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Singularities of hypergeometric functions

in several variables

Mikael Passare, Timur Sadykov and August Tsikh

Abstract

This paper deals with singularities of nonconfluent hypergeometric functions in several
complex variables. Typically such a function is a multi-valued analytic function with
singularities along an algebraic hypersurface. We describe such hypersurfaces in terms
of the amoebas and the Newton polytopes of their defining polynomials. In particular,
we show that the amoebas of classical discriminantal hypersurfaces are solid, that is, they
possess the minimal number of complement components.

1. Introduction

There exist several approaches to the notion of hypergeometric series, functions and systems of
differential equations. In the present paper we use the definition of these objects that was introduced
by Horn at the end of the nineteenth century [Hor89]. His original definition of a hypergeometric
series is particularly attractive because of its simplicity. A Laurent series in several variables is said
to be hypergeometric if the quotient of any two adjacent coefficients is a rational function in the
summation indices.

In the present paper we study singularities of hypergeometric functions which are defined by
means of analytic continuation of hypergeometric series. A hypergeometric series y(x) satisfies the
so-called Horn hypergeometric system

xiPi(θ)y(x) = Qi(θ)y(x), i = 1, . . . , n. (1)

Here Pi and Qi are nonzero polynomials depending on the vector differential operator
θ = (θ1, . . . , θn), θi = xi∂/∂xi. The nonconfluency of a hypergeometric series or the system (1)
means that the polynomials Pi and Qi are of the same degree:

degPi = degQi, i = 1, . . . , n.

These conditions can be expressed in terms of the Ore–Sato coefficient of a hypergeometric series
satisfying the system (1) (see Equations (4) and (5)). Historically the Gauss hypergeometric differ-
ential equation was the first one to be studied in detail due to the remarkable fact that any linear
homogeneous differential equation of order two with three regular singularities can be reduced to it.
The singularities of the Gauss equation are 0, 1 and ∞. The generalized ordinary hypergeometric
differential equation which is a special case of the nonconfluent system (1) corresponding to n = 1
also has three singular points, namely 0, t and ∞, where t is the quotient of the coefficients in the
leading terms in the polynomials P1 and Q1. Thus the singular set of an ordinary hypergeometric
differential equation is minimal in the following precise sense: There exist only two circular domains,
namely {0 < |x| < |t|} and {|t| < |x| <∞}, in which any solution to the equation can be represented
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as a Laurent series with the center at the origin (in the nonresonant case) or as a linear combination
of the products of Laurent series and powers of log x (in the resonant case).

It turns out that algebraic singularities of the system of partial differential equations (1) enjoy
a multi-dimensional analog of this minimality property. This property is most conveniently formu-
lated in the language of so-called amoebas, a terminology introduced by Gelfand, Kapranov and
Zelevinsky in [GKZ94]. The amoeba of an algebraic set R = {R(x) = 0} is defined to be its image
under the mapping Log : (x1, . . . , xn) �→ (log |x1|, . . . , log |xn|). The complement of an amoeba
consists of a finite number of convex connected components which correspond to domains of con-
vergence of the Laurent series expansions of rational functions with denominator R. The number
of such components cannot be smaller than the number of vertices of the Newton polytope of the
polynomial R(x). If these two numbers are equal, then we say that the amoeba is solid. In § 5 we
prove the following theorem.

Theorem (Theorem 7). The singular hypersurface of any nonconfluent hypergeometric function
has a solid amoeba.

A hypergeometric function satisfying the Gelfand–Kapranov–Zelevinsky system of equations has
singularities along the zero locus of the corresponding principal A-determinant (see [GKZ94]). Using
Theorem 7 we arrive at the following corollary.

Corollary (Corollary 8). The zero set of any principal A-determinant has a solid amoeba.

This corollary implies in particular that the amoeba of the classical discriminant of a general
algebraic equation is solid (Corollary 9).

Let us also mention the following results in this paper. Theorem 12 states that any meromor-
phic nonconfluent hypergeometric function is rational. In the last section we study the problem of
describing the class of rational hypergeometric functions. In the class of hypergeometric functions
satisfying the Gelfand–Kapranov–Zelevinsky system of equations, this problem was first considered
in [CDD99] and [Cat01]. Theorem 13 gives a necessary condition for the Horn system to possess a
rational solution. The statement of Proposition 15 emphasizes the fact that only very few rational
functions are hypergeometric. The class of rational hypergeometric functions that is described in
this proposition consists of those which are contiguous to Bergman kernels of complex ellipsoidal
domains.

The proofs of the main results in the paper use the notions of the support and the fan of
a hypergeometric series, some facts from toric geometry and the two-sided Abel lemma, which
is proved in § 6. Recall that the usual (one-sided) Abel lemma (see [GKZ89] or [McD95]) gives
the following relation between the domain of convergence of a Puiseux series and its support
(i.e., the set of summation).

Lemma 1 (Abel’s lemma for Puiseux series). Let y(x) be a Puiseux series with a nonempty domain
of convergence D. For any x(0) ∈ D and any cone C containing the convex hull of the support
of y(x), we have Log(x(0)) − C∨ ⊂ Log(D). Here C∨ is the dual cone to C.

The two-sided Abel lemma for hypergeometric Puiseux series states that the domain Log (D) is
itself contained in a suitable translation of the cone −C∨.

2. Some basic notation and definitions

To study the singularities of solutions to the Horn system (1), we consider the characteristic variety
of this system. Let D denote the Weyl algebra of differential operators with polynomial coefficients
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in n variables [Bjö79]. For any differential operator P ∈ D,

P =
∑

|α|�m

cα(x)
(
∂

∂x

)α

,

its principal symbol σ(P )(x, z) ∈ C[x1, . . . , xn, z1, . . . , zn] is defined by

σ(P )(x, z) =
∑

|α|=m

cα(x)zα.

We denote by Gi the differential operator xiPi(θ)−Qi(θ) in the ith equation of the Horn system (1).
Let M = D/∑n

i=1 DGi be the left D-module associated with the system (1) and let J ⊂ D denote
the left ideal generated by the differential operators G1, . . . , Gn. By definition (see [Bjö79, ch. 5,
§ 2]) the characteristic variety char(M) of the Horn system is given by

char(M) = {(x, z) ∈ C
2n : σ(P )(x, z) = 0, for all P ∈ J}.

We define the set UM ⊂ C
n by

UM = {x ∈ C
n : ∃z �= 0 such that (x, z) ∈ char(M)}.

It follows from Proposition 8.1.3 and Theorem 8.3.1 in [Hör90] and Theorem 7.1 in [Bjö79, ch. 5]
that a solution to (1) can only be singular on UM. Since any equation of the form σ(P )(x, z) = 0
is homogeneous in z, it follows that UM is the image of char(M) under the projection of the
direct product C

n × P
n−1 → C

n onto its first factor. Using the main theorem of elimination theory
(see in [Mum76, § 2C]) one can conclude that this image is an algebraic set, possibly the whole of C

n.
In the latter case the singularities of a solution to the Horn system are not necessarily algebraic.
For instance, if every differential operator Gi contains the factor (θ1 + · · ·+θn), then any sufficiently
smooth function depending on the quotients x1/xn, . . . , xn−1/xn is a solution to the system (1).

In the present paper we consider systems of the Horn type which satisfy the condition UM �= C
n.

In this case UM is a proper algebraic subset of C
n. Its irreducible components of codimension greater

than one are removable as long as we are concerned with holomorphic solutions to the Horn system.
Thus the singular set of a solution to (1) is algebraic and it is contained in the union of irreducible
components of codimension one. We denote this union by R and call it the singular set of the Horn
system. Let R(x) be the defining function of the set R. The polynomial R(x) will be referred to as
the resultant of the Horn system (1). To find a polynomial whose zero set is R is a difficult task
which requires the full use of elimination theory. There exists, however, a simple special case when
the set R can be embedded into the zero set of some polynomial which one can algorithmically
compute. Let Hi(x, z) be the principal symbol of the differential operator Gi in the ith equation
of the Horn system (1). Since the polynomials H1, . . . ,Hn are homogeneous in z1, . . . , zn, they
determine the classical resultant R[H1, . . . ,Hn], which is a polynomial in x1, . . . , xn (see [GKZ94,
ch. 13]), and, unless it is identically zero, this resultant vanishes precisely at those points x for which
the homogeneous system H1(x, z) = · · · = Hn(x, z) = 0 has a solution z ∈ C

n \ {0}. This implies
that we have the following result.

Proposition 2. The singular set R of the Horn system (1) lies in the zero set of the classical
resultant R[H1, . . . ,Hn] of the principal symbols of the operators in (1).

3. Puiseux series solutions to the Horn system and their supports

The Horn system (1) as well as the Gelfand–Kapranov–Zelevinsky system (see [GKZ89]) has the
remarkable property that under some natural assumptions there exists a basis in the space of its
holomorphic solutions consisting of (Puiseux) series with the center at the origin (see [GKZ89] for

789

https://doi.org/10.1112/S0010437X04001411 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04001411


M. Passare, T. Sadykov and A. Tsikh

the Gelfand–Kapranov–Zelevinsky system and [Sad02] for the Horn system). In this section we
introduce some terminology and present preliminary results which will be used later for describing
the singular set of the Horn system.

