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Abstract

Various generalizations of the Maxwell characterization of the multivariate standard normal distribu-
tion are derived. For example the following is proved: If for a k-dimensional random vector X there
exists an n € {1,...,k — 1} such that for each n-dimensional linear subspace H C R* the projec-
tions of X on H and H*' are independent, X is normal. If X has a rotationally symmetric density
and its projection on some H has a density of the same functional form, X is normal. Finally we give
a variational inequality for the multivariate normal distribution which resembles the isoperimetric
inequality for the surface measure on the sphere.

1980 Marhematics subject classification (Amer. Math. Soc.): 62 H 05.

1. Introduction

This paper is devoted to the consideration of some “geometric” properties of the
k-dimensional normal distribution N,(p,02l,), where k > 2, p € R¥, 62> 0
and 7, is the (k X k)-unit matrix. The starting point is the well known Maxwell

characterisation stating that N, (0, a2I,) is the only rotationally symmetric proba-
bility measure on R* for which the coordinates are independent random variables

([6], or [4], pages 160-161; for a related result on random matrices see 7.
Rotational symmetry of a distribution P on R* is equivalent to the property that
the characteristic function (c.f.) ¢ (or the density f, if it exists) depends only on
the euclidean length | - | of its argument. Theorem 1 says that if { - 11s replaced by
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(2] For the multivariate normal distribution 367

other functions, the classical independence condition characterizes other distribu-
tions, for example the Cauchy or the double exponential distribution.

In Theorem 3 the Maxwell characterization is refined in another way. Let X be
a k-dimensional random vector, k > 2. If there is some n € {1,...,k — 1} such
that for any n-dimensional linear subspace H of R* and its orthogonal comple-
ment H* the projected random vectors p,(X) and py.(X) are independent,
then X ~ N,(p,62,) for some p € R* and some o> > 0. It is not assumed that
X is rotationally symmetric.

Furthermore Section 11 contains the following result. Let 1 < n < k. If X hasa
density f(x) = f(Jx|), x € R¥, and for some n-dimensional subspace H of R*

p(X) has a density f, of the same functional form as that of X, that is,

fu(x) = Cuf (I1x1), x € H,

(C,; some constant), then X is normal (Theorem 2). All three results generalize
the Maxwell characterization in different directions. While Theorem 1 integrates
the classical statement into a whole class of characterizations, in the other two
theorems the restriction to one-dimensional projections is dropped. In Section III
we exhibit an interesting relation between the standard normal distribution
N:= N,(0,6%],) and the geometry of euclidean space indicating that N plays a
similar role for R* as the surface measure for the unit sphere S*~1. The result is
expressed by a “ variational inequality” resembling the isoperimetric property of
Sk~1 This property can be expressed in the following way: Among all compact
subsets K of S¥~! for which the normalized surface measure (K ) is equal to
some fixed ¢ € [0,1] the geodesic balls have minimal Minkowski surface. Here
the Minkowski surface O(A) of a Borel measurable set 4 ¢ S*~! is defined by

(1) 0(4):= hgli(’)lf (F‘k(UkA,B(A) - l‘k(A)))/S,

w/l(lere U,ﬁ s(A) denotes the closed geodesic 8-neighbourhood of 4 with respect to
S ‘1.. The isoperimetric property is a corollary of the following fundamental
relation: If H is a geodesic ball and K is compact, then for all § > 0

(2) l"'k(H)sp‘k(K)=>p'k(UkA,8(H))<.u'k(UkA,8(K))'

The first proof of (2) was given in [8), it has then been simplified in [1]. A very
short and elegant more recent proof can be found in [2].

The implication (2) will be seen to hold for N in an analogous form. If u, is
replaced by N, the geodesic neighbourhoods by euclidean ones and H now
denotes a half space in R, then (2) remains valid. It is not known (to the author),
whether N is the only probability measure on R* with this “isoperimetric”
property. This would yield a new type of characterization of N quite different
from the classical ones. The result is derived by projection techniques similar to
those applied in Section II.
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IL. A characterization of N(p, 0%, )

Let k> 2. Our first theorem generalizes the following result: If X =
(Xi,..., X,) has a characteristic function of the form F(|x|) and independent
components, then X ~ N(0,0%,). The role of | - | will be played by an arbitrary
function of the type h(jx,|) + - -- +h(|x,]), where h: [0, 0) — [0, 00) is continu-
ous, strictly increasing and #(0) = 0.

