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Abstract

Let T be a Fourier integral operator on K" of order —(n — l)/2. Seeger, Sogge, and Stein showed (among
other things) that T maps the Hardy space H1 to L1. In this note we show that T is also of weak-type
(1, 1). The main ideas are a decomposition of T into non-degenerate and degenerate components, and a
factorization of the non-degenerate portion.

2000 Mathematics subject classification: primary 42B20.

1. Introduction

This note is concerned with the mapping properties of Fourier integral operators. As
our considerations will be local, we will work on K" for some n > 2, and we will
define (as in [8]) a Fourier integral operator T of order m to be any linear operator of
the form

(1) Tf(x):=

where/ is the Fourier transform/(£) := JR, e x'*f (x)dx, of / , a(x,%) is a
standard symbol of order m (that is, we have the bounds

for all multi-indices a, yS) with compact support in x, and <J> is a real phase function
which is homogeneous of degree 1 in £, is smooth in (x, £) for £ ^ 0 on an open
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2 Terence Tao [2]

neighbourhood of the support of a, and obeys the non-degeneracy condition

(2) det — — £ 0
\dXidSjJ

on an open neighbourhood of the support of a.
A model case of Fourier integral operators arises in the translation-invariant setting,

when <t>Qc, £) — x • f + </>(£) for some real smooth 0, homogeneous of degree 1,
and when a(x, f) = a(£) is independent of x (of course, this means that a is no
longer compactly supported in x, but by applying cutoff functions as necessary we
may make this operator consistent with the previous definition). Then T becomes a
Fourier multiplier:

It is well-known (see for instance [8]) that Fourier integral operators of order
m < 0 are bounded on L2. If m < — (« — l)/2, then one can also show [5] that these
operators are bounded on L1 and also on L°°. At the endpoint m = — (n — l)/2, it was
shown by Seeger, Sogge, and Stein [5] that Fourier integral operators map the Hardy
space / / ' to V. From this and Fefferman-Stein interpolation one can show [5] that
a Fourier integral operator of order m is bounded on Lp provided that 1 < p < oo,
11/2 — \/p\ < —m/(n — 1), except at the endpoint case when m = —(n — l)/2 and
p = 1, oo. These results are sharp; see [5]. More precisely, these results are sharp if
V2(p has the maximal rank of n — 1, otherwise one can increase the range of p and
m somewhat. Indeed, it is this gain in the degenerate case which allows us to prove
Theorem 1.1. We thank Michael Ruzhansky for pointing out this subtlety.

This leaves open the question of what happens to operators T of order m =
—(n - l ) /2 on L1. One cannot expect T to be bounded on L1; for instance in the
model case (3), if </>(§) = |f | and a is a generic symbol of order — (n — l)/2, then the
convolution kernel K{x) of T has magnitude comparable to 1/(1*1 - 1), which has a
logarithmic divergence. However, we have

THEOREM 1.1. If T is a Fourier integral operator of order m = — (n — l)/2, then
T is of weak-type (1, 1).

The rest of the paper will be devoted to the proof of this theorem, but first we begin
an informal discussion.

We first consider the translation invariant case (3). To begin with we make the
non-degeneracy assumption that V20(£) has the maximal rank of n — 1 for all £ ^ 0.
For sake of exposition we shall restrict ourselves to the case <j>(%) = |£|, which is
already typical. The principle of stationary phase then suggests that the convolution
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[3] Weak-type (1, 1) of Fourier integral operators 3

kernel K(x) of T should be concentrated near the image of V</>, which in this case is
the unit sphere.

Let da be the standard surface measure on the unit sphere. As is well-known we
have the Fourier transform expansion

where a+, a_ are symbols of order — (n — l)/2 which behave asymptotically like
a±(£) ~ c±\%\~("~1)/2 as l£I -*• oo for some non-zero constants c±. If we ignore the
e~2"'^a_ term (which can be suppressed by an appropriate use of cutoff functions in
both space and frequency), we can thus factorize

for some symbol b of order 0. This gives us a factorization T = SA, where 5 is a
pseudo-differential operator of order 0 and A is the averaging operator Af := f *da.
Since the A operator is clearly bounded on L \ and since pseudo-differential operators
of order 0 are always of weak-type (1, 1) by standard Calderon-Zygmund theory, we
thus see that T is of weak-type (1, 1) as desired.