Suppose that a formal Puiseux series centered at the origin satisfies the Horn system (1).
Such a series can be written as a linear combination of formal shifted Laurent series, i.e., series
of the form

y(x) = xγ
∑
s∈Zn

ϕ(s)xs. (2)

Here xs = xs1
1 · · · xsn

n , and the shift is determined by the initial exponent γ = (γ1, . . . , γn) ∈
C

n,Re γi ∈ [0, 1). Suppose that the series (2) is a solution to (1). Computing the action of the
operator xiPi(θ) −Qi(θ) on this series, we arrive at the system of difference equations

ϕ(s+ ei)Qi(s+ γ + ei) = ϕ(s)Pi(s+ γ), i = 1, . . . , n, (3)

where {ei}n
i=1 is the standard basis of Z

n. The system (3) is equivalent to (1) as long as we are
concerned with those solutions to the Horn system which admit a series expansion of the form (2).

The system of difference equations (3) is in general not solvable without further restrictions
on Pi and Qi. Let Ri(s) denote the rational function Pi(s)/Qi(s + ei), i = 1, . . . , n. Increasing
the argument s in the ith equation of (3) by ej and multiplying the obtained equality by the jth
equation of (3), we arrive at the relation

ϕ(s + ei + ej)/ϕ(s) = Ri(s+ ej)Rj(s).

Similarly
ϕ(s + ei + ej)/ϕ(s) = Rj(s+ ei)Ri(s).

Thus the conditions

Ri(s+ ej)Rj(s) = Rj(s+ ei)Ri(s), i, j = 1, . . . , n

are in general necessary for (3) to be solvable. Throughout this paper we assume that the polyno-
mials Pi and Qi defining the Horn system (1) satisfy these relations and that they are representable
as products of linear factors.

The latter assumption together with the Ore–Sato theorem (see [Sat90] and [GGR92], § 1.2)
yields that the general solution to the system of difference equations (3) is of the form

ϕ(s) = ts1
1 · · · tsn

n u(s)
p∏

i=1

Γ(〈Ai, s+ γ〉 − ci)φ(s). (4)

Here ti, ci ∈ C, Ai = (Ai1, . . . , Ain) ∈ Z
n, p ∈ N0, u(s) is a rational function whose numerator

and denominator are representable as products of linear factors, and φ(s) is an arbitrary periodic
function with period 1 in each variable. The fact that all the Γ-functions in (4) are in the numerator
is inessential: using the identity Γ(z)Γ(1−z) = π/ sin(πz) and choosing the periodic function φ(s) in
an appropriate way (see [Sad02]), one can move them into the denominator. A formal series (2) with
coefficients given by (4) is called a formal solution to the system (1). We will call any expression of
the form (4) the Ore–Sato coefficient of a hypergeometric series (or of the system (1)).

Remark 1. Conversely, the Ore–Sato coefficient (4) defines the system (1) in the sense that for
any i = 1, . . . , n the quotient ϕ(s + ei)/ϕ(s) equals Pi(s)/Qi(s + ei). For instance, the Ore–Sato
coefficient (12) in Example 1 (see below) defines the Horn system (10).

The specific form of (4) corresponds to our assumption that the polynomials Pi and Qi can be
represented as products of linear factors. In general an Ore–Sato coefficient can include a rational
function that is not factorizable up to linear factors (see [GGR92, § 1.2]). We may without loss of
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generality assume that no linear factor in the rational function u(s) can be normalized so that all
of its coefficients become integers. Indeed, any linear factor a1s1 + · · ·+ansn +λ with ai ∈ Z can be
written in the form Γ(a1s1 + · · · + ansn + λ+ 1)/Γ(a1s1 + · · · + ansn + λ) and hence included into
the product of the Γ-functions in (4). Proposition 3 (see below) yields that the other linear factors
of u(s) (such as s1 + πs2) are inessential as long as one is concerned with series solutions to (1).
Throughout this paper we will assume that u(s) ≡ 1.

One can easily check that in terms of the parameters of the Ore–Sato coefficient ϕ(s) the
nonconfluency condition degPi = degQi can be written in the form

p∑
i=1

Ai = 0. (5)

Recall that in this paper we only deal with nonconfluent hypergeometric series.
Any shifted Laurent series solution to (1) (formal as well as convergent) can be written in the

form
y(x) = xγ

∑
s∈S

ϕ(s)xs, (6)

where ϕ(s) is given by (4) and S is a subset of Z
n on which ϕ(s) �= 0. The set S + γ will be called

the support of the series (6). The support S+ γ is called irreducible if there exists no series solution
to (1) supported in a proper nonempty subset of S + γ. A set S ⊂ Z

n is said to be Z
n-connected if

any two points of S can be connected by a polygonal line with unit sides and vertices in S.
Proposition 3 (see below) describes all possible supports of (formal) series solutions to (1) and

Proposition 5 allows one to find those of them which have nonempty domains of convergence. While
looking for a solution to (3) that is different from zero on some subset S of Z

n we will assume that
the polynomials Pi(s) and Qi(s), the set S and the vector γ satisfy the condition

|Pi(s+ γ)| + |Qi(s+ γ + ei)| �= 0, (7)

for any s ∈ S and for all i = 1, . . . , n. This assumption eliminates the case when a solution to (3)
can independently take arbitrary values at two adjacent points in the set S. The following statement
(see [Sad02]) gives necessary and sufficient conditions for a solution to the system (3) supported in
some set S ⊂ Z

n to exist.

Proposition 3 (Sadykov [Sad02]). For S ⊂ Z
n define

S′
i = {s ∈ S : s+ ei /∈ S}, S′′

i = {s /∈ S : s+ ei ∈ S}, i = 1, . . . , n.

Suppose that the conditions (7) are satisfied on S. Then there exists a solution to the system (3)
supported in S if and only if the following conditions are fulfilled:

Pi(s+ γ)|S′
i
= 0, Qi(s+ γ + ei)|S′′

i
= 0, i = 1, . . . , n, (8)

Pi(s+ γ)|S\S′
i
�= 0, Qi(s+ γ + ei)|S �= 0, i = 1, . . . , n. (9)

By definition, the union of the sets S′
i and S′′

i , i = 1, . . . , n, is a discrete analog of the boundary
of the set S. Since the polynomials Pi and Qi are assumed to be representable as products of linear
factors, it follows from (8) that S′

i and S′′
i lie on hyperplanes. The conditions (9) yield that these

hyperplanes bound the set S. Thus we can formulate the following result.

Proposition 4. The convex hull of the support of a series solution to the Horn system is a
polyhedral set.

Example 1. Let us consider the following system of partial differential equations of the Horn type.

x1(θ1 + θ2)(θ1 − 2)y(x) = (θ1 − 1)(θ1 − 4)y(x),
x2(θ1 + θ2)(θ2 − 3)y(x) = (θ2 − 1)(θ2 − 5)y(x).

(10)
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Figure 1. The irreducible supports of the solutions to the Horn system (10).

Assuming that y(x) admits a Laurent series expansion (2) with γ = 0, we arrive at the following
system of difference equations:

ϕ(s + e1)s1(s1 − 3) = ϕ(s)(s1 + s2)(s1 − 2),
ϕ(s + e2)s2(s2 − 4) = ϕ(s)(s1 + s2)(s2 − 3).

(11)

In accordance with the Ore–Sato theorem (see [Sat90] and [GGR92, § 1.2]) the general solution to
the system (11) is given by the function

ϕ(s) = (s1 − 3)(s2 − 4)
Γ(s1 + s2)
Γ(s1)Γ(s2)

φ(s), (12)

where φ(s) is an arbitrary periodic function with period 1 in s1 and s2. There exist eight
Z

2-connected subsets of the lattice Z
2 which satisfy the conditions of Proposition 3, namely

S1 = {(s1, s2) ∈ Z
2 : 1 � s1 � 2, 1 � s2 � 3},

S2 = {(s1, s2) ∈ Z
2 : 4 � s1, 5 � s2},

S3 = {(s1, s2) ∈ Z
2 : 5 � s2, s1 + s2 � 0},

S4 = {(s1, s2) ∈ Z
2 : 4 � s1, s1 + s2 � 0},

S5 = {(s1, s2) ∈ Z
2 : 4 � s1, 1 � s2 � 3},

S6 = {(s1, s2) ∈ Z
2 : s1 + s2 � 0, 1 � s2 � 3},

S7 = {(s1, s2) ∈ Z
2 : 1 � s1 � 2, 5 � s2},

S8 = {(s1, s2) ∈ Z
2 : 1 � s1 � 2, s1 + s2 � 0}.

These irreducible supports of solutions to (11) are displayed in Figure 1.

Using [Sad02, formula (12)] for defining the periodic function φ(s), one can compute the sums of
the corresponding Laurent series. Let yi(x) denote the series solution to (10) with the support Si.
These functions are defined up to inessential constant factors which we choose in a specific way in
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�
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� � �

� � �
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Figure 2. The Newton polytope of the resultant of (10).

order to make the formulas simpler. Computations (which were performed in MAPLE) show that

y1(x) = 3x1x2 + 4x1x
2
2 + 3x1x

3
2 + 3x2

1x2 + 6x2
1x

2
2 + 6x2

1x
3
2,

y5(x) = x4
1x2(6x3

1x
2
2 + 6x3

1x2 − 27x2
1x

2
2 + 3x3

1 − 26x2
1x2

+ 45x1x
2
2 − 12x2

1 + 40x1x2 − 30x2
2 + 15x1 − 20x2 − 6)/(1 − x1)5,

y7(x) = x1x
5
2(6x1x

2
2 − 18x1x2 + 3x2

2 + 15x1 − 8x2 + 5)/(1 − x2)4,

y2(x) = x1x2(6x2
1 + 14x1x2 + 5x2

2 − 9x1 − 8x2 + 3)/(1 − x1 − x2)4 − y1(x) − y5(x) + y7(x).