THEOREM 1. Let h: [0,00) — [0,00) be continuous and bijective and let the
k-dimensional random vector X = (X, ..., X)) have a density (or characteristic

function) f of the form

(3)  f(x)=F(h(lx, ) + -+ +h(Ix])),  x = (xppe00, %) € RE,

for some measurable function F: [0, c) = C. Then X,,..., X, are independent, if
and only if

@) f(x) = pp{z h(|x.~|>}

for some a, B = 0.

PrOOF. Let f,,...,f, be the densities (resp. characteristic functions) of
Xy, ..., X, and f:= Fo h. The independence of X, ..., X, is equivalent to

k
(5) fl(xl)"'fk(xk)=f~(h_l(glh(|xi|))

If £,(0) = O for some i, (5) and the conditions on 4 imply f = 0 and thus f= 0
which is impossible. So we obtain by taking x; = 0 for all j # i in (5)

(6) f(x)=caf(xl), i=1,... k,

for some constants c,, ..., ¢,. Inserting (6) into (5) yields
k

) ) b = 7|57 £ w5
i=1

If we take u; = h(|x,]), we arrive at
(8)  F(u)--- F(u)=CF(u; + - +u,), up,...,u, € [0,00).
The only measurable solution of (8) is given by F(u) = Be~** where § = C/(x—D
and a is a complex constant. If f is a characteristic function, it follows from
f(0) =1 that 8 = 1. Since f(x) = f(-x), f is real-valued, and from |f| < 1 we
can conclude that a > 0. If f is a density, a, 8 > 0 follows from f> 0 and
[fdx = 1.

ExaMPLES. (i) Let h(t):= [¢|? for some p > 0. Then f(x) =
Bexp{-aXX_,|x,|?}. The normal case comes out for p = 2.

(ii) Let A(2):= log(1 + |7|?), p > 0. Then we get f(x) = BT, (1 + |x,|”)]
The Cauchy distribution belongs to this class.
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We now prove two theorems on N,(g,0%l,) which generalize the Maxwell
characterization in different ways. The following notation is used: For n € N, A
is the n-dimensional Lebesgue measure, B” is the Borel o-algebra in R". pj
denotes the projection on the linear subspace H of R¥, H* the orthogonal
complement of H in R For a probability measure P on (R*, B¥)P, is the
projection Pp;}! of P.

THEOREM 2. Let P be a k-dimensional rotationally symmetric distribution with
density f(x) = f(|x)). If a projection P, of P on some lower-dimensional linear
subspace H has a density f,; of the same functional form as P, that is, fy(x)=
Cf(|x|) for some normalizing constant C, then P is normal.

This result is somewhat surprising, if one notes that for all rotationally
symmetric P the characteristic function ¢ of Py is of the same functional form
as that of P (¢4(A) = &(JA]), where ¢ = &(|¢]), ¢ € R¥, is the characteristic
function of P).

PROOF OF THEOREM 2. We can assume that P has a continuous density f, since
otherwise we can consider the convolution P * N, (0, I,) and then use the proof
below to show that P * N, (0, I,) = N,(0,0%]1,) for some 6% > 0 which implies
that 62 > 1 and P = N,(0,(02 — 1)I,). Thus let f and, consequently, also f be
continuous. Let H,:= {x € R¥|x;=0, j>n}. py(X) has the continuous

density f;; given by
(k—n)/2 0 n— -
(8) fH"(x) = I‘(%Z——n)/z)-/;ﬂ C(C2 _|x| )(k 2)/2 ( )dC

(see the remark following this proof). There are continuous functions f;,", fH"l:
[0, 00) = [0, 00) such that fy, (x) = f (IxD), fy:(x) = fu:(Ix]) for all x € RX.
Now for ¢ > 0 we have f(r) =f~H"(O)fH:(t). Further, if we set m:= fH"(O), we
obtain

