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SUMMARY

This study aimed to estimate the natural history and transmission parameters based on

experimental viral shedding and symptom dynamics in order to understand the key

epidemiological factors that characterize influenza (sub)type epidemics. A simple statistical

algorithm was developed by combining a well-defined mathematical scheme of epidemiological

determinants and experimental human influenza infection. Here we showed that (i) the observed

viral shedding dynamics mapped successfully the estimated time-profile of infectiousness and

(ii) the profile of asymptomatic probability was obtained based on observed temporal variation of

symptom scores. Our derived estimates permitted evaluation of relationships between various

model-derived and data-based estimations, allowing evaluation of trends proposed previously but

not tested fully. As well as providing insights into the dynamics of viral shedding and symptom

scores, a more profound understanding of influenza epidemiological parameters and determinants

could enhance the viral kinetic studies of influenza during infection in the respiratory tracts of

experimentally infected individuals.
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INTRODUCTION

The continuous threat of pandemic human influenza

suggests the urgent need for more countries to con-

duct long-term year-around viral surveillance and to

document reliable incidences at (sub)type levels in

order to fully understand human influenza, especially

in tropical countries where systematic data collection

is just starting [1–3]. A parsimonious way of assess-

ing the efficacy of a potential control strategy is to

quantify the transmissibility of the infectious virus [4].

Reliable past estimates of transmissibility are rare,

especially in (sub)tropical countries. Empirical data

documenting infectiousness over time are also limited.

Mathematical models have long been recognized as

useful tools in exploring complicated relationships

underlying infectious disease transmission processes

[4–6]. The accuracy of the predictions obtained from

mathematical modelling studies depends on the ac-

curacy of the estimates for the parameters governing

the model dynamics. Good parameter estimates are

needed to understand and model the potential spread

of influenza. Therefore, interpretation of available

viral shedding and symptom data from experimental

infection studies can provide a platform to link a

mathematical model in estimating the efficacies of

different measures for influenza infection.
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The dynamics of viral shedding and symptoms fol-

lowing influenza virus infection are key factors when

considering epidemic control measures [7–12]. There

are three advantages in the experimental influenza

virus infection of healthy volunteers that provide

a unique opportunity to describe the natural history:

(i) the date of infection is known with certainty,

(ii) shedding and symptoms are recorded prospec-

tively, and (iii) participants are usually selected with

low pre-haemagglutination antibody titres [12].

Although, natural history and transmission par-

ameter estimations take account of only a small

portion of the predictability and preparedness in in-

fluenza control, they are focal points for epidemi-

ological modelling. Therefore, understanding the

mapping relationship between experimental human

influenza and infectiousness distribution is needed.

Currently, there is no simple mapping relationship

between experimental infectious viral load given

in terms of 50% tissue culture infective doses

(TCID50) mlx1 of nasal wash and virus-specific in-

fectiousness. Alternatively, the incubation period and

transmission data for human influenza can be re-

analysed from experimental viral shedding data to

derive new natural history parameters, from which a

time-profile of infectiousness can be predicted [10, 11].

This predicted infectiousness time-profile can be

used to estimate key epidemiological determinants

such as basic reproduction number (R0), disease gen-

eration time (Tg), and proportion of transmission oc-

curring prior to symptoms (or asymptomatically) (h)

[13]. R0 is defined as the expected number of second-

ary cases generated by the primary case in a wholly

susceptible population, whereas Tg is the mean time

interval between infection of one person and infection

of the person that individual infects [13]. Thus, the

epidemiological parameters such as the latent period,

the incubation period, and the duration of in-

fectiousness can be estimated.

The aim of the current study was to estimate the

natural history and transmission parameters based on

experimental viral shedding and symptom dynamics

in order to understand the key epidemiological factors

that characterize influenza (sub)type epidemics. We

present a detailed analysis not only to link exper-

imental viral shedding and symptom data to natural

history and transmission parameter estimates but also

to relate it to epidemiological parameters. This work

can provide clear links between volunteer challenge

studies and natural histories and transmission par-

ameterization.

MATERIALS AND METHODS

Experimental viral shedding and symptom data

A valuable dataset provided by Carrat et al. [12]

provided us with a unique opportunity to examine the

linkage between experimental human influenza and

natural history parameters. Carrat et al. [12] have re-

viewed the published studies describing the courses of

influenza virus infection in placebo-treated and un-

treated volunteers challenged with wild-type influenza

A(H1N1), A(H3N2), and type B. Overall, the data

were reconstructed by taking into account 56 different

studies with 1280 healthy participants aged between

18 and 40 or 50 years. A total of 532 volunteers were

challenged with an A(H1N1) virus, 473 with an

A(H3N2) virus, and 189 with a type B virus. The

inoculums ranged from 103–107
.2 TCID50 mlx1.