The series supported in S2, S3 and S4 represent the same solution to our system since they repre-
sent the same rational function in different domains. Finally, y6(x) = y1(x) + y5(x) and y8(x) =
y1(x) + y7(x). It follows from [Sad02, Theorem 2.8] that the space of holomorphic solutions to the
system (10) has dimension four at any point x ∈ C

2 such that (1 − x1)(1 − x2)(1 − x1 − x2) �= 0.
Hence the rational functions y1(x), y2(x), y5(x) and y7(x) form a basis in this space. Notice that
the resultant of the principal symbols of the operators in the system (10) is given by the polynomial
(x1x2)4(1−x1)(1−x2)(1−x1 −x2). The Newton polytope of the resultant of the Horn system (10)
is shown in Figure 2.

Recall that a convex cone is called strongly convex if it does not contain any lines through the
origin. To conclude this section, we formulate one more statement on the properties of supports of
hypergeometric series which will be used in the sequel.

Proposition 5. A nonconfluent hypergeometric series with support S has a nonempty domain
of convergence if and only if the convex hull of S is a polyhedral set which is contained in a
translation of a strongly convex cone. The domain of convergence of the series (6) is independent on
the parameters c1, . . . , cp in Equation (4) (we disregard exceptional values of these parameters for
which (6) terminates or reduces to a linear combination of hypergeometric series in fewer variables).

The first conclusion of this proposition follows from Proposition 4, the lemma in [GGR92, § 4.1]
and the properties of hypergeometric series in one variable (see [SK85, ch. 1]). The second conclusion
of the proposition follows from Theorem 1 in [SK85, § 4.1].

Finally, we remark that there exists a simple relation between the domain of convergence of a
nonconfluent hypergeometric series and its support. This relation is described by the two-sided Abel
lemma, which will be proved in § 6.

4. The fan of the Horn system

By an affine convex cone we mean a set of the form C + ξ, where C is a convex cone in R
n with

apex at the origin and ξ ∈ R
n. Let C1 + ξ1 and C2 + ξ2 be affine convex cones with C1 and C2

being convex cones and ξ1, ξ2 ∈ R
n. We say that C1 + ξ1 is smaller than C2 + ξ2 if C1 ⊂ C2.

If C1 = C2 then the corresponding affine cones are said to be equal. For a convex set B ⊂ R
n its

recession cone CB is defined to be CB = {s ∈ R
n : u+ λs ∈ B, ∀u ∈ B,λ � 0} (see [Zie95, ch. 1]).
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That is, the recession cone of a convex set is the maximal element in the family of those cones whose
shifts are contained in this set.

For brevity the recession cone of the convex hull of the support of a Puiseux series solution
to the Horn system will be referred to as the cone of its support. It has nonempty interior if and
only if the corresponding hypergeometric series cannot be represented as a linear combination of
hypergeometric series in fewer variables which depend monomially on the original ones. In Example 1
the cone of the irreducible support S2 is the positive quadrant, the cone of S5 is {(s1, s2) : s1 � 0,
s2 = 0}, and the cone of S1 is the origin.

Here and later we assume that the rank of the matrix with rows A1, . . . , Ap is equal to n, because
otherwise the series with the coefficient (4) can be reduced to a hypergeometric series in fewer
variables. Let I = (i1, . . . , in), ij ∈ {1, . . . , p}, be a multi-index such that the vectors Ai1 , . . . , Ain

are linearly independent. Let γI be the solution of the system of linear equations 〈Aij , s〉 − cij = 0,
j = 1, . . . , n, and define the set KI by KI = {s ∈ Z

n : 〈Aij , s + γI〉 − cij � 0, j = 1, . . . , n}.
Let Z

n + γ denote the shift in C
n of the lattice Z

n with respect to the vector γ.

Definition 1. We say that the parameter c = (c1, . . . , cp) ∈ C
p is generic if for any multi-index I

as above none of the hyperplanes 〈Aj , s + γI〉 − cj = 0, j �∈ {i1, . . . , in}, meets the shifted lattice
Z

n + γI .

Proposition 6. If the vector c = (c1, . . . , cp) is generic then there exists a one-to-one correspon-
dence between the n-dimensional cones of the supports of the convergent series solutions to the
Horn system of the form (6) and the multi-indices I = (i1, . . . , in) such that the vectors Ai1 , . . . , Ain

are linearly independent. The recession cone of the convex hull of the support of any such series is
strongly convex and polyhedral.

Proof. For a multi-index I as above, consider the shifted Laurent series

yI(x) =
∑
s∈KI

ts
p∏

i=1

Γ(〈Ai, s+ γI〉 − ci)xs+γI . (13)

Since the parameter c is assumed to be generic, it follows from Proposition 3 that the coefficient of
the series (13) satisfies Equations (3) everywhere on Z

n, i.e., that (13) is at least a formal solution to
the Horn system (1). By Proposition 5 the series (13) has a nonempty domain of convergence since its
support is contained in a strongly convex (and simplicial) affine cone. Thus with any multi-index I
as above one can associate the n-dimensional cone CI of the support of the series (13).

Since we are interested in n-dimensional cones of the supports of the series solutions to (1), we
do not consider polynomial solutions to this system (which may exist even if the parameters are
generic). It follows by Proposition 3 that, if the support of a formal series solution to (1) meets at
most n−1 linearly independent hyperplanes of the form 〈Aj , s+γ〉−cj = 0 for some γ ∈ C

n, then it
cannot be contained in any strongly convex affine cone and by Proposition 5 the series is divergent.
By our assumption the parameter c is generic and hence the support of such a series cannot meet
more than n hyperplanes of this form. If it meets exactly n hyperplanes with linearly independent
normals Ai1 , . . . , Ain then the cone of the support of this series must coincide with CI since it is
bounded by the same hyperplanes. Thus the correspondence between linearly independent subsets
of the set of vectors {A1, . . . , Ap} and the n-dimensional cones of the supports of shifted Laurent
series solutions to (1) is one-to-one. The claim about the recession cone of the convex hull of the
support of yI(x) follows from [Zie95, Proposition 1.12] since the convex hull of KI is a strongly
convex affine polyhedral cone.

Remark 2. Proposition 6 shows that adding new elements to the family of vectors {Ai}p
i=1 can

only increase the number of series solutions to the Horn system which is defined by the Ore–Sato
coefficient (4) as long as the vector c remains generic.
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Figure 3. The fan of the Horn system (10).

We now associate with a nonconfluent Horn system a set of strongly convex polyhedral cones
which will play an important role in the sequel. Recall that for a cone C ⊂ R

n its dual is defined
by C∨ = {v ∈ R

n : 〈u, v〉 � 0, ∀u ∈ C}. For any multi-index I = (i1, . . . , in) such that the
vectors Ai1 , . . . , Ain are linearly independent we denote by CI the recession cone of the convex hull
of the set KI whose shift supports the series (13). We partially order the finite family {CI} of
strongly convex polyhedral cones with respect to inclusion and denote the maximal elements by
CI(1) , . . . , CI(d) . Let us introduce the cones Bj = −C∨

I(j) , j = 1, . . . , d. Since for any I as above
the polyhedral cone CI has a nonempty interior, it follows that Bj is a strongly convex polyhedral
cone. The nonconfluency condition (5) implies that

⋃d
j=1Bj = R

n. If the cones B1, . . . , Bd can be
identified with the set of the maximal cones of some complete fan then we call it the fan of the Horn
system (1). As an example, the fan of the Horn system (10) is shown in Figure 3.

If n = 2 then {Bj}d
j=1 is always the set of the maximal cones of some complete fan. For n � 3 this

is not necessarily the case. For instance, let n = 3 and let A1 = (1, 0, 0), A2 = (0, 1, 0), A3 = (0, 0, 2),
A4 = (−1, 0,−1), and A5 = (0,−1,−1). The multi-indices I(1) = (1, 4, 5) and I(2) = (2, 4, 5) define
maximal cones but the intersection of their duals has a nonempty interior.

5. Minimality of the singularities of hypergeometric functions and discriminants

Recall (see [GKZ94]) that the amoeba Af of a Laurent polynomial f(x) (or of the algebraic
hypersurface f(x) = 0) is defined to be the image of the hypersurface f−1(0) under the map
Log : (x1, . . . , xn) �→ (log |x1|, . . . , log |xn|). This name is motivated by the typical shape of Af with
tentacle-like asymptotes going off to infinity (see Figure 5 later in Example 3 in § 7). We quote the
following general results on amoebas.

Theorem A (Gelfand, Kapranov and Zelevinsky [GKZ94]). The connected components of the
amoeba complement cAf are convex, and they are in bijective correspondence with the different
Laurent series expansions centered at the origin of the rational function 1/f .

Recall that the Newton polytope Nf of a Laurent polynomial f is defined to be the convex hull
in R

n of the support of f . The following result shows that the Newton polytope Nf reflects the
structure of the amoeba Af (see [FPT00, Theorem 2.8 and Proposition 2.6]).