) f(’)=mfn:(f)=mfwf(m)>\"(dx)
mt [ e (Vo7 + 1 Jaean)
= ’”2/,," fwf(‘/’z +xOF +[x@ )N (dx®) N (dx @)
m [ (Ve 1 ) Ren( )
‘ —mf ( 2 + x| )V ax)

I
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for all j &€ N. Let Q, be the probability measure on RY*Y" with density
y = Cf(lyD, y € RUTD", where C; is some normalizing constant. By (9), P can
be expressed as a projection of Q. Since this property of P holds for arbitrarily
large j, it follows from Theorem 2 of [3], p. 394, that P is a variance mixture of
the normal distributions N, (0, 021, ). Hence f can be written as

(10) f(x)= /w (2m) g keI 25%(dg), x € R,
0

for some probability measure a on (0, o).
Inserting (10) into the first line of (9) one obtains

(11) /m (27) 6 *e 24 (do)
0

= mfoo f (2 ) 2 g ke P2\ () a( da)
0 n

o0
f m(2m)" R grke =129 (dg).
0

Next we have to note that the mapping f — « is one-to-one: If one defines the
probability measure &0, t]:= a(0, V], the Laplace transform of & coincides with
the characteristic function ¢ of f, since

o0 242 ®© 2
(12) o(u) =f e M 24(do) =f e 1“"/2%5(de).

0 0
But « is determined by &, and & by its Laplace transform which can be computed
from f.

Hence the measures a(do) and m(27)"/%6"a(de) are equal which is possible
only if « is the point mass in (27)"1/2m~1/", By (10) it is now seen that
(13) f(x) = mk/ne-\xm*
The proof is now complete.

ReMARK. Equation (8) follows easily from the results of Eaton [3). He proved

that if X is rotationally symmetric, then X/|X| and |X| are independent, and
pu(X/|X]) has the density
k
(3)

7" T ((k = n)/2)

(1 _ l ‘2)(k1n—2)/2

(14) gk,n(u) = 1(-1‘1)(]“|)

for u € H,. Hence,

(15)  P(pu(X) <t)= [ P(pu(X) <t]]X|=c)P(|X]|€ do)

-/ P(pH"(X/lXI) < ﬁ)v(dc)’
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where 1 € R* and »(a, b]:= P{x| |x| € (a,b]}, a,b € R. Inserting (15) into
(14) shows that py (X) has the density

T'(k/2)
(16)  fu(x) = 7"/ 2T ((k - n)/2)fll (

1= (k=n=2)/2
) v(dc).

C

(8) now follows, because » has the density
(17) (272 /T(k/2)) () omy(c),  cER.

Formula (15) incidentally shows that f; is non-increasing, if kK — n > 2, as has
been shown in [3], Proposition 1. However this is not true for kK — n =1 (a case
not excluded in [3]), as can be seen by the example of the uniform distribution on
S*. Then

(18) fu(w) =1/a(1-u?)"? 1<u<l
The final theorem of this section shows that a “Maxwell characterization” of
N, (p, 0%I,) is possible without the assumption of rotational symmetry.

THEOREM 3. Let X be a k-dimensional random vector for which there exists a
ne€ {l,...,k — 1} such that py(X) and py.(X) are independent for each n-
dimensional linear subspace H of R*. Then X ~ N,(p,06%1,) for some p € R* and
2> 0.

PROOF. Let P be the distribution of X. We have to show that P is rotationally
symmetric, for then Theorem 2 can be applied.

If the result holds for all symmetric probability measures Q (satisfying Q(B) =
Q(-B) for all B € B*), it is true in general. For if we define P(B):= P(-B),
B € B*, the convolution P = P * P of P and P clearly fulfils the assumptions of
the theorem and is symmetric so that we have P = N, (0,0°I,) for some o € [0, ).
Then the multivariate version of Cramér’s theorem ([9], page 46) implies that
P = N, (., $6I,) for some pp € R*.

