THE TRANSLATIONAL HULL OF AN INVERSE SEMIGROUP

by JANET E. AULT
(Received 5 June, 1971; revised 1 February, 1972)

An ideal extension of one semigroup by another is determined by a partial homomorphism
into the translational hull of the first semigroup [3, §2, Theorem 5]. In most instances, the
development of the theory of ideal extensions has been hindered by inadequate knowledge of
the translational hull; it is our purpose here to characterize certain basic structures in the
translational hull of an arbitrary inverse semigroup.

For an inverse semigroup S, the translational hull of S, Q(S), is again an inverse
semigroup, and thus the idempotents of Q(S) form a semilattice. How the structure of this
semilattice, Eqs), is influenced by the structure of the semilattice of idempotents of S, Eg, is
seen in one of our main results: Egs) = Q(Eg).

Since Q(S) always possesses an identity, the group of units of Q(S) is another structure
which is of interest. We give here a characterization of this group in terms of automorphisms
of the semilattice of S.

There are two sections dealing with applications of the characterizations given for Egs,
and the group of units of Q(S).

1. Notation and preliminary results. For a semigroup S, Es denotes the set of idempotents
of S. Except when otherwise stated, the notation and definitions used can be found in [1].
For a semigroup S, define

AS) ={1: 8> S|Uxy)=(x)y, forall x, yeS},
P(S)={p:S—S|(xy)p =x(yp), forall x,yeS}
These sets are semigroups under composition of mappings. Further, let
Q(S) ={(4, P e A(S)x P(S)| x(y) = (xp)y, forall x,yeS}.
With multiplication defined by (4, p)(4', p') = (A%, pp’), (S) is also a semigroup. Let
AS)={1eA(S)|(4 p)eS) forsome p};
P(S)={peP(S)|(4, p)eQ(S) for some i};
(S) = {(As po) | a€S, A,x = ax, xp, = xa, forall xeS};
2(8) = {4 )eQUS)| (4 pYt, 7) = (1, 7)(A, p) =i for some (u, 7)},

where i = (i5, ig) and iy is the identity map on S. The semigroup Q(S) is called the translational
hull of S, and Z(S) is the group of units of Q(S); if (4, p) is in (S), we say that A and p are
linked. In case S is a weakly reductive semigroup (which is certainly true if S is an inverse
semigroup), then S is isomorphic to II(S) under the mapping x — (4., p,); since II(S) is an
ideal of Q(S'), we may consider S contained in Q(S). A full treatment of the above semigroups
is given in [3]. In particular, the following proposition appears there (see §2 of [3]).
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PROPOSITION 1.1. Let S be a semigroup.

() If S is reductive, then Q(S) ~ A(S) ~ P(S).
(ii) If S is commutative and reductive, then Q(S) ~ A(S).

A semigroup S = S° is the orthogonal sum (called O-direct union in [1]) of semigroups
S,=8%aed), if S= | S, and S,S; = S,nS; ={0} whenever a3 . The usual direct

aeAd

product of semigroups T (i€ I), is denoted by X T.
iel

PRrROPOSITION 1.2. Let S be a semigroup which is the orthogonal sum of subsemigroups

S,, with S? = S,(ae A). Then Q(S) = X QS,).
aed

Proof. This result follows easily on using the fact that, if (4, p)e Q(S), then (4
in Q(S,) for all « in 4.

The next proposition, which is due to Ponizovski [5], will be used repeatedly without
special reference.

Sas Pls.) is

PROPOSITION 1.3. For an inverse semigroup S, QS) is again an inverse semigroup. In
particular, if (1, p) is in QS), then its inverse, (A", p~ 1), is defined by
AMlx=(x"1p)"Y, xpTl=@Ax"YH)"Y, forallxinS.
Since every element of an inverse semigroup S has a left and right identity, many of the

properties of A(S), P(S), and Q(S) can be simplified. For 4 a mapping, it is understood that
(4x) means A(x).

