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Abstract

Using the elements of order four in the narrow ideal class group, we construct generators of the maximal
elementary 2-class group of real quadratic number fields with even discriminant which is a sum of two
squares and with fundamental unit of positive norm. We then give a characterization of when two of these
generators are equal in the narrow sense in terms of norms of Gaussian integers.
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1. Introduction

Let k be a real quadratic number field with discriminant dk, fundamental unit εk,
narrow class group and 2-class group, respectively, Cl+(k) and Cl+2 (k), and ordinary
class group and 2-class group, respectively, Cl(k) and Cl2(k). Finally, if G is a finite
abelian group, then G[2] will denote its subgroup of elements of order one or two.

It is well known that Cl+(k)[2] is generated by the narrow ideal classes containing
the ramified prime ideals of k. However, the analogous case involving Cl(k)[2] is not
always true, that is, the ordinary ideal classes containing the ramified primes generate
a subgroup C which is not always all of Cl(k)[2]. This situation occurs if and only if
dk is a sum of two squares and εk has positive norm. Now, dk is a sum of two squares
if and only if dk = 8µp1 · · · pt, where the p j are all distinct primes ≡ 1 mod 4 and µ = 0
or 1, that is, the discriminant is a product of positive prime discriminants (cf. [4, Ch.
2], concerning the material mentioned here; also see [2]).

In [5, Theorem 2], a complete set of generators is obtained for Cl(k)[2] in the case
of odd discriminant which is a sum of two squares. When the fundamental unit is
of positive norm, the subgroup C mentioned above is of index two in Cl(k)[2] and its
complement Cl(k)[2] −C turns out to be generated by ordinary ideal classes containing
particular ideals a obtained from the decomposition of the discriminant as sums of two
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squares; see [5] for the details. The proof involves, roughly speaking, the use of certain
cyclic quartic subextensions of Q containing k in the cyclotomic field Q(ζdk ) of dkth
roots of unity and showing that these quartic fields are in one-to-one correspondence
with the ideal classes containing the ideals a.

In this note, we complete the project of determining generators of Cl(k)[2] by
considering the case of even discriminant dk (which is a sum of two squares and
for which the fundamental unit has positive norm). The results are similar to the
case of odd discriminant, but we use elementary methods, namely cycles of reduced
quadratic forms, to complete our proof, thereby circumventing the use of arithmetic in
cyclotomic fields.

We then go on to obtain a characterization, in terms of the norm of certain Gaussian
integers, of when two of these generators are equal in the narrow sense.

2. The main result

We start by setting up our assumptions and notation. In light of the last paragraph
of the introduction, let d = p1 · · · pt be a product of distinct primes with p1 = 2 and
p j ≡ 1 mod 4 for j = 2, . . . , t. Let D = 4d and define k = Q(

√
d ); hence, D = dk. It

is well known that there are 2t−2 pairs of positive integers a, b such that d = a2 + b2

with a < b; cf. [3, Ch. XVI] or almost any elementary number theory text. Notice that
p j = (p j,

√
d ) = p jZ +

√
dZ ( j = 1, . . . , t) are the ramified primes in k. We also assume

that the fundamental unit ε = εk has norm +1. Hence, |Cl+(k)| = 2|Cl(k)|. However,
since dk is a sum of two squares, Cl+(k) and Cl(k) have equal 2-ranks, which is t − 1,
and therefore |Cl+(k)[2]| = |Cl(k)[2]| = 2t−1.

Denote by [a]+ and [a] the narrow ideal class and ordinary class, respectively,
containing the ideal a. As is well known, Cl+(k)[2] = 〈[p1]+, . . . , [pt]+〉, but its 2-rank
is t − 1, since there is exactly one nontrivial relation among these classes; namely,
since Nε = +1, Hilbert’s theorem 90 implies that

1 = [(1 + ε)]+ = [pe1
1 ]+ · · · [p

et
t ]+

for some e j ∈ {0, 1} with not all e j = 0; cf. [4, Proposition 2.4 and its proof] and [5,
Proposition 1]. But in the usual sense, C := 〈[p1], . . . , [pt]〉 has 2-rank t − 2, since there
is exactly one more relation among the ramified primes:

[p1] · · · [pt] = [(
√

d )] = 1.