Most studies included daily follow-up with daily

nasal washing and collection of clinical signs and

symptoms.

For all comparisons involving (sub)type influenza

viruses, Carrat et al. [12] used A(H1N1) as the refer-

ence group. Carrat et al.’s estimates of the mean dur-

ation of viral shedding were: A(H1N1), 4.50 days

[95% confidence interval (CI) 3.71–5.28] ; A(H3N2),

5.14 days (95% CI 4.48–5.80), and type B, 3.70 days

(95% CI 1.73–5.66). The proportion of volunteers

who developed clinical illness (any symptoms) after

experimental influenza virus infections were estimated

to be: A(H1N1), 70.8% (95% CI 50.4–85.2) ;

A(H3N2), 64.5% (95% CI 54.6–73.3) ; and type B,

57.4% (95% CI 35.2–76.9). The daily viral titres are

summarized in Table 1. Table 2 gives the daily total

symptom scores.

Methodology

The overall proposed methodology used to map the

experimental viral shedding, symptom data and

natural history parameters, and to estimate the key

epidemiological determinants is illustrated in Figure 1.

It can be described briefly as follows.

First, nonlinear models were fitted to the exper-

imental viral shedding data (Table 1) by using the

nonlinear regression technique to obtain the optimal

fitted models that describe the distributions of viral

shedding dynamics. To ensure that the experimental

viral titres reflected positive infection response, a cut-

off viral titre threshold was set, based on reported

mean duration values of viral shedding from Carrat

et al. [12] (Fig. 1b). The cut-off threshold can assist
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with model interpretation by establishing objective

criteria that delineate inoculation and onset of infec-

tion. Here the area under the viral shedding vs. time

curve (AUC) was introduced to measure the strength

of viral shedding [7], by which transmissibility can

then be estimated appropriately (Fig. 1b). The AUC

provides a single measure for predicting transmissi-

bility. In the current work, a fitted transmission rate

based on the 1918 influenza A(H1N1) epidemic in São

Paulo, Brazil (bA(H1N1)) [14] was used as a reference

value to calculate transmission rates of A(H3N2) and

type B based on estimated AUC as: bi=bA(H1N1)r
AUCi/AUCA(H1N1) (Fig. 1c).

To perform the mapping relationship between viral

load and infectiousness time-profiles, the basic re-

production number (R0,i) was estimated by the well-

known equation [4] : R0,i=bi/ci, where c is the

recovery rate (dx1) determined from the threshold-

adjusted viral shedding curve (Fig. 1b). A best-fit

infectiousness distribution can then be obtained by

mapping the viral load data based on

R0=
Z O

0
b(t)dt=constant, (1)

where b(t) is infectiousness at time t since infection

[13]. To improve the mapping performance, the

nonlinear regression technique was used to best fit

the relationship between infectiousness distribution

and viral load data. The coefficient of determi-

nation (r2) was applied to judge the mapping per-

formance.

We estimated the probability that a person has not

yet developed symptoms, i.e. asymptomatic prob-

ability, and the incubation period (time from infection

to start of symptoms) from experimental symptom

score data [12]. After the fitted models of infectious-

ness and asymptomatic probability were determined, a

time-distribution profile can be constructed (Fig. 1 f ).

Based on the constructed time-distribution curves of

infectiousness and asymptomatic probability, two

important epidemiological determinants of disease

generation time (Tg) and asymptomatic proportion

(h) can be calculated by [13],

Tg=

RO
0 tb(t)dtRO
0 b(t)dt

, (2)

h � tincxtlat
tinf

=

RO
0 b(t)S(t)dtRO

0 b(t)dt
, (3)

Table 1. Results of viral shedding in experimental influenza virus infection according to the virus (sub)types*

Result for number of days

1 1.5 2 2.5 3 3.5 4 5 6 7 8 9

A(H1N1)
1.78 n.a. 2.98 n.a. 2.53 n.a. 1.81 1.24 0.71 0.51 0.23 n.a.
(0.22) (0.22) (0.25) (0.25) (0.30) (0.18) (0.10) (0.06)

A(H3N2)

2.31 n.a. 3.17 n.a. 2.96 n.a. 3.13 2.35 2.00 1.28 0.42 0.33
(0.39) (0.36) (0.40) (0.11) (0.25) (0.24) (0.59)

Type B
1.82 2.94 2.03 2.26 2.49 2.73 3.18 1.95 1.70 0.46 n.a. n.a.

n.a., Not available.