This simple example (which seems to be first observed in [2]) suggests that one
should try in general to factorize the Fourier integral T into a pseudo-differential
operator of order 0, and an operator bounded on Ll. In the translation invariant case
(3), this idea works well if the matrix V̂ <t> is always non-degenerate (we will explain
what co is in the next section). However if V^O degenerates, then the corresponding
measure da develops cusps and it becomes difficult to control the asymptotics of
da{%). In principle this can be avoided by damping the measure by a factor such
as det(V^<I>)1/2 (see for example [1,3,7]), however good asymptotics can only be
obtained when |f | is very large (for instance if | | | » (V2<t>)~1/£ for some small e).

Thus it remains to handle the contribution when <j> is close to degenerate, and when
|£| is not too large. However, it turns out that this portion of the Fourier integral
operator is in fact bounded on L1. For instance, in the completely degenerate case
when <t>(£) = xo • £ is linear in £, the convolution kernel K is essentially a fractional
integral kernel \/\x — xo\, which is clearly integrable. More generally, when <J> is
close to degenerate, then the error terms in a Taylor expansion of 4> become more
favorable, and one can coarsen the standard 'second dyadic decomposition' (see for
instance [4,5]) in order to improve the standard estimates [5] on the kernel K (which
in the non-degenerate case, just barely fail by a logarithm to be integrable, because
the Fourier integral operator has the critical order — (n — l)/2).

To summarize, our strategy in dealing with a general Fourier integral operator T
will be to first decompose T into a 'degenerate part' (roughly, this is where |f | <
det(V2<t>)~1/£), and a 'non-degenerate part'. The kernel of the degenerate part can be
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shown to be integrable, which is acceptable. The non-degenerate part will be factored
(modulo errors which are essentially Fourier integral operators of order strictly less
than — (n — l ) /2) as the product of a pseudo-differential operator of order 0, and an
operator whose kernel K(x,y) is essentially a (smoothed out) measure on the singular
set {(x, V?4>(;t, f)) : (x, £) e supp(a)} corresponding to <t>, damped by the natural
factor of detn_i(V^<I>)1/2. In particular, the kernel K is integrable. (The smoothing
out will arise from the cutoff to the region |£| 3> detn_i(V^<f>)~1/£, but this will not
affect the integrability of the kernel).

2. Notation and preliminary reductions

The dimension n will always be fixed. We shall need a small number 0 < s <JC 1
depending only on n; for instance £ := n~w will suffice. When a constant C appears
in front of e, for instance 2Cek, it is understood that C is independent of s and depends
only on n. (In particular, Cs can be made arbitrarily small by choosing e sufficiently
small).

We use T*K" := {(x, £) : x, £ € K"} to denote the cotangent bundle of K". We
shall use the Euclidean metric and standard basis ex, . . . , en throughout, and so we
will not bother very much to distinguish between a vector and covector, or between a
matrix and a quadratic form, etc.

We will use A < B or A = O(B) to denote the estimate \A\ < CB, where C
is a constant depending only on n, e, the CK norms of <l> on the cosphere bundle
{(*,£) 6 T*W : x,$ € R";|£| = 1} (where K = 0(1) depends only on the
dimension) and the constants in the symbol bounds for a.

We will write the frequency variable as £ = ( | , £„), where £ e K""1 and £„ 6 R.
We similarly decompose the spatial variable* = (x_, xn). We shall also use 'projective
co-ordinates' (k, co), defined by

A. = fB; a; =

to analyze the frequency variable £ (if £ is close to the en axis). Even though X and £„
are equal in value, we shall distinguish between the radial derivative dy (which keeps
co fixed) and the vertical derivative 3?i> (which keeps f fixed). One of the key features
of the argument will be that all the cutoff functions are very smooth with respect to
the radial derivative dx even if they become rather rough in the angular directions V,,,.

Fix a, 4>. We now make some basic reductions to simplify the form of T.
We first observe that we may assume that the symbol a (x, %) vanishes when | £ | < 1.

This is because the portion of the operator on the region |£ | < 1 is a Fourier integral
operator of arbitrarily large negative order, and is therefore bounded on V by (for
instance) the results in [5]. The main purpose of this reduction is to ensure that we
will not have to worry about any possible singularity at £ = 0.
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Next, we can assume after a finite partition of unity of the frequency angular
variable £/|£| and a rotation that the symbol a(x, f) is supported on the cone bundle

if := {(*, f) € T l " : & » 1; ||J « k).

This allows us to use k as a proxy for |£|, and a; as a proxy for the angular variable
£/|£|. This will be convenient technically because the hyperplane R""1 is flatter than
the sphere S"~l. From the homogeneity of the phase function $ we have

*(*,$) = X*Ge,(<u, 1)).

We will abuse notation and write &(x, co) for 4>(x, (co, 1)).
We will always be working on the support of a(x, £), so we shall implicitly assume

that (x, £) e & throughout the rest of the paper.
Define the canonical relation E c (T*R") x (TR") by

E := {((V4*(je, £), | ) , (x, V,<D(x, f)) : (x, f) e supp(a)}.