LeEMMA 1.4. Let S be an inverse semigroup. The following statements hold.

(@) For 2, " in A(S), A=A if and only if A|g; = X g,
~ (ii) Let A be a mapping of S into itself. Then A is in A(S) if and only if (e)f = Af for e, f
in Eg with f < e, and Jx = (Axx~')x for all x in S.

(iii) Let p be a mapping of S into itself. Then p is in P(S) if and only if f(ep) = fp, fore, f
in Eg with f < e, and xp = x(x~'xp) for all x in S.

(iv) For Ae A(S), pe P(S), (4, p) is in Q(S) if and only if e(Af) = (ep)f for all e, f in Eg.
Proof. (i) Let 4, X' e A(S) with A|g; = A'|g,. Forxin S,
Ax=2xx"1x = (Axx " Dx = (Uxx"Hx = Axx"'x = V'x;

thatis, A= 4".
(i) Let A be a mapping of S into S satisfying Ax = (Ixx~')x for all x in S and (le)f = Af
for f<e Then, forallx, yinsS,

Axy) = [Axy)(xy) ™ 1xp) = [ACex ™ H(xp)xp) ™ (xy)
= [Axx™HIEy)xp) ™ (xp) = [AGex™HIxy = (Ax)y.
Therefore 4 is in A(S).
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The proof of (iii) is symmetric to that of (ii); statement (iv) follows from the fact that
every element has a left and right identity.

For the remainder of the paper, we shall be concerned exclusively with inverse semi-
groups. Consequently, we shall not necessarily include in the hypothesis of every proposition
the fact that S is an inverse semigroup; this will be assumed without express mention. We
note that Proposition 1.1(i) holds since every inverse semigroup is reductive.

2. The idempotents of Q(S). In this section we give characterizations of the semilattice
of idempotents of Q(S) in terms of Q(E,) and in terms of a certain subsemigroup of A(S).
The next lemma is crucial for both of these characterizations.

LEMMA 2.1. For (4, p)eSXS), (4, p) is idempotent if and only if M Es) < Es, (Es)p < Es.

Proof. Let (4, p) be an idempotent in Q(S). Then A~ = 4, p~! = p, and, by Proposition
1.3, ep = ep~" = (de)~! for all e in E;. Therefore

le = (Le)(ep)(Ae) = (Ae)el(Ae) = (Ae)(le),

since A2 = . Thus Aeis in E5. It can be shown similarly that epe E for all e in E.
Conversely, let A(Es) < Es, (Es)p € Es.  Then, for e in Eg, Ae = (Ae)e = e(4e), and thus

A%e = A(Je) = Me(le)) = (Ae)(Ae) = Ae.

Hence, by Lemma 1.4(i), 42 = 1. By a symmetric argument we have p? = p, and (4, p) is
idempotent.

THEOREM 2.2. For an inverse semigroup S,
Eqs) > {Ae A(S)| A(Es) < Eg).

Proof. Define n: Eqisy— A(S) by (4, p)n =A. Then, by Lemma 2.1, = maps Epg,
into {1€ A(S)|A(Es) < Eg}. Further, if Ae A(S) with A(Es) < E, then define p on S by

xp = xA(x"'x), forall xin S.
For e in Eg, ep = e(le) = (4e)e = Ae, since Ae is in Eg. Therefore, if e, fe Eg, then
(&f)p = Aef) = (e = e(3f) = e(fp);
also, for x in S,
x(x™'xp) = x(x~ x(Ax " x)) = x(Ax " x) = xp.
Consequently, by Lemma 1.4(ii), p is in P(S). In addition, for ¢, fin E,,
e(Af) = e(fp) = (ef)p = (fe)p = f(ep) = (ep)f,

so that, by Lemma 1.4(iv), (4, p) is in Q(S). The element (4, p) is idempotent by Lemma 2.1,
and thus 7 maps Eq s, onto the subsemigroup {1 A(S) | A(Eg) € Eg}. Finally, n is one-to-one
due to the fact that S is reductive; nisa homomorphism since it is just the projection into A(S).
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PROPOSITION 2.3. Let Ae A(S), pe P(S), with 2> = 1, p> = p. Then (4, p)eSXS) if and
only if Ae = ep for all e in Ej.