(Notice that [(
√

d )] is the identity in Cl(k), but [(
√

d )]+ is nontrivial in Cl+(k).)
Our goal is to find ‘natural’ ideals whose classes in the usual sense span the

complement, Cl(k)[2] −C; cf. [5, Theorem 2(b)]. To this end, we start by considering
the set

S+ = {c ∈ Cl+(k) : c2 = [(
√

d )]+}.

Observe that the classes in S+ are all of order four.

Proposition 2.1. The cardinality of S+ is 2t−1.
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Proof. Notice that S+ is nonempty by [4, Proposition 2.12] or, more directly, since
d = a2 + b2 as above, the ideal a2 = (a, b +

√
d )2 = (b +

√
d ) and since N(b +

√
d ) =

−a2 < 0, [a]2
+ = [(

√
d )]+. We now claim that there is a bijection between S+ and

Cl+(k)[2]. For, let c0 be a fixed class in S+. Then consider the map on S+ given
by c 7→ c0c for all c in S+. But (c0c)2 = 1 and thus c0c is an ambiguous ideal class,
whence generated by an ambiguous ideal (cf. [4, Proposition 2.9]), which therefore is a
product of a principal ideal generated by a rational number with a product of ramified
primes. Hence, c0c = c′ for some c′ ∈ Cl+(k)[2]. It is easy to see that this mapping
is bijective from S+ onto Cl+(k)[2]. Since we know that |Cl+(k)[2]| = 2t−1, we are
done. �

Next, we look for a natural set of ideals whose classes make up S+. Let A be
the set of ideals a = (a, b +

√
d ), where a, b range over all integers with a > 0 such

that d = a2 + b2. Notice that the cardinality of A is 2t. We are now interested in the
cardinality ofA+ = {[a]+ : a ∈ A} andAo = {[a] : a ∈ A}. We will see that |A+| = 2t−1

and |Ao| = 2t−2 and that each class in A+ contains exactly two ideals in A and each
class inAo contains exactly four ideals inA.

Let us state part of all this as a proposition.

Proposition 2.2. The cardinality |A+| ≤ 2t−1.

Proof. By the proof of Proposition 2.1, we see thatA+ ⊆ S+ and so the result follows
from Proposition 2.1. �

One of our main results is the following theorem.

Theorem 2.3. The cardinality |A+| = 2t−1. Therefore, A+ = S+. Moreover, each class
inA+ contains exactly two distinct ideals inA.

The proof involves converting the narrow ideal classes to cycles of reduced
quadratic forms and showing that each form corresponding to an ideal in A lies in
a cycle containing exactly one other form corresponding to another ideal in A; refer
to [1, Ch. 5]. We give this correspondence explicitly only for ideals inA; again cf. [1]
for a full description. Recall that in particular if a = (a, b +

√
d ), with positive integers

a, b such that d = a2 + b2, then the corresponding quadratic form is given by

N(ax + (b +
√

d )y)
Na

=
a2x2 + 2abxy + (b2 − d)y2

a
= ax2 + 2bxy − ay2 = (a, 2b,−a),

for brevity. For the conjugate ideal a′ = (a, b −
√

d ), the corresponding form is
(−a, 2b, a).

Now, recall that two quadratic forms f (x, y) and g(x, y) are properly equivalent if
there exists a matrix (

m n
u v

)
with integral entries and determinant 1 such that f (mx + ny, ux + vy) = g(x, y). It is
then well known that two forms are properly equivalent if and only if they correspond
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to ideals in the same narrow ideal class. Each narrow ideal class corresponds to a
unique cycle of reduced forms and conversely. A form (a, b, c) of positive discriminant
D = b2 − 4ac is defined to be reduced if |

√
D − 2|a|| < b <

√
D. We also define the

following reduction algorithm % on a form (a, b, c) with positive discriminant D:

%(a, b, c) =

(
c, r(−b, c),

r(−b, c)2 − D
4c

)
,

where, for integers u, v, v , 0, r(u, v) is the unique integer r such that r ≡ u mod 2v
and −|v| < r ≤ |v| if |v| >

√
D, and

√
D − 2|v| < r <

√
D if |v| <

√
D. Observe that r(u, v)

is an even function of the second argument. (Notice, too, that if we know two of the
coefficients of a reduced form and its discriminant, then we know the form completely.
We will sometimes denote the missing coefficient by ∗.)