We will not use £ directly, but the geometry of this relation will be implicit in our
arguments. Observe from (2) that by restricting the support of a if necessary we
can make £ an embedded manifold, and in particular we can assume that the map
(x, f) H-> (x, V,<t>(;c, £)) is a diffeomorphism on the support of a. From (2) and the
Euler homogeneity relation

we observe the useful bound

(4) |

Fix x e R" and co € R""1. A key quantity in the analysis will be the curvature

/(*,*/) :=det(V>(;c,a>)).

This curvature measures the extent to which the phase function fails to be linear; thus
4> degenerates when J is small. Observe that J is smooth in x and co.

We shall frequently need smooth dyadic cutoffs of Littlewood-Paley type. We fix
0( | ) = </>0(£) to be a non-negative radial bump function on R" which is supported on
the ball {|£| < 2} and equals 1 on the ball {|£| < 1}. For any it e R, we define the
functions 0*, rj* by

By abuse of notation we shall also define these functions on R""1 and R in the
obvious manner.
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3. Splitting into degenerate and non-degenerate components

Let T be as in the previous section. We can decompose T into Littlewood-Paley
components

where the restriction A: ĝ> 1 is justified since a(x,%) is supported on the region
|£| » 1. (All summations will be over the integers unless otherwise indicated.)

We can thus split T = 7 ^ + TnoBdeg, where

and

(5)

Informally, 7 ^ is the portion of T where | J(x, co) \ < \%\~e, and conversely for rnondeg.
Thus 7 ^ captures the portions of T which are even just a little degenerate.

We can now outline the remainder of the proof. In Section 4 we will show that 7 ^
is bounded on L':

This will basically be a straightforward computation of the kernel of 7deg, modifying
the standard second dyadic decomposition slightly.

To deal with r^n^g requires more work. We will obtain a factorization

Tnondeg = SA + E

where A, £ are operators bounded on Ll

W\\u\\Efh<

and 5 is a standard pseudo-differential operator of order 0 (so in particular is of weak-
type (1, 1), see for instance [8]). From all the above estimates we immediately obtain
that T is of weak-type (1,1).

The operator A will have a kernel K(x, y) which is essentially a finite measure on
the set {(x, V?4>(JC, £)) : (x, £) e ¥} (that is, the spatial projection of the canonical
relation S). The measure is weighted by the natural damping factor \J{y, £)|1//2, but
with some additional cutoffs and blurring arising from the truncation to the region
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\J(x, oi)| 3> |£|~£. The operator A is thus the natural averaging operator correspond-
ing to the canonical relation E. We construct A and prove its L1 boundedness in
Section 5.

The operator A will turn out to essentially be an Fourier integral operator of order
—(n — l)/2 with the same phase function 4>(x, £) as T. From the symbol calculus of
Fourier integral operators one can then solve for 5, in such a way that the error E is
essentially an Fourier integral operator of order 1/2 better than ~{n - l)/2 (except
that the symbol estimates have been slightly worsened by the presence of the cutoffs
<j>-£k). We perform this procedure and prove the Lx boundedness of E in Section 6.

4. Boundedness of TAt%

We now prove the Ll-boundedness of Tdeg. By the triangle inequality it suffices to
show that

f o r a l U » 1.
Fix k. By Minkowski's inequality it suffices to show that

(6) i»* d% <2~ek

for all y.
Before we prove (6), let us first informally review the proof (from [5]) of the more

standard estimate

(7) t
this estimate does not restrict the integration to the degenerate region, but on the other
hand it does not obtain the crucial decay of 2~ek. In other words, (7) asserts that the
Littlewood-Paley pieces of T are uniformly bounded on L'.

To prove (7) we apply the 'second dyadic decomposition' and partition the co
variable smoothly into about 2<n~1)*/2 disks D of radius 2~k/I. It then suffices to show
that

(8)
Ll

for each of these disks B, where ak,D is the symbol a smoothly cut off to the tubular
region {(x, £) e *€ : A. ~ 2k;co e D). Note that the £ variable is now restricted to a
tube of volume ~2(n+1)*/2.
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Note that in applying this cutoff, a large portion of the angular regularity of the
symbol a is destroyed, in that the angular derivatives V^ are much larger when applied
to ak,D rather than ak. To put this another way, much of the angular regularity of ak

is superfluous. This spare regularity in the angular directions will be crucial in all of
our arguments.