Proof. Let (4, p) be in Q(S) with 22 = 1 and p? = p, and let ee E;. Then, by Lemma 2.1,
ep and e are idempotents. Thus

ep=ep ! =(le)"! = de.

Conversely, suppose that 1€ A(S), pe P(S) with 2> = A, p? = p, and let ep = Ae for all
e in E;. Then, for all e, fe Es,

(ep)® = (Ae)(ep) = ((e)e)p = (Ze)p = (ep)p = ep® = ep,
and so
(ep)f = f(ep) = (fe)p = (ef)p = e(fp) = e(f).
Therefore, by Lemma 1.4(iv), (4, p) is in Q(S).

THEOREM 2.4. For S an inverse semigroup, the semilattices Q(Eg) and Eq s, are isomorphic.

Proof. 1t is an immediate consequence of Lemma 2.1 that Q(Ej) is indeed a semilattice.
Consider the mapping 6 : Eqs, — Q(Es) defined by (4, p)0 = (Ag,, ple,). By Lemma 2.1,
Mg is in Q(Eg) and p|g, is in P(Ey), and certainly A|g, is linked to p|z,. Hence 6 maps into
Q(E;). That 6 is one-to-one follows from Lemma 1.4(i) and its dual; @ is a homomorphism
since Al |g; = g, A'|g; and pp’|gg = pleg p'|es. To see that 6 maps onto Q(Ey), let (4o, po) be
in Q(Es). Define 4 and p on S by

Ax = (Aoxx"Hx, xp=x(x""xpo).

By Lemma 1 4(ii), 4 is in A(S), and by Lemma 1.4(iii), p is in P(S); (4, p) is in (S) by
Lemma 1.4(iv). Finally, 1|Es = Ao, p|Es = po; S0 B is a mapping onto Q(Es). Therefore
Eqs) is isomorphic to Q(Ey).

3. Applications. Using Theorem 2.4, we now give several examples of when conditions

on § dictate properties of (S). To do this we need a characterization of Q(E;) given by
Petrich in [3]. For a semilattice £ and x in E, the principal ideal of E generated by x is the

setl, = {y]y < x}.

PROPOSITION 3.1. Let E be a semilattice. Then Q(E) is isomorphic to the semilattice 2,

where @ = {I |I an ideal of E, InI, principal for all xe E\l'}, with multiplication defined as
intersection.

We shall now assume that Q(E) = 2, with E embedded in 2 under the mapping e — /.

PROPOSITION 3.2. Let S be an inverse semigroup with zero element 0. Then O is a prime
ideal of S if and only if O is prime in C(S).

Proof. Since S is embedded as an ideal in Q(S), if O is prime in Q(S), it is certainly prime
in S.

Conversely, let 0 be prime in S. Since Q(S) is an inverse semigroup, it suffices to show
that 0 is prime in Eq). Since Q(Eg) ~ Eqs,, we need only prove that 0 is prime in Q(Ej).
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Let I and J be in Q(E) with IJ = 0. Since product in Q(Es) is defined as intersection, we have
InJ=0. Ifeel, feJ, then efeInJ =0. But 0 is prime in Es; so e=0or f=0. That is,
I=00rJ=0.

PROPOSITION 3.3. The semilattice Eg is finite if and only if Eqs, is a finite lattice.

Proof. Assume that Ej is finite. Then the power set of E is finite and, by Proposition 3.1,
it contains Q(Eg). Further, using [3, §2, Proposition 8] we see that Q(Ej) is a lattice. Since
Eqs) =~ Q(Es) by Theorem 2.4, Eq s, is a finite lattice.

