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Abstract

Various generalizations of the Maxwell characterization of the multivariate standard normal distribu-
tion are derived. For example the following is proved: If for a ^-dimensional random vector X there
exists a n n e { l , . . . , k - l } such that for each n-dimensional linear subspace H c Rk the projec-
tions of X on H and H± are independent, X is normal. If X has a rotationally symmetric density
and its projection on some H has a density of the same functional form, X is normal. Finally we give
a variational inequality for the multivariate normal distribution which resembles the isoperimetric
inequality for the surface measure on the sphere.

1980 Mathematics subject classification (Amer. Math. Soc): 62 H 05.

I. Introduction

This paper is devoted to the consideration of some "geometric" properties of the
^-dimensional normal distribution Nk(fi,a

2Ik), where k ^ 2, JLIGR*, a2 > 0
and Ik is the (k X /c)-unit matrix. The starting point is the well known Maxwell
characterisation stating that Nk(0, o2lk) is the only rotationally symmetric proba-
bility measure on R * for which the coordinates are independent random variables
([6], or [4], pages 160-161; for a related result on random matrices see [7]).
Rotational symmetry of a distribution P on R * is equivalent to the property that
the characteristic function (c.f.) </> (or the density / , if it exists) depends only on
the euclidean length | - j of its argument. Theorem 1 says that if | • | is replaced by
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(21 For the multivariate normal distribution 367

other functions, the classical independence condition characterizes other distribu-
tions, for example the Cauchy or the double exponential distribution.

In Theorem 3 the Maxwell characterization is refined in another way. Let X be
a A>dimensional random vector, k > 2. If there is some « e { l , . . . , / c - l } such
that for any w-dimensional linear subspace H of U k and its orthogonal comple-
ment //-"- the projected random vectors pH{X) and pH±(X) are independent,
then X ~ Nk(n,a2Ik) for some ft e Uk and some a2 > 0. It is not assumed that
X is rotationally symmetric.

Furthermore Section II contains the following result. Let 1 < n < k. If X has a
density f(x) = /( |x|), x e R \ and for some w-dimensional subspace H of Uk

pH( X) has a density fH of the same functional form as that of X, that is,

//,(*) = Cff/(l*l). xGH>
(CH some constant), then X is normal (Theorem 2). All three results generalize
the Maxwell characterization in different directions. While Theorem 1 integrates
the classical statement into a whole class of characterizations, in the other two
theorems the restriction to one-dimensional projections is dropped. In Section III
we exhibit an interesting relation between the standard normal distribution
N:= Nk(0,a2Ik) and the geometry of euclidean space indicating that N plays a
similar role for R* as the surface measure for the unit sphere Sk~1. The result is
expressed by a " variational inequality" resembling the isoperimetric property of
Sk~1. This property can be expressed in the following way: Among all compact
subsets K of Sk~l for which the normalized surface measure pk{K) is equal to
some fixed c e [0,1] the geodesic balls have minimal Minkowski surface. Here
the Minkowski surface 0{A) of a Borel measurable set A c Sk~x is defined by

(1) O(A):= liminf (vk(U*s(A) - nk(A)))/8,
o *0o

e U£
k~

where U£S(A) denotes the closed geodesic ^-neighbourhood of A with respect to
Sk~\ The isoperimetric property is a corollary of the following fundamental
relation: If H is a geodesic ball and K is compact, then for all 8 > 0

(2) pk(H) < ixk(K)

The first proof of (2) was given in [8], it has then been simplified in [1]. A very
short and elegant more recent proof can be found in [2].

The implication (2) will be seen to hold for N in an analogous form. If fik is
replaced by N, the geodesic neighbourhoods by euclidean ones and H now
denotes a half space in Uk, then (2) remains valid. It is not known (to the author),
whether W is the only probability measure on Uk with this "isoperimetric"
property. This would yield a new type of characterization of N quite different
from the classical ones. The result is derived by projection techniques similar to
those applied in Section II.
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II. A characterization of N( H , a 2Ik)

Let k > 2. Our first theorem generalizes the following result: If X =
(Xx,..., Xk)' has a characteristic function of the form F(\x\) and independent
components, then X ~ N(0,o2lk). The role of | • | will be played by an arbitrary
function of the type /t(|<*iD + • • • + h(\xk$, where h: [0, oo) -» [0, oo) is continu-
ous, strictly increasing and h(0) = 0.