We continue our informal discussion. Let coD denote the center of the disk D.
Observe from homogeneity and the Taylor expansion that

* ( * , £ ) - y • | = k(<P(x,a>) - y • (<w, 1))

+ (Va<t>(x, coD) -y)-(co- coD) + £ (* ,£ )

where x • £ is the usual Euclidean inner product and the error term E(x, £) has a
leading term of

(9) -Vl<t>(x,(oD)(co-coD,co-coD)

(where we think of V2<t> as a quadratic form).
Because X. = 0(2*) and co — a)D = 0(2~k/1), the contribution of the error term

E(x, f) to the phase <&(*,£)— y - f is 0(1), which can then be absorbed into the
amplitude function akD. From the principle of stationary phase we thus see that the
integrand in (8) should be extremely small unless we have

<t>(x,a>D)-y(a>D,l)= 0(2"*)

and

Vw<i>{x,a>D)-y_= 0 (2 - t / 2 ) .

Because of the non-degeneracy condition (2), this restricts the variable x to a disk;
this disk can be viewed as the projection of the above tube in phase space via the
canonical relation S . On this disk we can crudely estimate the integrand of (8) using
absolute values by

/ K D C * , £)ldt- < 2<«+'>*/22-<-I)*/2 = 2*.
x~2i;toeD

Since the volume of the disk is O(2~{n+X)k'2), the claim (8) (and hence (7)) then
follows.

To improve (7) to (6) we have to take advantage of the degeneracy condition
J(x,co) = 0(2~c*). The point is that this degeneracy allows one to estimate the
leading order error (9) slightly better, especially if co — coD lies in a direction where

, (oD) degenerates. This allows us to widen the disks D used in the second
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dyadic decomposition to slightly larger ellipsoids while keeping the phase error (9) of
the order of 0(1). Intuitively, this should let us decompose into fewer tubular regions,
which will be the source of the 2~ek gain.

There is an apparent technical difficulty (when n > 3) in that the ellipsoid around
coD depends on the eigenvalues and eigenvectors of the symmetric n - l x n - 1 matrix
V^<&(x, coD), and so the eccentricity and orientation of the ellipsoid will vary with the
center coD. This raises the fear that one would need a Kakeya-type covering lemma to
partition phase space properly, but fortunately the above variations are very smooth,
so that nearby ellipsoids have almost identical orientation and eccentricity, and one
can use a standard continuous partition of unity to obtain the desired estimate (6).

We now turn to the details. We shall formalize the argument as the following
proposition:

PROPOSITION 4.1. Letk » 1, y e R", and let ak(x,%) be any function supported on
the region [(x, £) € supp(a) : k ~ 2*, |/(;c, &>)| < 2~ek} which obeys the symbol-type
bounds

(10) ffi fiy

for all multi-indices fl, y (regularity in x will be unnecessary). Then we have

(11) f «2*'< < 2~ek

L\

The estimate (6) follows immediately from this proposition by setting

ak(x, £) := a(x, t-)<j>_sk(J(x,

Observe that the cutoff 0_£t causes the unavoidable 2ek loss in the symbol esti-
mates (10). These losses mean that we lose control of the regularity for scales of
co greater than 2~Cek, but this will not be dangerous as all of our stationary phase
computations will be on tubes for which the fluctuation in co is at most O(2Cek2~k/1).

PROOF OF PROPOSITION 4.1. We first begin by defining a positive-definite analogue
of the matrix V^4>, which will be used to define the ellipsoids mentioned earlier.

For all x, co, let Q(x, co) denote the positive-definite n - l x / i - 1 matrix

Q(x, co) := (2~£*Id + (V>(* , co))2)l/\

where we now think of V̂ <I> as a real symmetric matrix, and Id is the n — 1 x n — 1
identity matrix. Observe that as quadratic forms we have the estimates

2-£*|£|2 + | / ( JC, <w)(f, ? ) | < Q(x, a>)(?, f ) < |£|2,
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so in particular Q dominates J. We also have the smoothness property

for all multi-indices fi. Finally, we observe that

2~Cek < det Q(x, co) < | det J(x, co)\ + 2~ei.

Let x e K" and coD e R"~l. We define the function irx,a,D(co) by

2^-lW2<p_k(Q(x,coD)(co-coD,co-coD))

where 0_A was defined in Section 2; observe that this function is L'-normalized and
supported on some ellipsoid centered at COQ which contains the disk {co — coo +
O(2~k/2)} but is contained inside the slightly larger disk {co = coD + O(2Cek2~k/2)}.
We then define the averaged function \/fx (co) by

: = /
JWD

w) dcoD;

note that this is well defined for (x, £) in the support of ak and k sufficiently large,
since we must have coD = co + O(2Cek2~k/2) by the previous discussion.