A semilattice E is a tree if, for e, f,g in E, e < g, f < g implies that e £ for f < e.
PrROPOSITION 3.4. If Eg is a tree, then Eq, is a lattice.

Proof. Since Eg, is isomorphic to (Eg), we need only show that, if I and J are in
Q(Ey), then IuJ is again in Q(E). That is, for every x in E\(JuJ), (IuJ)nI, must be principal.
This follows since

(IuJ)nl, = (Inl)o(nl,) = LI,

for some y < x, z < x. But Egis a tree; so y and z are comparable and IuJ is in Q(Ej).
For T a weakly reductive semigroup, T'! can be embedded in Q(T) under the mapping
x - (A, p) (xeT?), where p, = 1, = i;. We shall call this mapping the extended embedding.

THEOREM 3.5. For an inverse semigroup S, Q(S) = II(S)UX(S) if and only if Q(Ey) is
isomorphic to EY under the extended embedding.

Proof. Let QS) =I(S)VL(S). If Q(S) =II(S), then § has an identity and Q(Ey) ~
En(s) = Ems) ~Eg=Eg. If Q(S)#II(S), then II(S)NZ(S)=¢, and Q(E5) =~ Eqsy =
Epsy~ Eg. In either case, using the isomorphism defined in Theorem 2.4 and the natural
embedding of S onto II(S), we can see that Q(E;) is isomorphic to Eg under the extended
embedding. '

Conversely, let Q(E;) ~ E} under the extended embedding. We shall first show that
Eq = Efys) For, if (A, p)e Eqs), then (A, pleg) is in Q(E;) (see Theorem 2.4). But Q(Ey)
is isomorphic to Ej under the extended embedding, so that there exists e in Ej satisfying
).]Es = A, ples = pl,, where (1., p)eII(Es) or (le, p.) = (ig, igg)- Hence, by Lemma 1.4(1),
A=l p = pe and (4, p)eExys. Thus Eqs) = En(s

Now every (4, p) in Q(S) has an inverse (477, p“‘) in Q(S) and

(a1, PP_J)EEH(S)‘:’('L P)GH(S)‘:’(A-IA, P_IP)EEn(sp

since I1(S) is an ideal of Q(S). Assume that (4, p) is not in TI(S). Then (AA~!, pp~!)is in
En(s)\En(s). But EQ(S) = E}](s). Therefore (ll—l’ pp—l) = (is, is). Similar]y, (A—IA, p—lp) =
(is, is) and thus (4, p)eZ(S). Consequently Q(S) = II(S)UZ(S).

To see which semilattices have the property mentioned in Theorem 3.5, we state a special
case of Proposition 3.1.

PROPOSITION 3.6. Let E be a semilattice. If, for every proper ideal I of E, I is principal
whenever InI_ is principal for all xe E\I, then Q(E) ~ E1.
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COROLLARY 3.7. Let E be a chain. Then Q(E) ~ E!.

Proof. This follows easily from Proposition 3.6 since, if I is a proper ideal such that
InI, is principal for all x¢1, then InI_ = I and thus I is principal.

PropOSITION 3.8. Let S = S° be an inverse semigroup with Es the orthogonal sum of
chains C, (x€ A). Then Eqgy~ X Ci.
aed
Proof. By Proposition 1.2, we have Q(Eg) ~ ¥ Q(C,). By the preceding corollary,
acAd
it follows that
Eqs) = UEg) = X UCH=~ X Ca

aeAd acAd

4. The group of units of Q(S). We are motivated by Theorem 3.5 to characterize the
group of units, Z(S'), of Q(S).

THEOREM 4.1. Let S be an inverse semigroup. Let Ae A(S) satisfy the following conditions:

(i) 0: Eg— Eg defined by e = (Ae)(Ae)~! is an automorphism;
(ii) ¢ : Eg— Es defined by ey = (1e)™'(Ae) is the identity map.

Then there exists a unique pe P(S) such that (4, p)e Z(S).
Conversely, for every (A, p)eX(S), A satisfies (i) and (ii).