Values are mean (¡S.E.).
* Data are re-analysed from Carrat et al. [12] with units in log (TCID50 mlx1) of nasal wash.

Table 2. Results of total symptom scores in

experimental influenza virus infection according

to the virus (sub)types*

Result for number of days

1 2 3 4 5 6 7 8

A(H1N1) 0.24 0.69 0.86 0.62 0.41 0.28 0.12 0.04

A(H3N2) 0.34 0.64 0.80 0.69 0.59 0.44 0.33 0.16

Type B 0.08 0.99 0.97 0.87 0.35 0.09 0.01 0

* Data are adopted from Carrat et al. [12].

Analysis of experimental human influenza infections 827

https://doi.org/10.1017/S0950268809991178 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268809991178


where tinc, tlat, and tinf represent the incubation,

latent, and infectious periods, respectively, and S(t)

is the asymptomatic probability.

Finally, given the current understanding of the re-

lationships between experimental infections and key

epidemiological determinants, we constructed a dose–

response relationship between symptom scores and

viral load (Fig. 1h). The proposed dose–response

model can be used to map an individual’s contact

behaviour to viral load, since contact reduction is

dependent on the strength of symptoms [15]. If the

symptom score is zero, an infected person feels fine

and behaves normally. As symptom scores increase,

the contact rate is reduced [15]. Currently, there is no

data that capture the influence of contact rate by be-

havioural changes in symptom scores ; therefore, as an

alternative, we used a mathematical model [15] :

w=
1

1+y(V)
, (4)

to express the relationship between contact rate (w)

and symptom scores (y). The symptom scores (y) can

be expressed by the function of viral load (V ) by

best-fitting a function y(V) to the data from Carrat

et al. [12].

A Monte Carlo (MC) technique with 10 000 iter-

ations (stability condition) was performed to generate

2.5 and 97.5 percentiles as the 95% confidence inter-

vals for all best-fit models. The MC simulation was

implemented using Crystal Ball1 software (version

2000.2, Decisionerring Inc., USA). The x2 and

Kolmogorov–Smirnov (KS) statistics were used to
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area under the curve (AUC) of 
the fitted viral shedding models 

Fitted models to viral shedding
data  

Calculate AUC-based 
transmissibility 

(H1N1)A(H1N1)A AUC/AUC ii ×= ββ

R 0 estimation 

R0i = β i/γ i

Mapping between viral load 
and infectiousness based on 

R 0 estimates 

Optimal fitted infectiousness 
over time distribution: β (t)
Optimal fitted asymptomatic 
probability: S(t)

Key epidemiological  
determinant estimations 

∫ ∫
∞ ∞

=
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Fig. 1. Flowchart and computational algorithm used in the study (see main text for detailed symbol meanings).
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optimize the goodness-of-fit of distribution. All stat-

istical analyses were performed using TableCurve 2D

(version 5, AISN Software Inc., USA).

RESULTS

Mapping between viral load and infectiousness

Table 3 summarizes the optimal fitted equations and

probability distributions with lognormal function for

viral shedding data. Our initial statistical analysis of

viral shedding data revealed that the lumped viral

shedding threshold (Fig. 2c) (i.e. the fixed threshold,

was set at 1.6 log TCID50 mlx1) was more suitable

than virus-specific ones (Fig. 2b) to derive viral load

AUC (Table 4, Fig. 2). Figure 2 shows that A(H3N2)

gave the highest viral load AUC (6.09, 95% CI

3.76–8.85) compared to those of type B (3.78, 95% CI

0.11–10.26) and A(H1N1) (2.81, 95% CI 2.41–3.24),

leading to the corresponding recovery rates (c) being

estimated as 0.17 dx1 (95% CI 0.15–0.21), 0.20 dx1

(95% CI 0.14–0.68), and 0.30 dx1 (95% CI 0.28–

0.32), respectively (Table 4).