Recall that this algorithm produces a reduced form in finitely many steps and that
once a reduced form is obtained then the algorithm cycles through a finite set of
reduced forms of even order and moreover all reduced forms fall into one of a finite
set of disjoint cycles. If (a, b, c) is a reduced form, then %(a, b, c) is given explicitly as
%(a, b, c) = (c, r(−b, c), (r2 − D)/(4c)) with

r = r(−b, c) = −b + 2|c|
⌊b +

√
D

2|c|

⌋
,

where bxc denotes the integral part of the real number x.
We now go back to the forms (±a, 2b, ∓a). Notice that their discriminant is

D = 4(b2 + a2) = 4d. First we note the following result.

Proposition 2.4. Suppose that D = 4(a2 + b2) with a, b > 0. Then the forms
(±a, 2b,∓a) are all reduced.

Proof. Observe that (±a, 2b, ∓a) is reduced if and only if |
√

D − 2a| < 2b <
√

D.
The latter inequality is clearly valid since 4b2 < 4a2 + 4b2 = D. On the other hand,
|
√

D − 2a| < 2b if and only if (
√

D − 2a)2 < 4b2 if and only if D + 4a2 − 4a
√

D < 4b2

if and only if 8a2 + 4b2 − 4a
√

D < 4b2 if and only if 8a2 − 4a
√

D < 0 if and only if
2a −

√
D < 0 if and only if 2a <

√
D if and only if 4a2 < D = 4a2 + 4b2 if and only if

0 < 4b2, this last of which is certainly true. �

For use below, notice that if (a, b, c) is reduced, then a and c are of opposite sign
and, as we already know, b is positive.

The following is a general useful result about certain cycles of reduced forms.

Proposition 2.5. Let (a0, b0, c0) be a reduced form with positive discriminant and let
% j(a0, b0, c0) = (a j, b j, c j) for any integer j with cycle length 2n, that is, (a j, b j, c j) =

(ai, bi, ci) if and only if j ≡ i mod 2n. Suppose further that a0 = −c0. Then

(a− j, b− j, c− j) = (−c j, b j,−a j).

Moreover, the form (an, bn, cn) satisfies the property an = −cn.
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Proof. By the proof of [1, Proposition 5.6.6], we have for any reduced form (a, b, c)

%−1(a, b, c) =

(r(−b, a)2 − D
4a

, r(−b, a), a
)
,

with

r(−b, a) = −b + 2|a|
⌊b +

√
D

2|a|

⌋
.

Here % is interpreted as a bijection on any cycle and hence %−1 is well defined on cycles.
We show that

(a− j, b− j, c− j) = (−c j, b j,−a j)

by induction on j. Notice that the result holds for j = 0, since a0 = −c0. Now assume
that

(a− j, b− j, c− j) = (−c j, b j,−a j)

holds. We then need to show that

(a− j−1, b− j−1, c− j−1) = (−c j+1, b j+1,−a j+1).

To this end,

(a− j−1, b− j−1, c− j−1) = %−1(a− j, b− j, c− j) = (∗, r(−b− j, a− j), a− j) = (∗, r(−b j,−c j),−c j).

On the other hand,

(a j+1, b j+1, c j+1) = %(a j, b j, c j) = (c j, r(−b j, c j), ∗).

Comparing coefficients, we see that a j+1 = c j = −a− j = −c− j−1 and b j+1 = r(−b j, c j) =

r(−b j,−c j) = b− j−1. These two equalities force c j+1 = −a− j−1, as desired.
Now apply this result when j = n. Then

(an, bn, cn) = (a−n, b−n, c−n) = (−cn, bn,−an)

and therefore an = −cn. �

Now we show that there are at most two forms (a j, b j,−a j) in any cycle.

Proposition 2.6. Let (a0, b0, c0) be a reduced form with positive discriminant and let
% j(a0, b0, c0) = (a j, b j, c j) for any integer j with cycle length 2n and suppose that
a0 = −c0. If (a`, b`, c`) satisfies c` = −a`, then ` ≡ 0 mod n.

Proof. Suppose for the sake of argument that there is an ` where 0 < ` < n such
that (a`, b`, c`) with c` = −a`. Then, by Proposition 2.5 (with (a`, b`, c`) replacing
(a0, b0, c0)),

(a`− j, b`− j, c`− j) = (−c`+ j, b`+ j,−a`+ j)

for all j. In particular, for j = `,

(a0, b0, c0) = (−c2`, b2`,−a2`).