Proof. Let Ae A(S) satisfy (i) and (ii). Define p: S— S by
xp = x(le), where el =x"'x.

By Lemma 1.4(iii), to see that p is in P(S), it is sufficient to show that xp = x(x~'xp) for all
x in S and e(fp) = ep for e, fe Eg with e £ f. First, if x™'x = ef, then

x(x~*xp) = x(x~x(Ae)) = x(de) = xp.

Let e, f be idempotents with e < f. By definition of p, e(fp) = e(f(Ag)), where gf = f. That
is, (Ag)(Ag)~! =f. Since 8 maps onto Es, e = (Ah)(Ah)~! for some 4 in E;. From the fact
that @ is an automorphism, we have # £ g. Thus

()~ '(Ag) = [Mgh)] ™ (Ag) = [(Ag)h)™'(Ag) = h™'(Ag)"'(Ag) = hg = h,
and consequently
e(fp) = e(Ag) = e(Ah)(Ah)™ ' (Ag) = e(Ah)h = e(Ah) = ep.

Therefore p is in P(S).
If e, f are in Ej, then e = g@ for some g in Eg and

(ep)f = e(Ag)f = e(Agf) = e((af)0p) = e((90)((/O)P)) = e((/D)p) = e(4f).
By Lemma 1.4(iv), (4, p) is in Q(S).
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Now (4, p)(A™, p™ N =427 Y, pp~1). Ifeis in Eg, then there exists an fin Eg such that
e = (NN, Recalling the definitions of A~* and p~!, we have

7 te = Mep)™ = AN = Ap™Y) = ASUp™ ) = WNUp ™) = N =e.

Hence AA™! = i5. Since S is reductive, ig is linked to just one element of P(S) and therefore
pp~ ' = is. Using (ii) and the definition of p, a similar argument yields A™'A =i, p™'p = is.
Hence (4, p) is in 2(S). By the reductivity of S, p is unique.

Conversely, let (4, p)eX(S). Then AL ™' =A"'A=i5 pp~ ' =p~!p=i5. Define 0 as
in (i). Then, for e, fin Eg, we have

(e0)(f9) = (Ae)(Ae) ' (AN ™" = (Ae)(ep™ NANA) ™!
= (A)A™ANA) ™ = (A SGf) ™" = (ef)e(A) ™!
= (Aef)e(/p™") = (AefNefp™") = (Aef)(Nef) ™" = (e)0;

therefore @ is a homomorphism. Since AA~1, 1714, pp~1, p~!p are all equal to the identity
on S, 4, A™%, p, p~! are all one-to-one mappings of S onto itself.
Since A maps onto S, if e is in Eg, then there exists x in § such that Ax = e. Therefore

(xx™ 10 = AGex™ HAxxT ] = Axex™HAx)x 1]
= A0ex" Dx(Ax) " = (x)(Ax) "1 =ee =,

and thus 6 maps Eg onto Eg.

If f0=g8, then (AF)(Af)"! =(ig)(Ag)~L. That is, AL/(Af)~'1= Alg(Ag)~"] and thus
fGf)~* =g(Ag)~1. By definition of p~!, this equation can be written as f(fp~') = g(gp™!).
Therefore fp~! =gp~! and, since p~! is one-to-one, f=g. Consequently 0 is one-to-one
and thus an automorphism.

Since (1e)~Y(1e) = (ep~')(Ae) = eA"'Ae = ee = e, Y as defined in (ii) is the identity map.

COROLLARY 4.2. Let S be an inverse semigroup. Then
I(S) = {Ae A(S)| A satisfies (i), (ii) of Theorem 4.1}.

Proof. This follows directly from Theorem 4.1.
We shall henceforth take Z(S') equal to the subsemigroup of A(S) whose elements satisfy

(i) and (ii) of Theorem 4.1.

5. Example. Let S = S° be an inverse semigroup with Eg the orthogonal sum of chains
C, each having an identity e, (¢€ 4). Define ~ on 4 by

a~ f ife, and e; are in the same P-class of S.