Based on the reported reference value of A(H1N1)

transmission rate [bA(H1N1)=0.51 dx1 (95% CI 0.44–

0.59)] along with calculated viral load AUC and

recovery rates, the resulting estimated average trans-

mission rates were b=1.11 dx1 and R0=6.5 for

A(H3N2), whereas b=0.69 dx1 and R0=3.4 for type

B (Table 4). The results also indicate that the esti-

mated R0 of A(H1N1) (1.74, 95% CI 1.48–2.04)

ranged from 1.7 to 2.0, consistent with the published

data [10, 11]. In addition, in order to show the un-

certainty of estimated viral-specific transmission

rates, we performed MC simulation. The result dem-

onstrates that type B experiences a higher variance

than A(H1N1) and A(H3N2) (Fig. 3).

We used the derived R0 estimates together with

experimental viral load data to establish a statistical

approach describing the mapping relationship be-

tween infectiousness over time and viral load quan-

titatively. This quantitative statistical analysis dem-

onstrated that the optimal fitted gamma distribution

mapped significantly with the viral load data (r2=
0.91–0.99) (Table 5, Fig. 4).

Epidemiological determinant and parameter

estimation

The disease generation time Tg can be calculated from

infectiousness distribution. It resulted in 3.74 days for

A(H1N1), 3.79 days for A(H3N2), and 3.57 days for

type B [eqn (2), Fig. 4]. The incubation period distri-

bution could be estimated from total symptom-score

data in experimental influenza virus infection [12]

(Fig. 5a–c). Figure 5a indicates that the lognormal

distributions best describe the model fitting to the

data, resulting in a mean incubation period (¡S.D.) of

3.04¡1.28 days for A(H1N1), 3.54¡1.91 days for

A(H3N2), and 2.94¡1.50 days for type B.

Once the asymptomatic probability derived from

experimental symptom-score data was estimated

(Table 5, Fig. 5d), the proportion of transmission

occurring prior to symptoms h could be calculated

based on eqn (3). The results were h=0.16 for

A(H1N1), 0.18 for A(H3N2), and 0.16 for type B.

Finally we estimated the latent periods with the defi-

nition of eqn (3) and estimated infectious period (1/c)

(Table 4). This resulted in a mean latent period esti-

mate of 2.49 days (95% CI 0.71–5.59) for A(H1N1),

2.56 days (95% CI 0.1–7.64) for A(H3N2), and 2.36

days (95% CI 0.38–6.17) for type B. Therefore, the

rates at which an exposed individual becomes infec-

tious (i.e. the inverse of the latent period, s) were

Table 3. Optimal fitted equations and probability distribution of viral

shedding for influenza virus (sub)types

Fitted equation*

Probability

distribution r2

A(H1N1)
LN4(0.047, 2.91, 2.13, 3.58, 1.82) LN(1.05, 1.98)# 0.99

A(H3N2)

LN4(x7.76, 10.98, 2.63, 14.98, 3.71) LN(1.49, 1.84) 0.98

Type B
LN4(x703.71, 706.47, 3.04, 1998.50, 214.69) LN(1.76, 1.57) 0.84

* LN4(a,b,c,d,e)=a+brexp{xln2rln[1+(xxc)r(e2x1)/(dre)]2/ln(e)2}.
# LN(GM, GSD) is the lognormal distribution with a geometric mean (GM) and a

geometric standard deviation (GSD).
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calculated as 0.402, 0.391 and 0.424 dx1 for

A(H1N1), A(H3N2), and type B, respectively.

The optimized logistic regression equation y=1/

(1+(V0/V)
n) best described the dose–response re-

lationship between symptom scores and viral load

with fitted parameter values of V0=1.65 and n=1.62

(r2=0.81) for A(H1N1); V0=2.09 and n=1.61

(r2=0.85) for A(H3N2); and V0=1.96 and n=119.08

(r2=0.98) for type B (Fig. 6a–c). On the other hand,

the normalized contact rate had a functional form of

w=1/(1+(1/(1+(V0/V)
n))) that could be used to re-

flect the surrogate relationship between contact rate

and symptom scores (Fig. 6d).

DISCUSSION

Comparison with well-reported data

The experimental human infection-supported stat-

istical approach proposed in this study revealed a
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threshold. (d), (e) Fitted probability distributions for viral shedding dynamics in experimental influenza A(H3N2) and type B
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previously undetermined correlation. This correlation

links infectiousness over time together with asympto-

matic probability profiles and experimental human

influenza (sub)type virus infection. Our derived esti-

mates permit evaluation of relationships between

various model-derived and data-based estimations,

allowing evaluation of trends proposed previously but

not tested fully.