The function \jsx is clearly positive. In fact, we have the following estimates on \jrx:

LEMMA 4.2. If (x,i-) is in the support of ak, and k is sufficiently large, we have
fx(co) ~ 1 and \dfax(co)\ < Cfi2

Cem for all multi-indices fi.

PROOF. We begin with the first estimate. We compute

irx,wH(co)dt:
* i 2

= /
Jf6 (

f
By Taylor expansion and the constraints on £ and Q(x, co) we have

det(G0c, co + £))-1 / 2 = det(G(;t, co)yl/2 + O(2Cek2~k/2)

and

)) + O(2Cek2~k'2).

It is clear (from the estimates on the non-degeneracy of Q) that the error terms
O(2Cek2~k/2) will contribute at most O(2C£k2~k/2) to fx(co); this will be acceptable if
£ is sufficiently small. This leaves the main term

2("-1)*/2 det(G(*, co))-x/2
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But by a change of variables this is equal to f <po(£, £)dt;, which is some positive
absolute constant, and we are done.

The second estimate is proven similarly to the first; when one applies an a> derivative,
the main term / <po(£, £)dt; disappears (since it is just an absolute constant), and the
error term gets larger by about 2Cck for each derivative. We omit the details. •

We now return to the proof of (11). We split the integrand as an average of integrals
over ellipsoids:

= f
) )

Since coD effectively ranges over a compact set, it suffices by Minkowski's inequality
to show that

< 2~tk

for all coD (this is the analogue of (8)).
Fix o)D; we may assume that Q(x,coD) = O(2~ek) since the integrand vanishes

otherwise. We split £ into polar co-ordinates k, a> and rewrite as

,(o)-y<o>A))'_ • dkdco < 2~ek.
L\

We make the change of variables

(12) co = Q)D + 2-ll/2Q(

and expand out ^x,WD(co) to rewrite the previous estimate as

(13) f f e2*ixmx,<»)-y<u>A))bkojDx{x^

JR"-' JR

and co is of coursewhere bkiWD,x&, 0 := 2-(n-X)kl2k"-xak{x, k(co,
now given by (12).

The amplitude bkitODtX is supported on the region {k ~ 2k;t; — 0(1)}. Because of
the normalization factor 2~(n~l)k/2 and the estimates on ak, i(rx we have the symbol
bounds |3f 3 ' *w*(A, ? ) | < CfitS2~m for all fi, 8 (if e is sufficiently small), because
any losses of 2Cek in differentiation in the £ variable are always accompanied by gains
of 2~*/2 thanks to the change of variables (12).
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We now expand the phase in a Taylor series as before, to obtain

<f>(x, co) — y • (co, 1) = <t>(x, coD) — y • (coD, 1)

+ 2~*/2< • Q(x, coy^iV^ix, coD) -y) + <W» D (£) .

where the error ek,x,y<a>D(£,) has an expansion

ek,x,y,a,D{a>) = ^2~kVl<I>(x,a>D)(Q(x,a>Drl/2S, Q(x,coDyl/2^) + O(2C£k2~3k'2).

Since Q dominates V2<I>, it is easy to obtain the bounds

for all multi-indices 8; once again, any losses of 2Cek are compensated for by gains
of 2~k/2. Thus the phase term e\p(2nikeic<x,yi(UD) can be harmlessly absorbed into the
amplitude function bkiWD%x.

By the principle of non-stationary phase (see for instance [8]), we can thus bound
the integrand of (13) pointwise by

2k(l + 2k\CS>(x,coD)-y(coD,l))\)'mn

x (1 + 2k'2\ Q(x, aioy^i \ymn

This function has maximum size 2k, and is rapidly decaying outside of the eccentric
disk

, coD) = y • {(oD, 1) + 0(2"*); Vw<*>(*, ioD) = y + Q(x, ojD)xl2O(Xk'2)\ •

Because det Q(x, coD) < 2~ek, this disk has volume O(2-sk2-(n+{)k/2). The claim (13)
follows. The proof of the L1 boundedness of 7 ^ is now complete. •

5. Construction and boundedness of A

We now construct the averaging operator A. This operator needs to be bounded
on L1, and also essentially be a Fourier integral operator with the same phase function
<t>(x, £) as T. To motivate matters, let us first suppose we are in the non-degenerate
case, so that \J(x, co)\ ~ 1 throughout. Then the most natural choice for A is the
operator Ao defined by

Aof(x):=
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where Vf <t>(x, co) is the function Vf <t>(x, £) evaluated at f = (co, 1), and <p(x, co) is
a suitable bump function to be chosen later. One can motivate the choice of Ao from
an inspection of the canonical relation E, but we will instead use the principle of
stationary phase in the informal argument which follows.