Hence, c2` = −a0, b2` = b0 and a2` = −c0. Therefore, (a2`, b2`, c2`) = (−c0, b0,−a0) =

(a0, b0, c0), which contradicts the fact that our cycle length is 2n. �
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This completes the proof of Theorem 2.3; for each a ∈ A, the class [a]+ contains
exactly one other ideal inA, whence it follows thatA+ is half as large asA.

Now we have the following corollary to the theorem.

Corollary 2.7. The cardinality of Ao is 2t−2, in which each ordinary ideal class
contains exactly four ideals ofA. Moreover, Cl(k)[2] −C =Ao.

Proof. The first statement is clear, as any ordinary ideal class of Ao is a union of two
disjoint narrow classes inA+, namely, [a] = [a]+ ∪ [a(

√
d )]+.

For the last statement, notice that since Ao ⊆ Cl(k)[2], we need only show that Ao

and C are disjoint. But this is easy, for since Cl(k) ' Cl+(k)/〈[(
√

d )]+〉 we see that if
[a] ∈ Ao ∩C with a ∈ A, then [a] = [b] for some product of ramified primes b. But, by
the isomorphism above, this ideal class equality translates to

{[a]+, [a(
√

d )]+} = {[b]+, [b(
√

d )]+}.

In particular, since the narrow ideal classes in the right-hand set are each of order two,
we conclude that [a]+ is of order two, contradicting the fact that the elements of A+

are all of order four. �

Remarks. The results and proofs in this section remain valid (with some minor
modifications) when generalized in two directions: for any real quadratic number field
k whose discriminant dk is a sum of two squares but of arbitrary parity and whose
fundamental unit εk has norm of arbitrary sign.

Suppose first that d = dk is odd, say d = p1 · · · pt for primes p j ≡ 1 mod 4, and with
Nεk = +1. The only modification in the above presentation is in the definition of the set
of idealsA just after Proposition 2.1, where we now assume that a is odd and b even.
In the proof of Theorem 2.3, the correspondence between ideal classes and classes of
forms remains the same, but the forms now have discriminant 4dk. However, the Sylow
2-subgroups of the groups of classes of forms (ideals) of discriminant dk and 4dk are
all isomorphic and therefore no change in the proof is necessary. In this situation, we
get a slightly stronger result than in [5], since we are considering narrow rather than
ordinary equivalence. See the second example in the following section.

When Nεk = −1, the results and proofs still hold. In fact, S+ =A+ and each still
has 2t−1 elements; but in this case

S+ = Cl+(k)[2] = Cl(k)[2].

From this it is easy to see that precisely two ideals a and a′ in A are equivalent to an
ideal b which is a product of ramified primes, since the [b] generate Cl(k)[2] in this
case.

3. Two examples

We now give an example illustrating the results above. We then revisit the example
in [5].
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Example 3.1. Consider d = 2 · 5 · 41 = 410 and let k = Q(
√

410 ). The fundamental
unit ε = 81 + 4

√
410 has norm = +1. Let p2, p5, p41 be (all the ramified) primes above

2, 5, 41, respectively. Since

1 + ε = 82 + 4
√

410 = 2(41 + 2
√

410)

and N(41 + 2
√

410) = +41,

p41 = (41 + 2
√

410) +
∼ 1,

where +
∼ denotes narrow equivalence and ∼ will mean ordinary equivalence below.

Hence,
Cl+(k)[2] = 〈[p2]+, [p5]+〉,

which has order four.

On the other hand, since (
√

410 ) = p2p5p41
+
∼ p2p5, we see that [p2] = [p5]. Hence,

C = 〈[p2]〉 has order two, which is of index two in Cl(k)[2]. To generate the rest
of Cl(k)[2], we consider the set of ideals A as follows: notice that 410 is a sum
of two squares in essentially two ways, 410 = 112 + 172 = 72 + 192, in which case
A = {a1, a2, a3, a4, a