A comparison of our derived estimates of key epi-

demiological parameters with available published

data reveals that of the selected reported values of

infectious rate for A(H1N1), all have values ranging

from 0.50 to 0.53 dx1 that agree favourably with

our mean estimate of 0.4 dx1. For recovery rate, a

mean of 0.3 dx1 also fell within the reported range of

Table 4. Summary of viral shedding threshold, and threshold adjusted AUC together with recovery rate,

transmission rate and basic reproduction number estimates for influenza virus (sub)types

Estimated parameter

Virus (sub)type

A(H1N1) A(H3N2) Type B

Viral shedding threshold
(log TCID50 mlx1)

Estimated* 1.08# (0.804–1.439) 1.919 (1.628–2.197) 2.096 (1.236–2.612)
Fixed$ 1.60 1.60 1.60

Threshold adjusted AUC

(log TCID50 mlx1 d)

2.814 (2.412–3.244) 6.087 (3.755–8.850) 3.778 (0.114–10.262)

Recovery rate, c (dx1)· 0.295 (0.275–0.316) 0.171 (0.146–0.206) 0.203 (0.142–0.677)
AUC-based transmission rate, b (dx1) 0.514" (0.441–0.593) 1.112k (0.686–1.617) 0.690k (0.021–1.874)

R0# 1.742 (1.48–2.04) 6.503 (3.85–9.72) 3.399 (0.06–6.48)

* Estimated based on reported mean duration of viral shedding from Carrat et al. [12], as : A(H1N1), 4.50 days (95% CI
3.71–5.28) ; A(H3N2), 5.14 days (95% CI 4.48–5.80) ; and type B: 3.70 days (95% CI 1.73–5.66).
# Mean with 95% CI.
$ Lumped threshold: 1.60¡0.48 (mean ¡ S.D.).

· Estimated based on Figure 2.
" Reference value adopted from Massad et al. [14].
k bi=bA(H1N1)rAUCi/AUCA(H1N1), where i=1, 2 represent A(H3N2) and type B, respectively.

# R0i=bi /ci.
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Fig. 3. Probability distributions of transmission rate esti-
mates for influenza (sub)type (a) A(H1N1), (b) A(H3N2)

and (c) type B. LN(GM, GSD) denotes the lognormal
distribution with geometric mean (GM) and geometric
standard deviation (GSD).

Table 5. Fitted coefficients for infectiousness

distribution b(t) and asymptomatic probability S(t) of

A(H1N1), A(H3N2), and type B (sub)types

Function

Fitted coefficients

a b c d e r2

A(H1N1)
b(t)* x0.002 0.48 1.99 1.56 1.87 0.99

S(t)# 1.004 0.13 x0.32 0.08 0.99

A(H3N2)
b(t) x0.27 1.96 2.89 1.55 3.52 0.96
S(t) 0.99 0.11 x0.25 0.06 0.99

Type B

b(t) x3.49 4.33 3.57 0.26 471.73 0.91
S(t) 1.03 0.22 x0.43 0.11 0.99

* Gamma distribution is selected as the best-fit
model : f (x)=a+b exp(x(xxc)/d)r((((xxc)/d)+ex1)/

(ex1))ex1.
# Best-fit model : f (x)=a+bx+cx1.5+dx2.
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values of 0.2–0.5 dx1 (Table 6). However, it should

be noted that our derived R0 estimate of A(H1N1)

(1.74, 95% CI 1.48–2.04) also compared favourably

with most reported values with a range of 1.5–4.3

(Table 6).

Of the adopted well-reported parameters of infec-

tious and recovery rates for A(H3N2), only one

dataset was available for comparison. It revealed that

our infectious rate estimate of 0.39 dx1 was slightly

less than that of 0.5 dx1, whereas the estimated re-

covery rate had a mean of 0.17 dx1 that agreed sig-

nificantly with the reported 0.13 dx1 (Table 6).

However, it is noteworthy that our estimated R0 of

A(H3N2) (6.50) was much greater than those re-

ported values ranging from 1.5–2.5 (Table 6). In fact,

we were unable to compare our derived parameters

regarding type B owing to lack of available data.

Our data indicated that the latent period was not

overlapped the incubation period. We showed that

the estimated incubation periods ranged from 3.0 to

3.5 days, whereas it was 2.4–2.6 days for the latent

period. Compared with other estimated incubation

periods that had a mean value of 1.48¡0.47 days

based on data from a multiple-exposure event occur-

ring on an aeroplane [10], our estimates appeared to

be twice as long as that one. Carrat et al. [12] indicated

that the most commonly reported incubation periods

ranged from 1 to 4 days (average 2 days) deriving

from expert opinions or less high-quality evidence.