It is clear from (2) that Ao is bounded on L', since for each co the map x H>
V^i>(x,co) is a local diffeomorphism. Now let us write Ao as a Fourier integral
operator. From the Fourier inversion formula we have

(x) = f(f e2"*'W^<p(x, co) dco\f(?) d?.

In accordance with the principle of stationary phase, we now look at where the phase
is stationary in co: Vw(^' • V$Q>(x, co)) = 0. From homogeneity we have

, co) = (\<b(x, (co, 1)), 3fc*(jc, (co, 1)))

= (V^OCx, co), <*>(*, co)-co- Vw<t>(x, co))

and hence we have the identity

(14) V ^ ' • Vf * ( * , co)) = Vfl,(A.V • V./DU, co) + k'(<t>(x, co) - co •

= k'(co' -co)-S?l<b(x,co),

where we of course write £' = ($', ^ ) and k' = %'n, co' = %'/%'„• Since we are in
the non-degenerate regime \J\ ~ 1, we thus see that the only stationary point occurs
when co = co'. By (14), the Hessian at this stationary point is

(15) det(V£(f' • V { *(JC, o>)))|«w = det(-X'V;>(jc, <u))L_ = (-k'n)"-1 J(x, co')

and the value of the phase at the stationary point is

(16) 2rrif' • V^<D(̂ , co') = 2ni^(x, §')

so by the principle of stationary phase (see for instance [8]) we have the asymptotics

f g a r « ' . v , » ( x . . ) ^ ( j c > ^ f o = e a r » ( x . « ' ) ? , ( , t a>')e?f*-tt>"ilAX-(*-X)l2\J(x, co')\-i/2 + •••

for large ^', where fi(x, co') is an integer quantity which depends only on n and the
signature of V^4>(x, co) (and in particular is a constant in the non-degenerate case
| J | ~ 1). Ignoring the error term (which will give a Fourier integral operator of lower
order), we thus see that Ao is an Fourier integral operator of order — (n — l ) /2 with
phase <t> (x, f) and symbol given by
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This choice of A will work in the non-degenerate case, but as J becomes degenerate
we see that the symbol of AQ can get large, so that Ao is no longer of order — (w — l ) /2 .
The obvious remedy is to damp Ao when J is small, and use a new operator

AJ(x) := f

= I I I e2"iS'v<<Hl-a')(p(x,(o)e-»lx-a')'Ti/V(x, o>)|1/2 da>\/(I-') d?.

since this (heuristically at least) will be an Fourier integral operator with phase <I> (x, £)
and amplitude cp(x, co)(X')~("~l)/2. (Compare this with [1,7].) However, the integrand
in the above definition of A\ has singularities on the zero set of J(x, co), and so we
need to apply a cutoff away from that region, compatible with the cutoff (5) used to
define rnondeg.

From the above informal discussion, it is now natural to construct A via the formula

Af (x):=

(compare this with (5) and the definition of A{). Observe that the cutoff (1 —
<p-et(J(x, co)) ensures that | 7 | 1 / 2 and fi{x,co) are smooth functions on the region
of integration; indeed, the integer-valued function /x is constant on each connected
component of this region.

In the remainder of this section we show why A is still bounded on L1. In the next
section we explain why we can factorize rnon(ieg = SA + E, where 5 is a pseudo-
differential operator of order 0 and E is bounded on L1.

We make the a priori assumption that / is smooth and compactly supported; this
assumption can be removed by the usual limiting argument. We can also assume that
/ vanishes for |£ | < 1, since on this region of frequency space, k is bounded and it is
easy to show the L'-boundedness of A in this case.

We write ??*(£') = </>*(£') — 0*-i(£') and apply summation by parts, to rewrite
Af (x) as

( f , co)) - 4>-ek(J(x, co)))

(the vanishing properties of / ensures that there are no boundary terms). It will thus
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suffice to show the estimate

since the claim then follows by summing in k using the triangle inequality.
Fix it. By the Fourier inversion formula we can rewrite the left-hand side as

f PJ ( V t * ( x , a>))<p(x, a))*-"*1"0*"4

* , CO)) - (t>-£k(J(X>CO))\J(x, CO)\l/2dJ

where PiJ is the Littlewood-Paley operator Ptf (^) := (j>ki.H)f (%)• Taking absolute
values everywhere, we can estimate the previous crudely by

By (2) one can bound this by

f 2-ek/21| PJ ||, da> ~ 2~ek/2

J\a>\<l
f

J\a>\<l

as desired.