Theorem B (Forsberg, Passare and Tsikh [FPT00]). Let f be a Laurent polynomial and let {M}
denote the family of connected components of the amoeba complement cAf . There exists an injective
function ν : {M} → Z

n ∩ Nf such that the cone which is dual to Nf at the point ν(M) coincides
with the recession cone of M .

The cited theorems imply that the number of Laurent series expansions of the rational func-
tion 1/f centered at the origin is at least equal to the number of vertices of the Newton polytope Nf

and at most equal to the number of integer points in Nf . Varying the coefficients of the Laurent
polynomial f with fixed Newton polytope Nf , one can attain the upper (see [Mik00]) as well as the
lower (see [Rul00]) bounds for the number of connected components of cAf . Moreover, the vertices
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of the Newton polytope are always assumed (see [MY82] or [GKZ94]) by the function ν, and by
Theorem B the recession cones of those connected components of cAf which correspond to the ver-
tices of Nf have nonempty interior. On the other hand, the complement components that correspond
to interior points of Nf are bounded.

Definition 2. The amoeba Af of a Laurent polynomial f (or, equivalently, the algebraic hypersur-
face f(x) = 0) is called solid if the number of connected components of the amoeba complement cAf

equals the number of vertices of the Newton polytope Nf .

The main observation in this section is the following theorem.

Theorem 7. The singular hypersurface of any nonconfluent hypergeometric function has a solid
amoeba.

Proof. Let A be the amoeba of the resultant of the Horn system (as defined in § 2) and let M ⊂ cA
be a connected component of its complement. By the remark before Definition 2, it suffices to show
that the recession cone CM of the set M has nonempty interior.

Recall that in this paper we only deal with Horn systems satisfying the assumptions made in § 2.
The condition that the projection of the characteristic variety of the Horn system onto the variable
space is a proper algebraic subset implies that the Horn system in question is holonomic (see [Bjö79,
ch. 3]). Hence it has finitely many analytic solutions in a neighborhood of each nonsingular point.

Our next argument was inspired by the proof of Theorem 2.4.12 in [SST00]. Let y1, . . . , yr

be a basis in the space of holomorphic solutions to (1) on a simply connected domain in Log−1M .
Recall that J denotes the ideal generated by the differential operators in the Horn system.
Let {1, ∂α(1), . . . , ∂α(r−1)} be a basis of the quotient C(x)〈∂〉/C(x)〈∂〉J , where

∂ = (∂1, . . . , ∂n) =
(

∂

∂x1
, . . . ,

∂

∂xn

)

and C(x)〈∂〉 = C(x1, . . . , xn)〈∂1, . . . , ∂n〉 is the algebra generated by polynomials in ∂1, . . . , ∂n and
rational functions in x1, . . . , xn. Put

Φ(x) =




y1 . . . yr

∂α(1)y1 . . . ∂α(1)yr
...

. . .
...

∂α(r−1)y1 . . . ∂α(r−1)yr


 .

Since {yi} is a basis, it follows that det(Φ) �≡ 0 and Φ is a (matrix-valued) multi-valued holo-
morphic function on Log−1M . By Theorem A the set M is convex and therefore the fundamental
group π1(Log−1M) is isomorphic to the direct product of the fundamental groups of at most n
punctured disks with center at the origin. Thus π1(Log−1M) is a free Abelian group generated by
the elements ηi which encircle xi = 0 (some of these elements might be trivial).

Consider the analytic continuation η∗i Φ of the matrix Φ along the path ηi. Since the first row
of η∗i Φ is again a basis of solutions, there exists an invertible matrix Vi, which is called the mono-
dromy matrix, satisfying η∗i Φ = ΦVi. Since π1(Log−1M) is Abelian, the matrices Vi commute with
one another. Hence there exists a commutative family of matrices Wi such that e2π

√−1 Wi = Vi.
Define the matrix

Ψ(x) := Φ(x)x−W1
1 · · · x−Wn

n .

The monodromy of Φ(x) is killed by x−W1
1 · · · x−Wm

m since η∗i x
−Wi
i = V −1

i x−Wi
i . Hence Ψ(x) is

a single-valued function on Log−1M . By Lemma 2 in [Bol00, ch. 4] any solution to the Horn
system in the domain Log−1M can be written as a polynomial in Puiseux monomials and log xi with
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single-valued coefficients. Here by a Puiseux monomial we mean a monomial with arbitrary
(complex) exponent vector.

Let us write such a solution in the form

y(x) =
∑
α,β

hαβ(x)xα(log x)β ,

where hαβ(x) are single-valued functions in Log−1M , (log x)β := (log x1)β1 · · · (log xn)βn and the
sum is finite. Let β′1 be the highest power of log x1 appearing in the expression for y(x).
Any single-valued function in a Reinhardt domain can be expanded into a Laurent series.
Expanding the functions hαβ into Laurent series and computing the action of the operators in
the Horn system on y(x), we conclude that the coefficients of the expansion for hαβ satisfy dif-
ference relations of the form (3). The first of these relations yields an ordinary hypergeometric
differential equation for the restriction of y(x) to a suitable line. It is known that no logarithms may
appear in a solution to an ordinary generalized hypergeometric differential equation with generic
parameters (see [Evg86]). By induction over the highest power of log x1 appearing in the expression
for y(x) we conclude that log x1 does not appear at all if the parameters of the Horn system are
sufficiently general. By the symmetry of the variables it follows that any solution to a Horn system
with generic parameters in the domain Log−1M can be represented as a Puiseux series.

For ζ ∈ ∂M let Yζ ⊂ R
n denote the half-space which is bounded by a supporting hyperplane

of M at the point ζ and contains M . There exists a sequence of points {ζi}∞i=1 ⊂ ∂M such that the
recession cone of the set

⋂∞
i=1 Yζi

coincides with CM . Since A is the logarithmic image of the set
of singularities of the function y(x), for any i ∈ N there exists a germ Gi of y(x) which cannot be
continued analytically through at least one point in the fiber Log−1ζi. As we have remarked earlier,
the analytic continuation of Gi into the domain Log−1M can be expanded into a Puiseux series Li

whose domain of convergence contains Log−1M . Let L(k) =
∑k

i=1 ci Li with constant coefficients
such that L(k) �≡ 0. The series L(k) satisfies the same hypergeometric system of equations as y(x)
since it is a linear combination of solutions to this system. We denote the domain of convergence of
the series L(k) by Ωk. By the construction, M ⊂ Log Ωk and the recession cone CLogΩk

is a subset
of the recession cone of the finite intersection

⋂k
i=1 Yζi

.
Suppose that the cone CM has the empty interior. The two-sided Abel lemma, which will be

proved in § 6, states that for a nonconfluent hypergeometric Puiseux series L with the domain of
convergence Ω one has CLog Ω = −C∨

L , where CL is the cone of the support of L and CLog Ω is the
recession cone of the set Log Ω. Thus we have

−C∨
L(k) = CLogΩk

⊂ C⋂k
i=1 Yζi

and hence the set
⋃∞

k=1CL(k) is not strongly convex. By Proposition 4 the cone CL(k) is polyhedral
with its boundary being a subset of the union of the zero sets of the polynomials P1, . . . , Pn and
Q1, . . . , Qn. Since this union is a finite arrangement of hyperplanes it follows that the family of
cones {CL(k)}∞k=1 can only contain a finite number of distinct elements. Therefore there exists m ∈ N

such that the cone CL(m) is not strongly convex. This contradicts the statement of Proposition 5
and completes the proof.

Let us recall the definitions of A-discriminants and principal A-determinants which were intro-
duced by Gelfand, Kapranov and Zelevinsky (see [GKZ94]). Let A be a finite subset of Z

n and let f
be a generic polynomial with support A, i.e.,

f =
∑
α∈A

cαx
α.

The corresponding A-discriminant is defined to be the irreducible polynomial in the coefficients cα
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which vanishes whenever f together with all of its partial derivatives have a common zero in
(C \ {0})n. The associated principal A-determinant is then the product of the A-discriminant with
(suitable powers of) all the lower-order A′-discriminants, where A′ = A ∩ Γ for each face Γ of the
Newton polytope. In particular, the factors corresponding to vertices Γ are simply monomials.

A hypergeometric function satisfying the Gelfand–Kapranov–Zelevinsky system of equations
(see [GKZ89]) has singularities along the zero locus of the corresponding principal A-determinant.
There always exists a monomial change of variables which transforms an A-hypergeometric series
into a Horn series (see [Kap91, § 2]). This monomial change of variables corresponds to a linear
transformation of the amoeba space and hence it cannot affect the solidness of an amoeba.
(More precisely, the preimage of any point in the amoeba space under this mapping is an affine
subspace and hence the preimage of a solid amoeba is also solid.) Using Theorem 7 we arrive at the
following corollary.

Corollary 8. The zero set of any principal A-determinant has a solid amoeba.

Remark. In the case where the principal A-determinant depends essentially (up to homogeneities)
only on two variables, it follows from Corollary 8 that the amoeba of the corresponding
A-discriminant ∆A is also solid. Indeed, in this case the subset of A ⊂ Zn consists of at most
n + 3 points. If n + 2 points lie in a hyperplane then ∆A ≡ 1, otherwise each discriminant ∆Γ,
corresponding to a face Γ of the Newton polytope of A, depends essentially on a single variable and
its amoeba will be just a line, so it cannot influence the solidness of the amoeba of ∆A.