′
1, a
′
2, a
′
3, a
′
4}, where

a1 = (11, 17 +
√

410), a2 = (7, 19 +
√

410),
a3 = (17, 11 +

√
410), a4 = (19, 7 +

√
410),

and the rest the corresponding conjugate ideals. To see which ideals in A are
equivalent in the narrow sense, we calculate the cycle of reduced forms corresponding
to these ideals:

a1 ↔ ((11, 34,−11), (−11, 32, 14), (14, 24,−19),
(−19, 14, 19), (19, 24,−14), (−14, 32, 11)),

a2 ↔ ((7, 38,−7), (−7, 32, 22), (−22, 12,−17),
(−17, 22, 17), (17, 12,−22), (−22, 32, 7)),

a3 ↔ ((17, 22,−17), (−17, 12, 22), (22, 32,−7),
(−7, 38, 7), (7, 32,−22), (−22, 12, 17)),

a4 ↔ ((19, 14,−19), (−19, 24, 14), (14, 32,−11),
(−11, 34, 11), (11, 32,−14), (−14, 24, 19));

the cycles for the conjugates are obtained by switching the signs on the outer
coefficients. From this,

a1
+
∼ a′4, a2

+
∼ a′3, a3

+
∼ a′2, a4

+
∼ a′1.

Therefore,A+ = {[a1]+, [a2]+, [a3]+, [a4]+}. On the other hand, notice that

a1 ∼ a
′
4 ∼ a4 ∼ a

′
1, a2 ∼ a

′
3 ∼ a3 ∼ a

′
2,

in which caseAo = {[a1], [a2]}.
Therefore,

Cl(k)[2] = {[(1)], [p2], [a1], [a2]}.
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Example 3.2. Now consider d = 5 · 13 · 29 = 1885; cf. [5]. Let k = Q(
√

1885 ) and
so d = dk. Then A = {a1, a2, a3, a4, a

′
1, a
′
2, a
′
3, a
′
4}, where a1 = (43, 6 +

√
1885), a2 =

(11, 42 +
√

1885), a3 = (21, 38 +
√

1885), a4 = (27, 34 +
√

1885). We calculate the
cycle of reduced forms corresponding to a couple of these ideals:

a1 ↔ ((43, 12,−43), (−43, 74, 12), (12, 70,−55), (−55, 40, 27),
(27, 68,−27), (−27, 40, 55), (55, 70,−12), (−12, 74, 43)),

a2 ↔ ((11, 84,−11), (−11, 70, 60), (60, 50,−21),
(−21, 76, 21), (21, 50,−60), (−60, 70, 11)).

From this, we get the following narrow equivalence among the ideals ofA:

a1
+
∼ a4, a2

+
∼ a′3, a3

+
∼ a′2, a

′
1

+
∼ a′4.

Notice that we need the conjugates of the a j in order to cover all of S+ as the a j are by
themselves insufficient for this purpose.

4. A related result

We now consider a slightly different but related phenomenon. In the above
examples we discovered which of the ideals a j and a′j ( j = 1, . . . , 4) are narrowly
equivalent by considering cycles of reduced quadratic forms. But it turns out that
there is another way to check when these ideals are equivalent, which we now discuss.

As before, let d = p1 · · · pt, p1 = 2, p j ≡ 1 mod 4 ( j = 2, . . . , t). (The following
arguments remain valid in the case of odd discriminant d, the details of which we
leave to the reader.) Let

A = {a + bi : a, b ∈ Z, a2 + b2 = d}.

Then |A| = 2t+1, as is well known. Now, let π1 = 1 + i and, for j > 1, let π j = x j + y ji,
where x j, y j ∈ N, y j even, such that p j = x2

j + y2
j . Let τ be complex conjugation. For

each ν = (ν0; ν1, . . . , νt) ∈ Ft+1
2 , where F2 is a two-element field, let

Πν = (−1)ν0πτ
ν1

1 · · · π
τνt
t

and so Πν ranges over plus/minus all products of the π j or π j. There are thus 2t+1 of
the Πν. Notice that NΠν = d. Hence,

{Πν : ν ∈ Ft+1
2 } = A.