THEOREM 1. Let h: [0, oo) - • [0, oo) be continuous and bijective and let the

k-dimensional random vector X = (Xv..., Xk)' have a density (or characteristic

function) f of the form

(3) f(x) = F(h{\Xl\)+---+h(\xk\)), x = ( x x , . . . , x A ) ' e R * ,

for some measurable function F: [0, oo) -» C. Then Xx,..., Xk are independent, if

and only if

(4) f(x) -

for some a, /? > 0.

PROOF. Let fi,...,fk be the densities (resp. characteristic functions) of
X1,...,Xk and / : = F°h. The independence of Xu..., Xk is equivalent to

(5) fx{xx)-ft

If ff(O) = 0 for some /, (5) and the conditions on h imply / = 0 and thus / = 0
which is impossible. So we obtain by taking Xj = 0 for all j ¥= / in (5)

for some constants cv..., ck. Inserting (6) into (5) yields
/ k \ \

(7) /(I*il)"-/(I*J) = C/ A"1 I ^ k l ) .
\.--i / /

If we take M, = /idx^l), we arrive at

(8) F ( M J ) ••• F ( u k ) = C F ( u x + ••• + u k ) , u 1 , . . . , u k e [ 0 , o o ) .

The only measurable solution of (8) is given by F(u) = /3e~au, where /? = clAk~1)

and a is a complex constant. If / is a characteristic function, it follows from
/(0) = 1 that )8 = 1. Since f(x) = f(-x), f is real-valued, and from | / | < 1 we
can conclude that a > 0. If / is a density, a, /? > 0 follows from / ^ 0 and
ffdx = 1.

EXAMPLES, (i) Let h(t):= \t\p for some p > 0. Then f(x) =

/i e\p{-aY.k=l\Xj\p}. The normal case comes out for p = 2.

(ii) Let h(t) := log(l + \t\p\ p > 0. Then we get f(x) = P[Uk,1 (1 + \x,\p)Ya.
The Cauchy distribution belongs to this class.
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We now prove two theorems on Nk(fi,o
2Ik) which generalize the Maxwell

characterization in different ways. The following notation is used: For n e N, X"

is the /i-dimensional Lebesgue measure, 99" is the Borel a-algebra in W. pH

denotes the projection on the linear subspace H of Uk, H± the orthogonal

complement of H in R*. For a probability measure P on (Rk, %$k)PH is the

projection Ppj,1 of P.

THEOREM 2. Let P be a k-dimensional rotationally symmetric distribution with

density f(x) =/(|;c|). / / a projection PH of P on some lower-dimensional linear

subspace H has a density fH of the same functional form as P, that is, fH(x) =

Cf(\x\) for some normalizing constant C, then P is normal.

This result is somewhat surprising, if one notes that for all rotationally

symmetric P the characteristic function $H of PH is of the same functional form

as that of P (4>H(\) = ^(|\ |), where f -» <j>(|f|), £ e R*, is the characteristic

function of P).

PROOF OF THEOREM 2. We can assume that P has a continuous density / , since

otherwise we can consider the convolution P * Nk(0, Ik) and then use the proof

below to show that P * Nk(0, Ik) = Nk(0,a2Ik) for some a2 > 0 which implies

that a2 ^ 1 and P = Nk(0,(a2 - 1)1 k). Thus let / and, consequently, also / be

continuous. Let Hn:= ( X G R * | J C ; = 0, j > n). pHn(X) has the continuous

density fHn given by

h(^ Ac)dC

(see the remark following this proof). There are continuous functions fH, fH±:

[0, oo) - [0, oo) such that fHm(x) = fHJi\x\), fH,(x) = fH±(\x\) for all x " e R * .