6. Construction of 5, and boundedness of E

We now need to find a suitable pseudo-differential operator

where s satisfies the standard symbol estimates of order 0

(17) |3;34V*,f)l<Q^(l + lfirl/"

for all multi-indices a, ft, such that we have a good factorization of the form

'nondeg = "A + t,.
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We begin, as usual, with a heuristic discussion. By repeating the stationary phase
computations of the previous section we see that A should essentially be a 'Fourier
integral operator' with phase <t>(x, £) and symbol

We enclose 'Fourier integral operator' in quotes, because the symbol does not quite
obey standard symbol estimates (there is a slight 2sk loss of regularity in the angular
variable co). From standard symbol calculus (or more stationary phase) we thus expect
SA to also be a 'Fourier integral operator' with phase <t>(x, £) and symbol

s(x, V X *(JC, $

Meanwhile, rnondeg is a 'Fourier integral operator' with phase <i>(x, £) and symbol

Thus, if we choose <p to be bounded away from zero on the support of a, and define s
implicitly by

(18) s{x,
<p(x,co)

on the support of a, and define s to vanish otherwise, then we see (from (4) and the
hypothesis that (x, £) -> (x, Vx<$>(x, £)) is a diffeomorphism on the support of a)
that s does indeed obey the symbol estimates (17).

It remains to show that the error operator E := rnondeg - SA is bounded on L1. It
suffices to show that || rnondegi5z — SASz\\i < 1 for all Z G I " , where Sz is the Dirac
delta at z.

Fix z. We can expand SASz(x) as

£////•
k>>l

x (1 - c(>_£k(J(y, to)))tik(?)\J(y, co)\l/2

On the other hand, from (18) and (5) we can write rnondeg<5z(;c) as

I1-*. 1 **
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It thus suffices by the triangle inequality to show that

J «2"(*(i-*')-*-(19)

for all A: » 1, where

<

x (1 -<t>_ek(J(y,co)))\J(y,co)\1/2dcodt;dy

and the phase ^xxz is given by

o, f. y) := (* - y) • ? + £'
= (* - y) • £ + £' • (Vt*(y, a.) -

The function W° is basically a symbol of order — (n — l ) /2 , modulo errors of
O(2Csk). What is not as obvious is that the quantity W — W° is a symbol of slightly
smaller order. More precisely, we have

PROPOSITION 6.1. We have the estimates

(20) \Bt-(Wj.k,t ~ W?..* f

when | | ' | ~ 2*.

In other words, apart from some errors of 2Cek, W — W° is a symbol of order
—(n — l ) /2 — 1/2. Assuming this proposition, we can repeat the derivation of (7)
(taking some losses of 2Cek) and thus bound the left-hand side of (19) by 2Cck2~kl2,
which is acceptable if e is sufficiently small. Thus to complete the proof of Theorem 1.1
we just need to verify the proposition.

PROOF OF PROPOSITION 6.1. Fix x, k, z, £'. We begin by using the principle of
non-stationary phase in the a>, v, and £ variables in turn to truncate the integrals in W
substantially.

We first observe from (14) that V ^ ^ J ^ O I , £, y) = k'(co' - co) • V£<J>(x, co). Since
the integrand is supported on the region where | / ( y , co)\ > 2~ck, we thus have

Thus if we insert the cutoff 1 — 0_(i/2-£)i(w' — co) in the integrand of W, we have
I V<a*Iii>z(a), f, y)\ > 2£*2':/2. Repeated integration by parts in the co variable (gaining
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2~ek2~k/2 from the non-stationary phase, but losing at most 2tk2k>1 from differentiating
the </>-(i/2-£)t function) then shows that this portion of the integral is O(2~Ck) for any
C, and similarly for derivatives. Thus we may freely insert or remove a cutoff
0_(i/2-£),t(a/ — (o) in the integrand for W. In other words, we may restrict ourselves
(smoothly) to the region

(21) co = u> + O(2ek2-k/2)

without any penalty.
Now we argue similarly in the £ variable, beginning with the identity

Thus if we insert the cutoff 1 - 0_(i/2-e)*(* - y) in the integrand of W, we have
I V< **,*,* I ^ 2(1/2~£)*. Repeated integration by parts in the £ variable using (17) thus
shows that this portion of the integral is O(2~ck) for any constant C, and the same is
clearly true for any £' derivatives of W. Thus we may restrict ourselves (smoothly) to
the region

(22) y = x + O(2ek2-k/2)

without any penalty.

REMARK. An inspection of this argument shows that one can in fact localize further,
to the region y = x + O(2ek2~k). However if one does so, the uncertainty principle
then prohibits one from localizing £ to any scale finer than O(2~ek2k), and one ends
up with worse estimates at the end.