We thus have a bijection
η : A −→ Ft+1

2

given by a + bi 7→ ν = (ν0; ν1, . . . , νt), where a + bi = Πν.
Now let

A+ = {a + bi : a ∈ N, b ∈ Z, a2 + b2 = d},
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and recall that

A = {a = (a, b +
√

d ) : a, b ∈ Z, a > 0, a2 + b2 = d},

both sets of which have 2t elements. There is a convenient bijection

ϕ :A −→ A+

given by a = (a, b +
√

d) 7→ a + bi.
Finally, we get a bijection

ψ :A −→ Ft
2

given by the composite map

A
ϕ
−→ A+

η|A+

−→ Ft+1
2

p
−→ Ft

2,

where p(ν0; ν1, . . . , νt) = (ν1, . . . , νt). In brief,

ψ(a) = (ν1, . . . , νt),

where a + bi = Πν, with ν = (ν0; ν1, . . . , νt). (Notice that the map

p ◦ η|A+ : A+ −→ Ft
2

is a bijection.)
Assume now that the fundamental unit has positive norm. In Ft

2, let U be the F2-
subspace generated by (e1, . . . , et), where pe1

1 · · · p
et
t

+
∼ 1, for e j ∈ F2, not all the e j = 0

(as above). Hence,
U = {(0, . . . , 0), (e1, . . . , et)}.

Given all of this, we have the following proposition.

Proposition 4.1. For any a, b ∈ A,

a
+
∼ b if and only if ψ(a) − ψ(b) ∈ U.

This proposition is an immediate consequence of the following theorem.

Theorem 4.2. Let a1, a2 ∈ A and suppose that ψ(a1) = (µ1, . . . , µt) and ψ(a2) =

(ν1, . . . , νt). Then

a1a2
+
∼

t∏
`=1

p
µ`+ν`+1
`

.

Before proving these two results, let us see how this all plays out in our first example
above.

Recall that d = 410 = p1 p2 p3, with p1 = 2, p2 = 5, p3 = 41. (Hence, t = 3.) We have
from the above

π1 = 1 + i, π2 = 1 + 2i, π3 = 5 + 4i.

https://doi.org/10.1017/S1446788715000270 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000270


30 E. Benjamin and C. Snyder [10]

From this, we obtain the relations

Π(0;0,0,0) = π1π2π3 = −17 + 11i, Π(0;0,0,1) = π1π2π3 = 7 + 19i,
Π(0;0,1,0) = π1π2π3 = 19 + 7i, Π(0;0,1,1) = π1π2π3 = 11 − 17i,
Π(0;1,0,0) = π1π2π3 = 11 + 17i, Π(0;1,0,1) = π1π2π3 = 19 − 7i,
Π(0;1,1,0) = π1π2π3 = 7 − 19i, Π(0;1,1,1) = π1π2π3 = −17 − 11i.

Notice that there are eight more relations involving the indices (1; ∗, ∗, ∗), which
are obtained by multiplying the corresponding relation above by −1, for example
Π(1;0,0,0) = 17 − 11i.

On the other hand,A consists of the following eight ideals:

a1 = (11, 17 +
√

410), a
′
1 = (11,−17 +

√
410),

a2 = (7, 19 +
√

410), a
′
2 = (7,−19 +

√
410),

a3 = (17, 11 +
√

410), a
′
3 = (17,−11 +

√
410),

a4 = (19, 7 +
√

410), a
′
4 = (19,−7 +

√
410).

Hence, ϕ :A −→ A+ is given by

ϕ(a1) = 11 + 17i = Π(0;1,0,0), ϕ(a′1) = 11 − 17i = Π(0;0,1,1),

ϕ(a2) = 7 + 19i = Π(0;0,0,1), ϕ(a′2) = 7 − 19i = Π(0;1,1,0),

ϕ(a3) = 17 + 11i = Π(1;1,1,1), ϕ(a′3) = 17 − 11i = Π(1;0,0,0),

ϕ(a4) = 19 + 7i = Π(0;0,1,0), ϕ(a′4) = 19 − 7i = Π(0;1,0,1),

whence the function ψ is given by

ψ(a1) = (1, 0, 0), ψ(a′1) = (0, 1, 1),
ψ(a2) = (0, 0, 1), ψ(a′2) = (1, 1, 0),
ψ(a3) = (1, 1, 1), ψ(a′3) = (0, 0, 0),
ψ(a4) = (0, 1, 0, ), ψ(a′4) = (1, 0, 1).