Now for / > 0 we have f(t) = / / / n (0) /^±(0- Further, if we set m : = fH(0), we

obtain

(9) /(/) = mfH,{t) = mf J{h2+\x\2)\»{dx)

- m 2 L
= m2f

= ... =

JR»

A
/
it

Jn

2 + \x\
2

f(l2

XV\

)x2 n

2
 + \x*\2)>

(dx)

c\2)\J"(dx)
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for all j e N . Let Qj be the probability measure on R ^ 1 ' " with density
y -* Cjf(\y\), y e R o + 1)", where Cy is some normalizing constant. By (9), P can
be expressed as a projection of Qj. Since this property of P holds for arbitrarily
large j , it follows from Theorem 2 of [3], p. 394, that P is a variance mixture of
the normal distributions Nk(0,a2Ik). Hence /can be written as

(10) f(x) = (°° (2Tr)-k/2o-ke-M2/2°2a{do), x e R \
•'o

for some probability measure a on (0, oo).
Inserting (10) into the first line of (9) one obtains

(11)

•'o

Next we have to note that the mapping / -> a is one-to-one: If one defines the
probability measure 5(0, t] := a(0, Jt], the Laplace transform of a coincides with
the characteristic function <f> of / , since

(12) *(u) = r e-M2°2/2a(do) = C e-^
2°/2a(do).

But a is determined by a, and a by its Laplace transform which can be computed
from / .

Hence the measures a(da) and m(2ir)n^2a"a{da) are equal which is possible
only if a is the point mass in (2v)~1/2m~1/n. By (10) it is now seen that

(13) f(x) = m^e-M1"1'":
The proof is now complete.

REMARK. Equation (8) follows easily from the results of Eaton [3]. He proved
that if X is rotationally symmetric, then X/\X\ and \X\ are independent, and
pH (X/\ X\) has the density

-\(*-n-2)/2.

for u e Hn. Hence,

(15) P{pHm(X) < / ) = / P(PHSX) < fI \X\=c)p{\X\e dc)
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where / e Rk and v(a, b]:= P{x\ \x\ e (a,b]}, a,b e R. Inserting (15) into
(14) shows that pH{X) has the density

(*-"-2)/2

(8) now follows, because v has the density

(17) ( 2 * * / 7 r ( V2))c*- 1 / ( C ) l ( 0 j 0 o ) (c ) , c G R.

Formula (15) incidentally shows that fH is non-increasing, if k — « > 2, as has
been shown in [3], Proposition 1. However this is not true for k — n — 1 (a case
not excluded in [3]), as can be seen by the example of the uniform distribution on
S\ Then

(18) fHi(u) = lMl-u2)l/2, - K i K l .

The final theorem of this section shows that a "Maxwell characterization" of

Nk(n,o2Ik) is possible without the assumption of rotational symmetry.

THEOREM 3. Let X be a k-dimensional random vector for which there exists a
n e ( 1 , . . . , k - 1} such that pH{X) and pHJ.(X) are independent for each n-
dimensional linear subspace H of Uk. Then X - Nk(n,o2Ik) for some n e Uk and
a2 > 0.

PROOF. Let P be the distribution of X. We have to show that P is rotationally
symmetric, for then Theorem 2 can be applied.

If the result holds for all symmetric probability measures Q (satisfying Q(B) =
Q(-B) for all B e 93*), it is true in general. For if we define P(B):= P(-B),
B G 93*, the convolution P = P * P of P and P clearly fulfils the assumptions of
the theorem and is symmetric so that we have P = Nk(Q,o2Ik) for some a e [0, oo).
Then the multivariate version of Cramer's theorem ([9], page 46) implies that
P = Nk(n, \o2lk) for some / I G R * .