Hence we can assume that P is symmetric. We show that in this case P is even
rotationally symmetric. It suffices to prove that, if A, A € R* satisfy |A| = A|,
then ¢(A) = ¢(A), where ¢ is the characteristic function of P. We can choose an
orthonormal basis e!,... e* of R* such that A = (A;,A,,0,...,0) and A =
(=X, X,,0,...,0) are the coordinate representations of A and A with respect to
this basis. Let H be the span of e?...,e""!. Then clearly py(A)=
(0,X,,0,...,0Y = py(A) and py.(A) = (A,,0,...,0) = —py.(A). Now it fol-
lows from the assumptions that

(19) (X)) = ¢(pu(N)o(pur(A)) = 6(pu(X))¢(-py- (X))
= ¢(py(X))o(pur (X)) = $(R).
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II1. A variational inequality for N

Our final aim is to prove the inequality for N announced in the introduction:
Among all Borel sets B of given N-measure the half spaces minimize the
N-measure of their euclidean e-neighbourhood for arbitrary £ > 0. This result
indicates a similarity between the relation of $¥~* to its surface measure and that
of R¥ to the standard normal distribution.

Let p, be the normalized surface area of S*~!. In the following p, is
considered as a measure on (RX B*) concentrated on S*~! by setting
po(B):= u, (BN S*1). We first note that the conclusion (2) in Section I
remains valid if K is replaced by an arbitrary B € B*, because for all &' < ¢

(20) p(UR(H)) < pi{y €R¥|Ix € cl(B): [x — y| <¢)
=p{yeR¥Ix € B: |x — y| <¢}
<p{Ue (B sEh).
Let ¢ 1.
THEOREM 3. Let B € B* and H = (x € R¥|x'x" < a}, a e R, x’€ Rk
Then we have

(21) N(H) < N(B) = N(H®) < N(B®) foralle> 0.

PrROOF. By p,;: R" > R* we denote the projection (x,...,x,) —
(X35-.-, %), n>k. Let p, . be the uniform distribution on ¢S* "= {x €
R*| |x| = ¢} (also considered as a measure on R¥). By (18) we immediately
obtain

(22) ko mPai = N in total variation, as n > oo,

because the corresponding sequence of densities converges pointwise to the
density of N. Without loss of generality we assume x°=(1,0,...,0) and
consequently H = {x € R*|x; < a}. Let A, . be the geodesic metric on ¢S" !
and U2, (B) be the closed e-neighbourhood with respect to A, .. Then it is seen
that

(23) Urs.(Vns ' npl(H)) =pH{{x € R¥|x, <a+e,})ninsS"t,

where € and ¢, satisfy the equation

(24) £ = \/;(arccos(%) - arccos( a \Z;") .
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The Taylor expansion of arccos yields

€= (1 —E,z,)-l/ze,, for some £, € [a/\/;,(a+ e,,)/\/;].

From this it is seen that lim = ¢. By (22) for each § > O there exists a

n-—o0 'l

ny € N such that for n > n,

(25 po (U5 (Vn 8" 0 pl(H)))

= o Pt({x €R¥|x, < a + ¢, }))
€ [N{xERk|x1<a+s—8}, N{erR"|x1<a+e+8}].

From (25) it follows that
(26) lim p, (U (V5™ 0 pi(H))) = N(HY).

Further from |x — y{ < 4, z(x, y)forall x, y € vVn "~ ! we can conclude that
(27) Uty (pri(B)) C pri(B) nVnS™ 1.

Set H,:= {x € R¥|x; < b}. Under the supposition of (21) (22) shows that for
each b < g thereis a n; € N so that

(28) b i PR (H,)) < g i( PiH(B))  forall n > n,.
The isoperimetric inequality (2), when applied to yn $" 2, yields for all £ > 0 and
nzn

(29) p, iUt (Pak(Hy) NV S™ 1)) <, U pak(B) N Vyns™ 1)),
Further we have (again by (22))

(30) lim p, s pid(B°)) = N(BY).
Finally combining (26) (applied to H,), (24), (27) and (30) we obtain
(31) N(HbE) = nlin;o LW ( (pnk(Hb) N \/—S" 1))

hmlnf . ( ,,A,‘/,;,e(p"‘,f(B) N yns™1))

< liminf p, 5(p;A(B*)) = N(B*).
n— 00

b 1 a yields the conclusion of (21).
Whether N is the only distribution on R* which satisfies (21) is an open
question.
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