Now, since p3
+
∼ 1 (p3 is p41 in the example), we see that the subspace U in F3

2 is

U = 〈(0, 0, 1)〉 = {(0, 0, 0), (0, 0, 1)}

and, therefore, F3
2/U = {U, (0, 1, 0) + U, (1, 0, 0) + U, (1, 1, 1) + U}, explicitly

(0, 1, 0) + U = {(0, 1, 0), (0, 1, 1)},
(1, 0, 0) + U = {(1, 0, 0), (1, 0, 1)},
(1, 1, 1) + U = {(1, 1, 1), (1, 1, 0)}.

By Proposition 4.1 and the above correspondence, we thus have the four narrow classes

[a1]+ = {a1, a
′
4}, [a2]+ = {a2, a

′
3}, [a3]+ = {a3, a

′
2}, [a4]+ = {a4, a

′
1}.

Observe that this is consistent with the results in our example before.
Now we will prove the theorem.
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Proof. Let a j = (a j, b j +
√

d ), where a j, b j ∈ Z, a j > 0, a2
j + b2

j = d, j = 1, 2. Notice

that Na j = a j and recall that a2j = (b j +
√

d ) +
∼ (
√

d ). Hence, (a1a2)2 +
∼ 1, which in turn

implies that a1a2 is narrowly equivalent to an ambiguous ideal; call it a, that is, a′ = a.
By considering the proofs of [4, Propositions 2.9 and 2.4], we see that we may take
a = (1 + λ)a1a2, where

λ =
a1a2

(b1 +
√

d )(b2 +
√

d )
.

For, first observe that

(λ) =
N(a1a2)
a21a

2
2

.

Next, notice that λλ′ = 1 and hence 1 + λ = (1 + λ′)λ. But then

a
′ = (1 + λ′)a′1a

′
2 =

(1 + λ)
(λ)

a′1a
′
2a1a2

a1a2
= (1 + λ)a1a2 = a,

as desired.
Now, as observed before, since (1 + λ)a1a2 is an ambiguous ideal,

(1 + λ)a1a2 = b(c)

for some b | (
√

d ) and c ∈ Q. Hence, notice that a1a2
+
∼ b. Let q = Nb. Then q | d and

q completely determines b and so we need only compute q. From the above,

qc2 = N(b(c)) = N((1 + λ)a1a2) = a1a2N(1 + λ).

Therefore, q is the square-free kernel of a1a2N(1 + λ). A straightforward calculation
shows that

a1a2N(1 + λ) = (a1 + a2)2 + (b1 + b2)2.

Now let α j = a j + b ji for j = 1, 2. Then, by the definition of ψ(a j),

α1 = (−1)µ0

t∏
`=1

πτ
µ`

` and α2 = (−1)ν0

t∏
`=1

πτ
ν`

` .

Hence, α1 + α2 = %(δ + (−1)µ0+ν0δ), where

% = (−1)µ0

t∏
`=1
µ`=ν`

πτ
µ`

` and δ =

t∏
`=1
µ`,ν`

πτ
µ`

` .

But then

(α1 + α2)(α1 + α2) = |α1 + α2|
2 = |%|2|δ + (−1)µ0+ν0δ|2 =

t∏
`=1
µ`=ν`

p` · c2,
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where c ∈ Z. More precisely, c may be taken to be twice the real or imaginary part
of δ. Thus,

q =

t∏
`=1
µ`=ν`

p`.

This implies that

b =

t∏
`=1
µ`=ν`

p`.

Therefore,

a1a2
+
∼ b =

t∏
`=1
µ`=ν`

p`
+
∼

t∏
`=1

p
µ`+ν`+1
`

,

which completes the proof of the theorem. �

We now conclude with a proof of Proposition 4.1.

Proof. Let a, b ∈ A and let ψ(a) = (µ1, . . . , µt) and ψ(b) = (ν1, . . . , νt). We have the
following chain of equivalences: a +

∼ b if and only if ab′ +
∼ 1. But then by Theorem 4.2

ab′
+
∼ 1 if and only if 1 +

∼
∏t

`=1 p
µ`+ν`
`

, since ψ(b′) = 1 + ψ(b). But 1 +
∼

∏t
`=1 p

µ`+ν`
`

if
and only if

∏t
`=1 p

µ`+ν`
`

∈ {(1), pe1
1 · · · p

et
t } if and only if ψ(a) − ψ(b) = ψ(a) + ψ(b) ∈ U,

as desired. �

The proposition and theorem remain valid if Nεk = −1, as the reader may verify.
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