Hence we can assume that P is symmetric. We show that in this case P is even
rotationally symmetric. It suffices to prove that, if X, X e Uk satisfy |X| = |X|,
then 4>(X) = <>(X), where <p is the characteristic function of P. We can choose an
orthonormal basis el,...,ek of Uk such that X = (X1; X 2 , 0 , . . . , 0 ) ' and X =
(-X1? X 2 , 0 , . . . , 0)' are the coordinate representations of X and X with respect to
this basis. Let H be the span of e2, ...,e"+l. Then clearly pH(^) =
(0, X 2 , 0 , . . . , 0 ) ' =pH(\) and pH±(\) = (Xv0,.. . , 0 ) ' = -pH±(\). Now it fol-
lows from the assumptions that

(19)
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III. A variational inequality for N

Our final aim is to prove the inequality for N announced in the introduction:
Among all Borel sets B of given iV-measure the half spaces minimize the
Af-measure of their euclidean e-neighbourhood for arbitrary e > 0. This result
indicates a similarity between the relation of S*"1 to its surface measure and that
of R * to the standard normal distribution.

Let nk be the normalized surface area of 5*"1. In the following /u.̂ . is
considered as a measure on (Rfc, 93*) concentrated on S*"1 by setting
Hk(B):= nk(B n S*'1). We first note that the conclusion (2) in Section I
remains valid if K is replaced by an arbitrary B e 33 \ because for all e' < e

(20) \Lk{u£tAB)) < Hk{y G uk\l* G c l ( f l ) : \x-y\< e)

= pk{yeRk\3xeB:\x-y\ < e}

Let e ' te .

THEOREM 3. Let B e 33* and H = {x G R*|JC'A: 0 < a), a G R, j t ° e R*.
77ie«

(21) N{H) ^ N(B) ^> N(He) ^ N(Be) foralle>0.

PROOF. By pnk: U" -» R* we denote the projection ( x 1 ; . . . , xn)' ->
(xy,...,xky, n > k. Let pn c be the uniform distribution on cSk~1-= {x G
R*| |JC| = c} (also considered as a measure on RA). By (18) we immediately
obtain

(22) jun cp~\ -* N in total variation, as n -* oo,

because the corresponding sequence of densities converges pointwise to the
density of N. Without loss of generality we assume x° = (1,0,.. .,0)' and
consequently ff= { x e R ' | ^ < a } . Let An c be the geodesic metric on cS"'1

and U^c e(B) be the closed e-neighbourhood with respect to An c. Then it is seen
that

(23) ^ V . e ^ S " " 1 ^Pnl(H)) =p-n
l
k{{x G 11*1*! < a + £„}) n v^^""1 ,

where e and en satisfy the equation

(24) e = V«̂  arccos —— - arccos — p - 5

\ V vn I \ V n
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T h e Taylor expans ion of arccos yields

e = (1 - en)~
l/2Zn ^ some £„ e \a/&, (a +

From this it is seen that limn_00 en = e. By (22) for each S > 0 there exists a

(25)

n0 e N such that for n > n0

From (25) it follows that

(26) lim ^{ufo^S-1 np-l(H))) = N(H').
n —* oo

Further from |x - y\ < An ^(x , j ) for all x, y e y/nS"'1 we can conclude that

(27) U^t(p;l(B))cp;l(B') n

Set / / 6 := { x e R ^ x ^ A } . Under the supposition of (21) (22) shows that for
each b < a there is a «j e N so that

(28) Hn^(p;l(Hb)) < lin^(p-l(B)) for all n > nv

The isoperimetric inequality (2), when applied to v^S"" 1 , yields for all e > 0 and

(29) ii,,,f{u*fitt{p;l
k(Hb) n

Further we have (again by (22))

(30) lim ii^

Finally combining (26) (applied to Hb), (24), (27) and (30) we obtain

(31) N(Hi)= lim , A ( V , (
n —* X)

< liminf ̂ ^ ( [7^(^ (5) n

fe T a yields the conclusion of (21).
Whether iV is the only distribution on R* which satisfies (21) is an open

question.
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