Theorem 7 allows us also to derive the following property of the classical discriminant of the
general algebraic equation ym + c1y

m1 + · · · + cny
mn + cn+1 = 0, where m,mi ∈ N, m > m1 >

· · · > mn � 1, y is the unknown. We provide the following corollary with a proof since the solution
to a general algebraic equation satisfies a system of differential equations which is slightly different
from (1).

Corollary 9. The amoeba of the discriminant of a general algebraic equation is solid.

Proof. By a monomial change of the variable y and the coefficients c1, . . . , cn+1 any algebraic equa-
tion can be reduced to an equation of the form

ym + x1y
m1 + · · · + xny

mn − 1 = 0, (14)

where x = (x1, . . . , xn) ∈ C
n. The classical discriminant of this equation is the same as the one-

dimensional A-discriminant with A = {m,m1, . . . ,mn, 0}. Since the Newton polytope in this case is
just the one-dimensional interval [0,m], the principal A-determinant will differ from the discriminant
only by a monomial factor, which does not affect the amoeba. The result is thus a direct consequence
of Corollary 8.

The cubic equation is considered in detail in Example 3 (§ 7). The amoeba of the singular locus
of a solution to the reduced system is displayed in Figure 5.

Theorem 7 implies in particular that the number of connected components of the comple-
ment of the amoeba of the singular hypersurface of a rational hypergeometric function equals the
number of vertices of the Newton polytope of its denominator. It turns out that in some cases
knowing the hypergeometric system which is satisfied by a given rational function allows one to
compute the number of vertices of the Newton polytope of its denominator. We illustrate this fact
by means of the following important family of rational hypergeometric functions which are defined
as the Bergman kernels of complex ellipsoidal domains (see [FH96] and [Zin74]). This family will be
used in § 7 for describing rational hypergeometric functions satisfying some systems of equations of
the Horn type.
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Consider the family of complex ellipsoidal domains defined by

Dp1,...,pn = {x ∈ C
n : |x1|2/p1 + · · · + |xn|2/pn < 1},

where pi = 1, 2, 3, . . . , i = 1, . . . , n. The Bergman kernel Kp1,...,pn(x) for this domain can be repre-
sented as the hypergeometric series

Kp1,...,pn(x) =
1
πn

∑
s∈Nn

0

Γ(p1(s1 + 1) + · · · + pn(sn + 1) + 1)∏n
i=1 piΓ(pi(si + 1))

xs, (15)

but it is in fact also equal (see [Zin74]) to the rational function

Kp1,...,pn(x) =
1
πn

1
p1 · · · pn

∂n

∂x1 · · · ∂xn

p1∑
j1=1

· · ·
pn∑

jn=1

1
1 − yj11 − · · · − yjnn

, (16)

where yjii = x
1/pi

i εjii, εjii are all the pith roots of unity, ji = 1, . . . , pi, i = 1, . . . , n. Notice that,
except for the factor π−n, the coefficients of this rational function are integers. Let fp1,...,pn denote
the denominator of the rational function (16) (we normalize the denominator so that the greatest
common divisor of its coefficients equals 1). Our aim is to find the number of connected components
of the amoeba complement cAfp1,...,pn

. For any fixed vector γ ∈ C
n, Re γi ∈ [0, 1), there exist finitely

many subsets of the shifted lattice Z
n + γ which satisfy the conditions in Proposition 3 and are

contained in some strongly convex affine cone. We call them γ-admissible sets associated with (1).
A set is said to be admissible if it is γ-admissible for some γ.

Proposition 10. The number of connected components of the amoeba complement cAfp1,...,pn
of

the denominator of the Bergman kernel Kp1,...,pn(x) equals n+ 1.

Remark 3. The conclusion of Proposition 10 can be deduced from [FPT00, Proposition 4.2] in the
following way. Let us introduce new variables ξi = x

1/pi

i . It follows from [FPT00, Proposition 4.2]
that for any choice of the indices j1 ∈ {1, . . . , p1}, . . . , jn ∈ {1, . . . , pn} the amoeba of the first-
order polynomial 1 − εj11ξ1 − · · · − εjnnξn is the same. By [FPT00, Corollary 4.5] the number of
connected components of its complement equals n + 1. Since a monomial change of the variables
x1, . . . , xn corresponds to a linear transformation of the amoeba space (see [FPT00]), it follows that
the number of connected components of the complement of the amoeba of fp1,...,pn also equals n+1.
This shows in particular that the amoeba of fp1,...,pn is solid.

We give here another proof of Proposition 10 which only uses hypergeometric properties of the
Bergman kernels and does not use the explicit form of their denominators.

Proof of Proposition 10. The Newton polytope of fp1,...,pn has nonzero n-dimensional volume.
Indeed, the restriction of Kp1,...,pn(x) to the complex line x1 = · · · [i] · · · = xn = 0 is a ratio-
nal function whose denominator is given by (1 − xi)ki , ki > 0, i = 1, . . . , n. (Here [i] is the sign
of omission.) It follows by Theorem B that the number of connected components of the amoeba
complement cAfp1,...,pn

cannot be smaller than n+ 1.
Let ϕ(s) denote the coefficient of the series (15), i.e.,

ϕ(s) =
Γ(p1(s1 + 1) + · · · + pn(sn + 1) + 1)∏n

i=1 piΓ(pi(si + 1))
.

Since for any i = 1, . . . , n the function ϕ(s) satisfies the equation

ϕ(s+ ei)
pi−1∏
j=0

(pi(si + 1) + j) = ϕ(s)
pi∏

j=1

(p1(s1 + 1) + · · · + pn(sn + 1) + j),
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it follows that Kp1,...,pn(x) is a solution to the following system of the Horn type:

xi

( pi∏
j=1

(p1(θ1 + 1) + · · · + pn(θn + 1) + j)
)
Kp1,...,pn(x)

=
( pi−1∏

j=0

(piθi + j)
)
Kp1,...,pn(x), i = 1, . . . , n. (17)

The number of irreducible 0-admissible sets associated with the system (17) equals n + 1.
These sets are

S0 = N
n
0 and Si = {s ∈ Z

n : p1(s1 + 1) + · · ·+ pn(sn + 1) + 1 � 0, sj � 0, j �= i}, i = 1, . . . , n.

(Notice that (15) is supported in the 0-admissible set N
n
0 .) Since any expansion of a rational solution

to a Horn system into a Laurent series with center at the origin is supported in an irreducible
0-admissible set, it follows that the number of connected components of the amoeba comple-
ment cAfp1,...,pn

cannot exceed n+1. We have proved earlier that the Newton polytope of fp1,...,pn has
at least n+ 1 vertices. Thus it follows from Theorem B that the number of connected components
of cAfp1,...,pn

cannot be smaller than n+ 1 and hence equals n+ 1. The proof is complete.

Example 2. Let n = 2, p1 = 3 and p2 = 2. The denominator of the Bergman kernel of the
domain D3,2 is given by

f3,2(x) = (1 − 2x1 − 3x2 + x2
1 − 6x1x2 + 3x2

2 − x3
2)

3
.

By Proposition 10 the number of connected components of the amoeba complement cAf3,2 equals
three.

The Bergman kernel (15) gives an example of a rational hypergeometric function. The problem
of describing the class of rational hypergeometric functions was studied in [CDD99] and [Cat01].
Observe, however, that the definition of a hypergeometric function used in these papers is based on
the Gelfand–Kapranov–Zelevinsky system of differential equations [GGR92] rather than the Horn
system.

6. Meromorphic nonconfluent hypergeometric functions are rational

The aim of this section is to show that a nonconfluent Horn system (1) cannot possess a meromorphic
solution different from a rational function (Theorem 12).

The relation between the support of a general Puiseux series and its domain of convergence is
described by the Abel lemma (see Introduction and [GKZ89, § 1]). For hypergeometric series the
following stronger version of this statement holds.

Lemma 11 (Two-sided Abel lemma). Suppose that a nonconfluent hypergeometric Puiseux series
with the support S has nonempty domain of convergence D. Let C be the cone of S. Then for any
x(0) ∈ D and for some x(1) ∈ C

n \D,

Log(x(0)) − C∨ ⊂ Log(D) ⊂ Log(x(1)) − C∨.

Proof. Let y(x) =
∑

s∈S ϕ(s)xs be a nonconfluent hypergeometric Puiseux series. The first inclusion
follows from the general Abel lemma (see Introduction). Let us prove the second inclusion. Let
M ⊂ R

n be the lattice generated by the elements of the set S. By Proposition 5 the domain D
is independent of the parameters c1, . . . , cp of the coefficient (4) as long as they remain generic.
Thus we may without loss of generality assume that S = C ∩M . Since D is nonempty, it follows
by Proposition 5 that C is a strongly convex polyhedral cone. Let u(1), . . . , u(N) ∈ M denote the
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generators of C, i.e., C = {λ1u
(1) + · · ·+ λNu

(N) : λj � 0, j = 1, . . . , N}. For each j = 1, . . . , N we
consider the restricted series yj(x) =

∑∞
k=0ϕ(ku(j))xku(j)

. The nonconfluency condition (5) implies
that

∑p
i=1〈Ai, u

(j)〉 = 0. By the result on convergence of the generalized hypergeometric series
in one variable (see [GGR92, § 1.1]) the domain of convergence of yj(x) is contained in the set
{x ∈ C

n : |xu(j) | < rj} for some constant rj > 0. This shows that Log(D) ⊂ {v ∈ R
n : 〈u(j), v〉 <

log rj, j = 1, . . . , N}. Since C is strongly convex, we can choose ξ ∈ R
n such that mj := 〈u(j), ξ〉 > 0.