Now let us restrict ourselves smoothly to the regions (21) and (22). Then we have

, y) = | ' • Vy

= I ' • VxV?<D(;c, to') -S + O(2ek2k/2)

Thus if we insert the cutoff 1 — <f>(\/2+2e)k(Vx®(x, £') — £) in the integrand of W, we
have |Vy*Xitij(Gj, £, y)\ > 2(l/2+2e)k. Repeated integration parts in the y variable as
before (noting that the gain 2~{XI2+2e)k from the non-stationary phase exceeds the loss
2(i/2-c)t c o m i n g from differentiating 0_(1/2-C)*Oc — y)) thus shows that we can restrict
ourselves smoothly to the region

(23) £ = VxQ(x, £') + O(20/2+2e)k)

once we have first restricted to the regions (21) and (22).
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Because of the above restrictions, we have

s(x, f) = s(x, V X *(JC, £')) + O(2Cek2-k'2).

If we estimate the contribution of the error O(2Cek2~k/2) by taking absolute values
everywhere and taking full advantage of the restrictions (21), (22), (23), we obtain
a bound of O(2Cek2~k/22~in-i)k/2) as desired, with each derivative in £' gaining an
additional 2a*2~*. Thus we may replace s(x, £) by s(x, Vx®(x, £'))•

Now we remove the 0(i/2+2t)*(Y,<I>(jc, f') — £) cutoff by reversing the above argu-
ment. Strictly speaking, this creates some formal difficulties because £ then ranges
over all of R" and the oscillatory integral is not absolutely convergent. However one
can fix this by applying a suitably large cutoff 4>K(K)

 ar>d eventually letting K -> +00,
observing that with this cutoff the Fourier inversion formula holds in the weak limit.
We ignore this technicality.

We can then evaluate the £ integration using the Fourier inversion formula

to simplify the above expression to

s (JC , V, 4> (jc, £ )) i e *

(1 — (p-ek(J(x, CO)))\J(x, CO)\l/2<p-(\/2-e)k(co' — Co) dC0.

From (15), we observe the Taylor series expansion

f '(V* <*>{x, co) - V.c&Ot, co')) = l-k'V2<t>(x, co'Xco -co', co- co') + O(2Ce2~k/2)
2

on the support of <j>-{\/2-e)k(co' — co). The error term O(2Cc2~k/2) will give us a
contribution of o(2Cek2~(n~i)k/22~k/2) to W (as can be easily checked by replacing
every term by its absolute value), with each derivative in £ picking up an additional
factor of <9(2C£*2~*). Thus we may ignore this error. Similarly, we can use the Taylor
expansion

cp{x, a>)e-'*l~)"/*(l - <t>-ekU(x, co)))\J(x, co)\1'2

= <p(x, a>>)e-»(xM\l - <P-ek(J(x, co')))\J(x, cu')|1/2

(noting that fi must be constant, since J cannot change sign from co to co') and discard
the error term O(2Ce2~k/2) as before. Thus we may replace W with

- <p-ek(J(x, co')))\J(x, co')\l/2
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One can replace the cutoff function 0_(i/2_e)*(a/ — co) by a more standard bump
function </>0(a/—&>) if desired, again by the principle of non-stationary phase. Standard
stationary phase asymptotics (see [8]) then give

-0.-D/2 + 0 ( 2 - c* )

for any C, and similarly for all derivatives in £'. Comparing this against Wo we thus
obtain (20) as desired. The proof of Theorem 1.1 is now complete. •

7. Remarks

It seems that there is some room for improvement in Theorem 1.1. First of all,
one can relax the angular regularity of the symbol a(x, £), and measure a in a more
exotic symbol class. For instance, a natural class (which has appeared elsewhere, for
instance [6]) seems to be those symbols obeying the estimates

Also, when the phase function becomes degenerate (that is, when J becomes small)
the estimates above improve, roughly by a factor of |7|1 /2, when £ is large. Of course,
in the most extreme case, when 4> vanishes, then the Fourier integral operator collapses
to a pseudo-differential operator, and one has weak-type (1, 1) for operators of order 0,
and not just — (n —1)/2. In intermediate cases when V2<1> consistently has rank strictly
between 0 and n — 1, there are intermediate results (see [4,5]). Perhaps one can unify
these results by introducing symbol classes adapted to the phase function Q{x, £); for
instance one might study symbols a(x, £) which obeyed bounds such as

together with some corresponding bounds on higher derivatives. It is not clear to the
author exactly what the best symbol classes to use are, but the techniques here are
likely to miss the optimal class by at least an e in the exponents.
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