Our result also indicates that the asymptomatic

infection (h) estimates of 16–18% were lower than

those of current modelling using ranges of 30–50%

[11, 13, 16, 17] and 19–44% [18].
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Implication for control measures

Information concerning the dynamics of influenza

viral shedding and symptoms during an infection

in humans is key for epidemic control strategies

[10–13]. They have attracted significant attention

because of their intriguing dynamics and their im-

portance in containing influenza epidemics. The pre-

cise parameter values of natural history and

transmission together with key epidemiological de-

terminants are still not fully determined. Here we

analysed the published experimental influenza viral

shedding and symptom-score data and evaluated this

using well-defined epidemiological representations to

characterize the properties that govern population

dynamics.

Our statistical analysis with mathematical manipu-

lation demonstrated that we had mapped successfully

between viral load and infectiousness over time. This

enabled us to estimate natural history parameters

such as incubation and latent periods and trans-

mission rate together with key epidemiological de-

terminants of disease generation time, asymptomatic

proportion, and basic reproduction number. The

proposed dose–response relationship between symp-

tom scores and viral load led to a relation that could

map contact rate to viral load [15].

Table 6. Comparison estimated mean transmission rate (b), infectious rate (s), recovery rate (c), and basic

reproduction number (R0) with published literature

Virus (sub)type Year Location b (dx1) s (dx1) c (dx1) R0 Ref.

A(H1N1) 1978 British 1.66 n.a. 0.46 3.65 [6]

A(H1N1) 1918 Four types of study settings* n.a. 0.50 0.50 2–4.3 [24]
A(H1N1) 1918 US cities# n.a. 0.53 0.24 <4 [16]
n.a. n.a. n.a. n.a. 0.33–1.0 0.33–0.5 n.a. [4]

A(H1N1) 1918 Geneva, Switzerland 8 0.53 0.34 1.49 (1.45–1.53)$ [25]
5.75 0.53 0.45 3.75 (3.57–3.93)$

A(H1N1) 1918 USA, France, Australia n.a. 0.53 0.24 1.5–3.0 [26]

A(H3N2) 1968 1.9–2.2
A(H1N1) 1918 São Paulo, Brazil 0.51 0.07 0.19 2.68 [14]
A(H3N2) 1.5–2.5

A(H3N2) 1985 France n.a. n.a. 0.40 1.5 [27]
A(H3N2) 1968 USSR and Bulgaria n.a. 0.50 0.13 1.9 [28]
A(H1N1) 0.51· 0.40 0.30 1.74 Current
A(H3N2) 1.11 0.39 0.17 6.50 study"

Type B 0.69 0.42 0.20 3.40

n.a., Not available.
* Confined, communities in Maryland, Scandinavian cities, and cities in the USA.
# US cities including : New York City, Chicago, Philadelphia, Detroit, St Louis, Cleveland, Boston, Baltimore and

Pittsburgh.
$ Mean with 95% CI.
· Reference value adopted from Massad et al. [14].

" Estimates obtained from this study are in boldface.
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This work could prove to be epidemiologically

meaningful and merit further efforts to understand

the causes and consequences by placing experimental

shedding and symptom data-based natural history

and parameters in a predictive framework for com-

plex mitigation strategies in a human influenza pan-

demic. Beyond offering the confirmation of key

epidemiological parameters, our results provide a

quantitative metric to assess population dynamics of

influenza epidemics using the well-known determinis-

tic SEIR (susceptible, exposed, infectious, recovery)

model and improve outcomes [14, 19].

In conclusion, we developed a simple statistical

algorithm by combining a well-defined mathematical

scheme of epidemiological determinants and exper-

imental human influenza infection. We showed that

(i) the observed viral shedding dynamics successfully

mapped the estimated time-profile of infectiousness

and (ii) the profile of asymptomatic probability was

obtained based on observed temporal variation of

symptom scores. Besides providing insights into the

dynamics of viral shedding and symptom scores, a

greater understanding of influenza epidemiological

parameters and determinants could enhance viral

kinetic studies of influenza during infection in the

respiratory tracts of experimentally infected in-

dividuals [9, 20]. We also anticipated that direct

estimation of natural history and transmission par-

ameters of experimental human influenza, as presented

in this study, might provide an important analytical

tool to estimate key parameters in experimental

and epidemiological studies related to drug-resistant

influenza virus in immune response dynamics [15, 21,

22, 23].
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