Let

x(1) ∈ Log−1

(
ξ max

j=1,...,N

log rj
mj

)
,

then 〈u(j),Log x(1)〉 � log rj, j = 1, . . . , N , and hence

Log(D) ⊂ {v ∈ R
n : 〈u(j), v − Log x(1)〉 � 0, j = 1, . . . , N} = Log x(1) − C∨.

The proof is complete.

The two-sided Abel lemma enables us to prove the following theorem, which is the main result
in this section.

Theorem 12. Any meromorphic nonconfluent hypergeometric function is rational.

Proof. Let y(x) be a meromorphic nonconfluent hypergeometric function. It follows by Proposition 5
and Lemma 11 that the domain of convergence of any shifted Laurent series representing y(x) is
not all of (C∗)n. Therefore, using the assumption that y(x) is meromorphic, we can write it in the
form h(x)/g(x), where h(x) is entire and g(x) is some polynomial which is not a monomial.

Let us first consider the case when dimN = n. Denote by C∨
v the cone which is dual to N

at the point v. By the remark after Theorem B, to each vertex v of the polytope N one can
associate a connected component of the amoeba complement cAg. This component is the image
of the domain of convergence of some Laurent series Lv for the function y(x) = h(x)/g(x) under
the mapping Log. It contains some translation wv + C∨

v of the cone C∨
v . By the two-sided Abel

lemma the cone of the support of the series Lv coincides with the cone −(C∨
v )∨ = −Cv. The family

of the cones {C∨
v }v∈vert(N ) coincides with the set of all maximal cones of the dual fan ΣN of the

polytope N . Since for any polytope its dual fan is complete, it follows that the toric variety XΣN
associated with the fan ΣN is compact (see [Ful93, § 2.4]). This variety can be covered by the affine
toric varieties {UC∨

v
}v∈vert(N ).

It is known that the monomials {xα : α ∈ −Cv} are holomorphic in UC∨
v

(see [Ful93, § 1.3]).
Since the cone of the support of the series Lv coincides with −Cv, it follows that for some wv ∈ Z

n

the series xwvLv contains only those monomials which are holomorphic in UC∨
v
. Thus xwvy(x) is

meromorphic in UC∨
v

for all v ∈ vert(N ). Since the toric variety XΣN is projective, it follows by the
GAGA-principle that y(x) is rational as claimed.

Now we shall show how to reduce the general case to the already treated case when dimN = n.
Let T ⊂ R

n denote the minimal linear subspace whose translation contains the polytope N . Choose
a basis u1, . . . , un ∈ Z

n of the lattice Z
n such that u1, . . . , um is a basis of the sublattice T ∩ Z

n.
Let us introduce new variables ξi = xui = xui1

1 · · · xuin
n , i = 1, . . . , n.

By construction the polynomial g(ξ) is given by the product of a monomial and another poly-
nomial which only depends on the variables ξ1, . . . , ξm. The Newton polytope of g(ξ) has nonzero
m-dimensional volume. It follows by the two-sided Abel lemma that the cone of the support of
any Laurent series

∑
s∈Zn ϕ(s)ξs representing the function y(ξ) is contained in the linear sub-

space sm+1 = · · · = sn = 0. Hence y(ξ) depends polynomially on the variables ξm+1, . . . , ξn.
Let ξ = (ξ′, ξ′′), where ξ′ = (ξ1, . . . , ξm), ξ′′ = (ξm+1, . . . , ξn). With this notation the function y(ξ)
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can be written in the form

y(ξ) =
∑
α∈W

aαξ
′′αyα(ξ′),

where W is a finite subset of the lattice Z
n−m, yα(ξ′) is a meromorphic function depending on the

variables ξ1, . . . , ξm only and aα ∈ C. We will prove that yα(ξ′) is a hypergeometric function for any
α ∈W .

Let Eλi
i denote the operator which increases the ith argument of a function depending on n

variables by λi, i.e., Eλi
i f(x) = f(x+ λiei). For λ ∈ R

n we denote the composition of the operators
Eλ1

1 , . . . , Eλn
n by Eλ, that is, Eλf(x) = f(x1+λ1, . . . , xn+λn). Since the commutator [θi, x

λj

j ] equals

δijλjx
λj

j , it follows that for any polynomial P in n variables and any λ ∈ Z
n,

P (θ)xλ = xλ(EλP )(θ). (18)

By definition the function y(x) is hypergeometric and hence satisfies the Horn system (1). Using
the relation (18) and the ith equation of (1) we compute

x2
i (E

1
i Pi)(θ)Pi(θ)y(x) = (xiPi(θ))

2y(x) = xiPi(θ)Qi(θ)y(x)

= (E−1
i Qi)(θ)xiPi(θ)y(x) = (E−1

i Qi)(θ)Qi(θ)y(x).

Repeating this argument λi times we arrive at the formula

xλi
i

( λi−1∏
j=0

(Ej
i Pi)(θ)

)
y(x) =

( λi−1∏
j=0

(E−j
i Qi)(θ)

)
y(x), (19)

which holds for any λi ∈ N. For uki � 0 define polynomials

ρki(s) =
uki−1∏
j=0

Ej
i Pi(s) and τki(s) =

uki−1∏
j=0

E−j
i Qi(s)

(by definition the empty product equals 1). For uki < 0 define polynomials

ρki(s) =
−uki−1∏

j=0

E−j
i Qi(s) and τki(s) =

−uki−1∏
j=0

Ej
i Pi(s).

It follows from (19) that, for any k = 1, . . . , n,

xuki
i ρki(θ)y(x) = τki(θ)y(x), i = 1, . . . , n. (20)

Composing the operators in Equations (20) in the same way as we did before in order to obtain the
formula (19), we arrive at the system of equations

xuk

( n∏
j=1

( n∏
l=j+1

Eukl
l

)
ρkj(θ)

)
y(x) =

( n∏
j=1

( j−1∏
l=1

E−ukl
l

)
τkj(θ)

)
y(x), k = 1, . . . , n. (21)

For instance,

xuk1
1 xuk2

2 (Euk2
2 ρk1)(θ)ρk2(θ)y(x) = xuk1

1 ρk1(θ)x
uk2
2 ρk2(θ)y(x) [by (18)]

= xuk1
1 ρk1(θ)τk2(θ)y(x) [by the 2nd equation in (20)]

= (E−uk1
1 τk2)(θ)x

uk1
1 ρk1(θ)y(x) [by (18)]

= (E−uk1
1 τk2)(θ)τk1(θ)y(x) [by the 1st equation in (20)].

Each equation in (21) is obtained by repeating this argument n times.
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Making the change of variables ξi = xui in (21) and using the equality

θi = xi
∂

∂xi
= u1iξ1

∂

∂ξ1
+ · · · + uniξn

∂

∂ξn
,

we conclude that y(ξ) is a solution to the system of equations

ξiρ
(i)(θξ)y(ξ) = τ (i)(θξ)y(ξ), i = 1, . . . , n, (22)

where

θξ =
(
ξ1

∂

∂ξ1
, . . . , ξn

∂

∂ξn

)
,

U is the matrix with the rows u1, . . . , un and

ρ(i)(s) =
n∏

j=1

( n∏
l=j+1

Eukl
l

)
ρkj((UT)−1s),

τ (i)(s) =
n∏

j=1

( j−1∏
l=1

E−ukl
l

)
τkj((UT)−1s).

Since y(ξ) =
∑

α∈W aαξ
′′αyα(ξ′), it follows from the first m equations of the system (22) that

(ξiρ(i)(θξ) − τ (i)(θξ))y(ξ) =
∑
α∈W

aαξ
′′α((ξiρ(i)(θξ) − τ (i)(θξ))yα(ξ′)) = 0

for i = 1, . . . ,m. Since yα(ξ′) does not depend on ξm+1, . . . , ξn, it follows that for any α ∈W
ξiρ

(i)(θ′ξ)yα(ξ′) = τ (i)(θ′ξ)yα(ξ′), i = 1, . . . ,m. (23)

Here

θ′ξ =
(
ξ1

∂

∂ξ1
, . . . , ξm

∂

∂ξm
, 0, . . . , 0

)
.

The system (23) is a Horn system in m variables, and hence the functions yα(ξ′) are hypergeometric
and meromorphic for each α ∈W . Thus we have arrived at the situation where the Newton polytope
of the polynomial which defines the singular set of the given meromorphic hypergeometric function
has the maximal possible dimension. This completes the proof.

Thanks to Theorem 12 we do not need to differentiate between meromorphic and rational noncon-
fluent hypergeometric functions. From now on we formulate all the results using the term ‘rational’.