Then ~ is an equivalence relation on 4. Let {4,};.; be the set of distinct equivalence classes
of ~, and, for i€/, fix a; in A;. For any a in 4, let R, be the Z%-class containing e, and L,
be the #-class containing e,.
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The symmetric group on a set 4 will be denoted by &#(4). The wreath product of a
group G with #(A), denoted by G wr ¥ (A4), is defined on the set

{6,)|ve&(4),6: 4G},
with multiplication (0, y)(@', y") = (6", yy"), where i0"' = (i6)(iy8’) for all i in A. Under this
multiplication, G wr ¥(4) is again a group.
THEOREM 5.1. For S as described above,

Easy = X Co and I(S)= X (Giwr #(4),
ae ie

where G; = R, NL,,.

Proof. The first part follows directly from Proposition 3.8. To prove the second, we
shall use Corollary 4.2 to find all elements of X(S) and set up the isomorphism.

Letn,: A, — A, be a permutation for all i€/, and let an = an; if a€ 4,.

Define 4 on § as follows. For a€ 4, pick 4e, in R,,nL,. Then, for x in S, define Ax =
(%e,)x, where xx~! < e,: by Lemma 1.4(ii), it is clear that 4 is in A(S).

By Lemma 1.2 of [2] 6,: C,— C,,, defined by ef, = (e,)e(le,)” " is an isomorphism.
But (le)e(le,) ™! = (Je)(Ae)™!, so that 0: Eg— Eg defined by ef = (le)(Ae)~! is an auto-
morphism. In addition, for e < e,, de,€ L, implies that

(Ze)"'(Je) = e(de)) " (Je)e = ee,e = e.

Therefore, by Corollary 4.2, A is in Z(S).

Conversely, if 2€Z(S), then e = (Ae)™!(le) for all e in Eg and 0: e — (le)(de)™! is an
automorphism of Eg which maps every element into its own 2-class. Thus, for a4, e,0
is a maximal idempotent, and n : 4 — 4 defined by an = B if e,0 = e;, is a permutation which
maps A, onto A4, for all i in 1. Furthermore, by definition of 8 and ¥, Ze, is in R,,NL,.

We define

M(S)={xeS|xeR,nL, forsome a,fecA}u{0},
with multiplication defined by
xy if xye H(S),
v {0 otherwise.

It can easily be seen that #(S) is a semigroup. In fact, #(S) is a primitive inverse semigroup
which is the orthogonal sum of Brandt semigroups B, (ieI), where e,€ B, if and only if a€ 4,.

Now, for 1€ X(S), the permutation n maps 4; onto itself, with Ae,e R,,nL,. Hence Ze,
is in B, whenever e, € B; and, since 8 is an automorphism, 4 maps B;\0 onto itself for all iel.

On B,, define 1, by
Ax if xeB\0,
Ax) =
0 if x=0.
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Then 4, is in A(B;) and, in particular, 4, is in £(B;). Define y on X(S) by Ay = (1));;- Then

it can easily be seen that y is a homomorphism into ¥ XZ(B;). The mapping is one-to-one by
iel

definition of 4;; it is onto since, if A, is in Z(B,), for all i in I, we can define Aon Sby Ax =

(A;e,)x, where xx™! < e,, e,€ B;. Then A is in £(S) and 4|, 0 = 4, for all ie .

Since B;is a Brandt semigroup, XZ(B,) is isomorphic to G, wr.9’(A ), where G; = Ran
[4, Theorem 1]. Consequently

XS) = X 2(B) = X (G, wr F(4).

iel

COROLLARY 5.2. Let S be a 0-bisimple semigroup with Eg the orthogonal sum of chains
C, each with identity e, (x€ A). Then Z(S) ~.G wr ¥ (A), where G = R,nL,, for any ae A.

The author wishes to thank Professor W. D. Munn for reading and commenting upon
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