 + £ (A°\ei), nky
j k

i,k

Hence substituting in (1), we have

+X <R(Fr, e,) VT,e^
i

^0. (2)

Following [2], we define a bilinear form on IR"+m by

(V,W)=i <XB(ei,et\ V
N><ZB(e,,e,), W"> + 1 iB{ehnk), K"><B(ebnk), W

N}

+ X<R(VT,ei)W
T,eiy-}2(B(ebeJ), K"><B(eb^), W">

'.j

and the quadratic form Q on R"+m by

Then from (2) we have

Hence
To evaluate trace (g) we observe that it is independent of the choice of orthonormal

basis for IRn+m and so at a point xeSf, we choose orthonormal basis
{ei,...,ep,n1,...,nq,fu...,fm} were et and nk's are as before and fx(l^a^m) are normal
to M. F r o m (2) we have

trace (Q) = J £ <B(g|> e,), B(epej)y + ^ | |B(eb n , ) | | 2 - ^ ||B(e£, ^-) j | 2

i,j i.k i,j

. «.•) ^ j , e,-> + £ <i?(nk, ef) «fc, e,-> ̂  0. (3)
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For any two orthonormal vectors X,YeTMx we let K(X,Y) denote the sectional
curvature corresponding to X and Y. So K{X,Y) = (R(X,Y)Y,X). We have the Gauss
equation

K(X,Y) = <B(X,X),B(Y,Y)>-\\B(X,Y)\\2.

So from (3) we have

(4)

or equivalently

(5)

From Proposition 1 and (4) we conclude that

Theorem A. Let M" be a compact submanifold of W+m. If for all xeM and any two
orthonormal vectors X, Y in TMX, we have

R(X,Y,X,Y)>\\B(X,Y)\\2.

Then there are no stable p-dimensional currents on Mfor all l^p^n—l.

3. Hypersurface with positive sectional curvature in Euclidean space

We now consider M" to be a compact hypersurface in IR"+1. We suppose that the
sectional curvatures on M are all positive. Then with respect to a suitably chosen
normal direction we may assume the principal curvatures Xx,...,Xn are all positive and
we arrange them so that

We let e be the above chosen unit normal. Let B(ei,eJ) = hije and B(ehnk) = hike. Then
the Xa's (a=l,...,n) are the eigenvalues of the symmetric nxn matrix

We shall need the following algebraic lemma.

Lemma. Let H = (/iofc), 1 ^ a , b ^ n be a symmetric nxn matrix. Let X be the smallest
eigenvalue of H. Then haa^Xfor all a=\,...,n.
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From (5) we have

E (6)
>,*

To estimate the left side of (6) we note that by the lemma we have hii^X1>0 and
hkk^X1>0. We let ||f/||2 = S^ h , then we have

(trace H)2-pq!2
i=\'LX2

a-k'LXa)
2-pqX2

1

Hence, we obtain

Theorem B. For a compact hyper surface M" in W+1; suppose all the sectional
curvature on M are positive and with respect to a suitably chosen normal direction the
principal curvatures are arranged so that

If

then there are no stable currents on M.

Corollary. In the situation of Theorem B, if

then there are no stable currents on M.

Now we consider an ellipsoid in U"+l defined by

where a>0.
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A simple direct computation shows that its principal curvatures are given by

I 1 X

where

and

— \)x\'

To illustrate Theorem B we observe that the condition there is a homogeneous
quadratic expression in the A,'s and so we can ignore the common factor 1//.

Since O^xf f^l/a, so for a^.1 we have a^X^.1 and for a-^\ we have a^A^l.
Then a direct computation shows the following

Example. There are no stable currents on the ellipsoid

if

1
< a, < 1 + ~fn.

Acknowledgement. I wish to thank the referee for many helpful sugggestions.

REFERENCES

1. R. S. HAMILTON, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982),
255-306.

2. LAWSON and SIMONS, On stable currents and their application to global problems in real and
complex geometry, Ann. of Math. 98 (1973), 427-450.

3. J. D. MOORE, Codimension two submanifolds of positive curvature, Proc. A.M.S. 70 (1978),
72-74.

4. E. H. Spanier, Algebraic Topology (McGraw-Hill).

DEPARTMENT OF MATHEMATICS
NATIONAL UNIVERSITY OF SINGAPORE
KENT RIDGE
SINGAPORE 0511

https://doi.org/10.1017/S0013091500017119 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017119