Remark 4. Let f(x) be a rational function in n variables with singularities (poles) along an algebraic
hypersurface V ⊂ C

n and let A be the amoeba of V . By Theorem A the connected components
of the amoeba complement cA are in bijective correspondence with the Laurent series expansions
(with center at the origin) of f(x). For a multi-valued analytic function F (x) with singularities
on the same variety V this correspondence is in general not one-to-one. It may happen that some
of the connected components of cA do not correspond to any expansion of F (x) since there is
no holomorphic branch of F (x) on the pull-back of this component. It is also possible that several
connected components of cA correspond to a single series expansion of F (x). (For instance, let x ∈ C

and consider the function F (x) =
√√

x+ 2 +
√

3. There exists a holomorphic branch of F (x) in
the disk {|x| < 2} although x = 1 is a branching point. A similar situation in the two-dimensional
case is described in Example 3 in the next section.) However, with each series expansion of F (x)
centered at the origin one can associate at least one connected component of cA.
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7. Rational solutions to the Horn system

Typically a hypergeometric function is a multi-valued analytic function with singularities along an
algebraic hypersurface (see § 2). In this section we give a necessary condition for a hypergeometric
series to represent a germ of a rational function. This allows one to give an explicit description of
the class of rational solutions to (1) in the case when Qi(s) =

∏pi−1
k=0 (si + k/pi) for some positive

integers pi, each linear factor of Pi(s) depends on all the variables and the resultant of (1) is
irreducible. We prove that any such rational hypergeometric function is contiguous to the Bergman
kernel Kp1,...,pn for some p1, . . . , pn (Proposition 15).

Recall that B1, . . . , Bd are defined to be the duals to the maximal elements (with respect to
inclusion) of the finite family {−CI} of strongly convex polyhedral cones. Here CI is the recession
cone of the convex hull of the support of the hypergeometric series (13). Let X1, . . . ,XN denote
the recession cones of the connected components of the amoeba complement cAR(x) of the resultant
of (1). These recession cones are well defined since by Theorem A the connected components of the
amoeba complement are convex. The following theorem describes the structure of the amoeba AR(x).

Theorem 13. Suppose that a nonconfluent Horn system possesses a rational solution with poles
along the zero set of its resultant R(x). Then the fan of this Horn system is well defined and dual
to the Newton polytope of R(x).

Proof. Since there exists a rational solution to (1) with the poles on the zero set of its resultant R(x)
it follows by Theorems B and 7 that the cone Xi has nonempty interior for any i = 1, . . . , N . Thus by
Theorem B the cones {Xi}N

i=1 can be identified with the maximal cones of the fan which is dual to
the Newton polytope of R(x).

It suffices to show that the family {Bi}d
i=1 consists of the same elements as the family {Xi}N

i=1.
As we have already mentioned in § 4 the nonconfluency condition (5) for the Horn system (1)
implies that

⋃d
j=1Bj = R

n. Hence for any i = 1, . . . , N there exists ki ∈ {1, . . . , d} such that
int(Xi∩Bki

) �= ∅. Let Li denote a series solution to (1) whose support Si defines the cone Bki
in the

sense that Bki
= −C∨

Si
. Here CSi is the cone of Si (see § 4). Let L̃i denote the series expansion of

the rational solution to (1) such that the recession cone of the image of its domain of convergence
under the mapping Log is Xi. Since int(Xi ∩ Bki

) �= ∅ it follows that the series L + L̃i has a
nonempty domain of convergence Ωi. By the two-sided Abel lemma the cone of the convex set
Log Ωi is Xi ∩Bki

.
Any Puiseux series solution to (1) whose domain of convergence lies entirely in the preimage of a

connected component of the amoeba complement cAR(x) with respect to the mapping Log converges
on the whole of this preimage. Using the two-sided Abel lemma we conclude that Bki

cannot be a
proper subset of Xi. Thus either Xi = Bki

or B∨
ki

is a proper subset of (Xi ∩Bki
)∨. The latter is

impossible due to the assumption that B∨
ki

is a maximal element in the family of the cones of the
supports of series solutions to (1). Hence Xi = Bki

for any i = 1, . . . , N . Since the cones {Xi}N
i=1

are the maximal cones of a complete fan, it follows that d = N and thus we can identify the families
of the cones {Xi}N

i=1 and {Bi}d
i=1. The proof is complete.

The conditions in Theorem 13 are sufficient for the fan of a Horn system to be dual to the Newton
polytope of its resultant, but they are not necessary. For instance, the fan of the system (25) in
Example 3 below is dual to the Newton polytope of its resultant though the system (25) has no
nonzero rational solutions. Yet, the remark at the very end of § 4 shows that the conclusion of
Theorem 13 does not hold in the arbitrary case.

Corollary 14. If a Horn system possesses a rational solution with the poles on the zero set of its
resultant then the number of 0-admissible sets associated with this system cannot be smaller than
the number of maximal cones in its fan.
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Proof. By Theorem 13 the fan of the Horn system is well defined. Let y(x) be a rational solution
to (1) with the poles on the zero set of the resultant R(x) of (1). By Theorem A the number of
Laurent series expansions of y(x) with the center at the origin equals the number of connected
components of the set cAR. By Theorem 7 the amoeba of R(x) is solid and hence by Theorem 13
there exists a one-to-one correspondence between the connected components of cAR and the maximal
cones of the fan of the system (1). Since any expansion of y(x) is supported in a 0-admissible set it
follows that the number of such sets cannot be smaller than the number of maximal cones in the
fan of the Horn system. This completes the proof of the corollary.

As we have seen in § 2 a solution to the Horn system (1) can only be singular on the set on
which the resultant R(x) of (1) vanishes. Typically R(x) is divisible by some monomial xa, a ∈ N

n.
We denote the quotient R(x)/xa (with the maximal possible |a| = a1 + · · ·+ an) by r(x) and call it
the essential resultant of the system (1). The reason for introducing this terminology is the fact that
a Laurent monomial has unique Laurent series development with the center at the origin. Therefore
such a monomial is an inessential factor as long as one is concerned with the problem of computing
the number of connected components of the amoeba complement of a mapping.

The case when the polynomial Qi(s) depends only on si for all i = 1, . . . , n is particularly im-
portant. Under this assumption it is possible to compute the dimension of the space of holomorphic
solutions to the Horn system (1) explicitly and construct a basis in this space if the parameters of
the system are sufficiently general [Sad02]. (Theorem 9 in [Sad02] assumes that degQi > degPi,
i = 1, . . . , n, which is not the case if the nonconfluency relation (5) holds. Yet, by the lemma in
[GGR92, § 1.4] each of the basis series which were constructed in [Sad02, § 3] converges in some
neighborhood of the origin if the original Horn system is nonconfluent. The multi-valued analytic
functions determined by these series give a global basis in the space of holomorphic solutions to (1).)
Recall that two Ore–Sato coefficients (and the corresponding hypergeometric series) are called con-
tiguous if their quotient can be reduced to the product of a rational function and an exponential
term t̃s1

1 · · · t̃sn
n . The next proposition provides an explicit description of the class of rational solutions

to such systems of hypergeometric type under some additional assumptions on the parameters.

Proposition 15. Suppose that the nonconfluent Ore–Sato coefficient

ψ(s) = ts1
1 · · · tss

n

∏p
i=1 Γ(〈Ai, s〉 − ci)∏n
j=1 Γ(pj(sj + 1))

defines the Horn system (1) with the irreducible essential resultant r(x) and satisfies the conditions
Aij > 0, i = 1, . . . , p, j = 1, . . . , n. Let y(x) =

∑
s∈Nn ψ(s)xs and let A be the matrix with rows

A1, . . . , Ap. If rankA > 1 then the series y(x) cannot define a rational function. (We disregard
exceptional values of the parameters of ψ(s) for which y(x) reduces to a linear combination of
hypergeometric series in fewer variables.) If rankA = 1 and y(x) is rational then it is contiguous to
the series (15) converging to the Bergman kernel Kp1,...,pn(x).

Proof. Suppose that rankA > 1 and y(x) is a rational function. We may without loss of generality
assume that A11A22 −A12A21 �= 0. For each m = 1, . . . , p consider the Ore–Sato coefficient

χm(s) =
∏m

i=1 Γ(〈Ai, s〉 − ci)∏n
j=1 Γ(pj(sj + 1))

.

Each of these coefficients defines a system of differential equations of the Horn type (see Remark 1).
Let Bm1, . . . , Bmdm be the maximal elements in the family of the cones of the admissible sets
associated with the system defined by χm(s) (see § 4). Arguing as in the proof of Proposition 10 we
conclude that d1 = n+1. Let Ã be the matrix with rows A1, A2, e3, . . . , en, c̃ = (c1, c2, 0, . . . , 0) ∈ C

n

and define γ to be the solution to the system of linear equations Ãs = c̃. The set {s ∈ Z
n+γ : Ãs � 0}
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satisfies the conditions in Proposition 3 if the parameters c1, . . . , cp are generic. This yields d2 � n+2.
By Remark 2, di � dj for i � j. Since χp(s) = ψ(s) it follows by Theorem 13 that the number of
connected components of the amoeba complement cAr(x) at least equals n+ 2. By our assumption
the series y(x) represents a germ of a rational function. Since r(x) is irreducible, the function y(x)
must be singular on the whole of the hypersurface {r(x) = 0}. Thus it follows from Theorem A
that the number of Laurent series expansions (centered at the origin) of this rational function at
least equals n+ 2. Yet, the condition Aij > 0 and the conditions (8) and (9) in Proposition 3 imply
that the number of 0-admissible subsets associated with the Horn system defined by the Ore–Sato
coefficient ψ(s) cannot exceed n+1. This contradicts the conclusion of Corollary 14 and shows that
the function y(x) cannot be rational unless rankA = 1.

Suppose now that rankA = 1 and that the series y(x) converges to a rational function.
Let δ = GCD(p1, . . . , pn), p̃i = pi/δ, i = 1, . . . , n. It follows from the nonconfluency condition∑p

i=1Ai = (p1, . . . , pn) and the Gauss multiplication formula for the Γ-function that ψ(s) is con-
tiguous to

ψ̃(s) =
∏δ−1

l=0 Γ(p̃1s1 + · · · + p̃nsn + al)∏n
j=1 Γ(pj(sj + 1))

.

Here a0, . . . , aδ−1 ∈ C are some constants. Moreover the quotient ψ(s)/ψ̃(s) is given by an
exponential term t̃s1

1 · · · t̃sn
n and hence the series ỹ(x) =

∑
s∈Nn ψ̃(s)xs converges to a rational func-

tion. By the assumption, p̃i �= 0 for any i = 1, . . . , n. The restriction of ỹ(x) to the complex line
x1 = · · · [i] · · · = xn = 0 is a rational function (here [i] is the sign of omission). Let ψ̃i(si) =
ψ̃(0, . . . , si, . . . , 0) (si in the ith position). Using once again the Gauss multiplication formula we
conclude that the series

∞∑
si=0

∏δ−1
l=0

∏p̃i−1
j=0 Γ(si + (al + j)/p̃i)∏pi−1

k=0 Γ(si + (k/pi))
xsi

i

represents a rational function. A criterion for a power series in one variable to converge to a rational
function (see [Sta86, Theorem 4.1.1]) implies that for any l = 0, . . . , δ − 1, j = 0, . . . , p̃i − 1 there
exists k ∈ {0, . . . , pi − 1} such that (al + j)/p̃i − k/pi ∈ N. Hence for any l = 0, . . . , δ − 1 one
can find k ∈ {0, . . . , pi − 1} such that al − k/δ ∈ Z. Thus ψ(s) is contiguous to the Ore–Sato
coefficient ∏δ−1

l=0 Γ(p̃1s1 + · · · + p̃nsn + l/δ)∏n
j=1

∏pj−1
k=0 Γ(sj + (k/pj) + 1)

.

The Gauss multiplication formula shows that the latter coefficient is contiguous to the coeffi-
cient of the series (15) which represents the Bergman kernel Kp1,...,pn . The proof is complete.

Remark 5. There exist rational hypergeometric functions that cannot be described in terms of the
Bergman kernels of complex ellipsoidal domains. For instance, the hypergeometric series

∑
s∈Nn

0

Γ(s1 + p(s2 + · · · + sn + 1))Γ(s2 + · · · + sn + 1)
Γ(s1 + 1) · · · Γ(sn + 1)Γ(p(s2 + · · · + sn + 1))

xs = ((1 − x1)p − x2 − · · · − xn)−1

is not contiguous to such a kernel whenever n � 3 and p � 2.

Let us now consider an example. This example deals with a simplified version of the hypergeo-
metric series which expresses a solution y(x) to the cubic equation

y3 + x1y
2 + x2y − 1 = 0

in terms of the coefficients x1 and x2 (see [Mel21, ST00, Stu00] and Corollary 9).
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Figure 4. The maximal cones of the irreducible supports of solutions to (25).

Example 3. Consider the hypergeometric series

y(x1, x2) =
∑

s1,s2�0

Γ(2s1 + s2 + α)Γ(s1 + 2s2 + β)
Γ(3s1 + 3)Γ(3s2 + 3)

xs1
1 x

s2
2 , (24)

where α, β are arbitrary parameters such that the coefficient of the series is well defined and different
from zero on N

2
0. By the lemma in [GGR92, § 1.4] the series (24) converges in some neighborhood

of the origin. This series satisfies the system of equations of hypergeometric type

x1(2θ1 + θ2 + α)(2θ1 + θ2 + α+ 1)(θ1 + 2θ2 + β)y(x) = 3θ1(3θ1 + 1)(3θ1 + 2)y(x),
x2(2θ1 + θ2 + α)(θ1 + 2θ2 + β)(θ1 + 2θ2 + β + 1)y(x) = 3θ2(3θ2 + 1)(3θ2 + 2)y(x).

(25)

The principal symbols of the operators in (25) are

H1(x, z) = x1(2x1z1 + x2z2)2(x1z1 + 2x2z2) − 27(x1z1)3,

H2(x, z) = x2(2x1z1 + x2z2)(x1z1 + 2x2z2)2 − 27(x2z2)3 ,

and their classical resultant is given by

R(x1, x2) = x9
1x

9
2(x

2
1x

2
2 + 64x3

1 − 24x2
1x2 − 24x1x

2
2 + 64x3

2

− 1296x2
1 + 4698x1x2 − 1296x2

2 + 8748x1 + 8748x2 − 19683). (26)

The essential resultant r(x1, x2) = R(x1, x2)/(x1x2)9 is an irreducible polynomial, so by
Proposition 2 it is the essential resultant of the system (25). The vectors (2, 1) and (1, 2) of the
coefficients of the linear factors in the arguments of the Γ-functions in the numerator of the
coefficient of (24) are linearly independent. By Proposition 15 the series (24) cannot converge to a
rational function.

The fact that the series (24) cannot define a germ of a rational function can be seen without
appealing to Proposition 15 since we have the explicit expression (26) for the resultant of the
principal symbols of the differential operators in (25). If the sum y(x) of the series (24) was rational,
then by Theorem 7 the number of expansions of y(x) into a Laurent series with the center at the
origin would be equal to four since the Newton polytope of the essential resultant of (25) has four
vertices (see Figure 6). However, Proposition 3 shows that for any choice of the parameters α and
β at most three of the admissible subsets can belong to Z

2 (see Figure 4). Thus the sum of the
series (24) is not a rational function.

To determine the resultant of a general Horn system is a problem of great computational com-
plexity. Theorem 13 and Corollary 14 allow one to describe the amoeba of the resultant of a Horn
system (as for example in Figure 5) and draw consequences on its solvability in the class of rational
functions without performing this computation.

Finally we give an example which illustrates how Theorem 7 (or its Corollaries 8 and 9) can
be applied to the problem of constructing polyhedral decompositions of the Newton polytopes of
discriminants.
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Figure 5. The amoeba of the essential resultant of the Horn system (25).
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Figure 6. The Newton polytope of the essential resultant of the system (25).

In [PR04] a natural polyhedral decomposition of the Newton polytope of a Laurent polynomial f
is given. This decomposition is determined by the piecewise linear convex function constructed from
the so-called Ronkin function Nf (t) which is a convex function in t ∈ R

n. The function Nf is
affine-linear on each connected component of cAf . If such a component M corresponds to a vertex
ν = ν(M) (see Theorem B) of the Newton polytope of f , then the Ronkin function Nf is given,
for t ∈ M , by Nf (t) = log |cν | + 〈t, ν〉, where cν denotes the coefficient of xν in f . (See [PR04,
Theorem 2] for an explanation of this.)

Example 4. Consider the quartic equation

y4 + x1y
3 + x2y

2 + x3y − 1 = 0. (27)

The discriminant of (27) is given by the polynomial

x2
1x

2
2x

2
3 − 4x3

1x
3
3 + 4x2

1x
3
2 − 4x3

2x
2
3 − 18x3

1x2x3 + 18x1x2x
3
3 − 27x4

1 − 16x4
2 − 27x4

3

+ 80x1x
2
2x3 + 6x2

1x
2
3 + 144x2

1x2 − 144x2x
2
3 − 192x1x3 − 128x2

2 − 256. (28)

By Corollary 9 the zero locus of the polynomial (28) has a solid amoeba. The Newton polytope
of (28) is displayed in Figure 7.

From the solidness of the amoeba of the discriminant (28) we conclude that any affine linear
part of the function Nf corresponds to one of the eight vertices of the Newton polytope of (28).
Taking the maximum of these eight affine linear functions, we obtain the piecewise linear convex
function

max(8 log 2, 3 log 3 + 4t1, 4 log 2 + 4t2, 3 log 3 + 4t3, 2 log 2 + 2t1 + 3t2,
2 log 2 + 3t1 + 3t3, 2 log 2 + 3t2 + 2t3, 2t1 + 2t2 + 2t3). (29)

The set of all points t at which the convex function (29) is not smooth is a two-dimensional poly-
hedral complex called the spine of the amoeba, and the Legendre transform of (29) similarly gives
rise to a dual polyhedral subdivision of the polytope in Figure 7. It deserves to be mentioned that
in this example the polyhedral decomposition of the polytope is not simplicial, for it contains a
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Figure 7. The Newton polytope of the discriminant of Equation (27).

polytope with five vertices, namely the convex hull of the points (0, 4, 0), (2, 3, 0), (3, 0, 3), (0, 3, 2)
and (2, 2, 2). This is because there is a point, t = (3 log 2, 4 log 2, 3 log 2), at which the maximum in
(29) is attained simultaneously by the five functions 4 log 2+4t2, 2 log 2+2t1+3t2, 2 log 2+3t1 +3t3,
2 log 2 + 3t2 + 2t3, and 2t1 + 2t2 + 2t3.
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