J. Austral. Math. Soc. (Series A) 43 (1987), 366-374

A CHARACTERIZATION AND A VARIATIONAL INEQUALITY FOR THE MULTIVARIATE NORMAL DISTRIBUTION

WOLFGANG STADJE

(Received 2 February 1985; revised 22 May 1986)

Communicated by T. C. Brown

Abstract

Various generalizations of the Maxwell characterization of the multivariate standard normal distribution are derived. For example the following is proved: If for a k-dimensional random vector X there exists an $n \in \{1, ..., k - 1\}$ such that for each n-dimensional linear subspace $H \subset \mathbb{R}^k$ the projections of X on H and H^{\perp} are independent, X is normal. If X has a rotationally symmetric density and its projection on some H has a density of the same functional form, X is normal. Finally we give a variational inequality for the multivariate normal distribution which resembles the isoperimetric inequality for the surface measure on the sphere.

1980 Mathematics subject classification (Amer. Math. Soc.): 62 H 05.

I. Introduction

This paper is devoted to the consideration of some "geometric" properties of the k-dimensional normal distribution $N_k(\mu, \sigma^2 I_k)$, where $k \ge 2$, $\mu \in \mathbb{R}^k$, $\sigma^2 \ge 0$ and I_k is the $(k \times k)$ -unit matrix. The starting point is the well known Maxwell characterisation stating that $N_k(0, \sigma^2 I_k)$ is the only rotationally symmetric probability measure on \mathbb{R}^k for which the coordinates are independent random variables ([6], or [4], pages 160–161; for a related result on random matrices see [7]). Rotational symmetry of a distribution P on \mathbb{R}^k is equivalent to the property that the characteristic function (c.f.) ϕ (or the density f, if it exists) depends only on the euclidean length $|\cdot|$ of its argument. Theorem 1 says that if $|\cdot|$ is replaced by

^{© 1987} Australian Mathematical Society 0263-6115/87 \$A2.00 + 0.00

other functions, the classical independence condition characterizes other distributions, for example the Cauchy or the double exponential distribution.

In Theorem 3 the Maxwell characterization is refined in another way. Let X be a k-dimensional random vector, $k \ge 2$. If there is some $n \in \{1, ..., k-1\}$ such that for any n-dimensional linear subspace H of \mathbb{R}^k and its orthogonal complement H^{\perp} the projected random vectors $p_H(X)$ and $p_{H^{\perp}}(X)$ are independent, then $X \sim N_k(\mu, \sigma^2 I_k)$ for some $\mu \in \mathbb{R}^k$ and some $\sigma^2 \ge 0$. It is not assumed that X is rotationally symmetric.

Furthermore Section II contains the following result. Let $1 \le n < k$. If X has a density $f(x) = \tilde{f}(|x|)$, $x \in \mathbb{R}^k$, and for some *n*-dimensional subspace H of \mathbb{R}^k $p_H(X)$ has a density f_H of the same functional form as that of X, that is,

$$f_H(x) = C_H \tilde{f}(|x|), \qquad x \in H,$$

 $(C_H \text{ some constant})$, then X is normal (Theorem 2). All three results generalize the Maxwell characterization in different directions. While Theorem 1 integrates the classical statement into a whole class of characterizations, in the other two theorems the restriction to one-dimensional projections is dropped. In Section III we exhibit an interesting relation between the standard normal distribution $N := N_k(0, \sigma^2 I_k)$ and the geometry of euclidean space indicating that N plays a similar role for \mathbb{R}^k as the surface measure for the unit sphere S^{k-1} . The result is expressed by a "variational inequality" resembling the isoperimetric property of S^{k-1} . This property can be expressed in the following way: Among all compact subsets K of S^{k-1} for which the normalized surface measure $\mu_k(K)$ is equal to some fixed $c \in [0, 1]$ the geodesic balls have minimal Minkowski surface. Here the Minkowski surface O(A) of a Borel measurable set $A \subset S^{k-1}$ is defined by

(1)
$$O(A) := \liminf_{\delta \to 0} \left(\mu_k \left(U_{k,\delta}^{\Delta}(A) - \mu_k(A) \right) \right) / \delta,$$

where $U_{k,\delta}^{\Delta}(A)$ denotes the closed geodesic δ -neighbourhood of A with respect to S^{k-1} . The isoperimetric property is a corollary of the following fundamental relation: If H is a geodesic ball and K is compact, then for all $\delta > 0$

(2)
$$\mu_{k}(H) \leq \mu_{k}(K) \Rightarrow \mu_{k}(U_{k,\delta}^{\Delta}(H)) \leq \mu_{k}(U_{k,\delta}^{\Delta}(K)).$$

The first proof of (2) was given in [8], it has then been simplified in [1]. A very short and elegant more recent proof can be found in [2].

The implication (2) will be seen to hold for N in an analogous form. If μ_k is replaced by N, the geodesic neighbourhoods by euclidean ones and H now denotes a half space in \mathbb{R}^k , then (2) remains valid. It is not known (to the author), whether N is the only probability measure on \mathbb{R}^k with this "isoperimetric" property. This would yield a new type of characterization of N quite different from the classical ones. The result is derived by projection techniques similar to those applied in Section II.

II. A characterization of $N(\mu, \sigma^2 I_k)$

Let $k \ge 2$. Our first theorem generalizes the following result: If $X = (X_1, \ldots, X_k)'$ has a characteristic function of the form F(|x|) and independent components, then $X \sim N(0, \sigma^2 I_k)$. The role of $|\cdot|$ will be played by an arbitrary function of the type $h(|x_1|) + \cdots + h(|x_k|)$, where $h: [0, \infty) \to [0, \infty)$ is continuous, strictly increasing and h(0) = 0.

THEOREM 1. Let $h: [0, \infty) \rightarrow [0, \infty)$ be continuous and bijective and let the k-dimensional random vector $X = (X_1, \ldots, X_k)'$ have a density (or characteristic function) f of the form

(3) $f(x) = F(h(|x_1|) + \cdots + h(|x_k|)), \quad x = (x_1, \dots, x_k)' \in \mathbb{R}^k,$

for some measurable function $F: [0, \infty) \to \mathbb{C}$. Then X_1, \ldots, X_k are independent, if and only if

(4)
$$f(x) = \beta \exp\left\{-\alpha \sum_{i=1}^{k} h(|x_i|)\right\}$$

for some $\alpha, \beta \ge 0$.

PROOF. Let f_1, \ldots, f_k be the densities (resp. characteristic functions) of X_1, \ldots, X_k and $\tilde{f} := F \circ h$. The independence of X_1, \ldots, X_k is equivalent to

(5)
$$f_1(x_1)\cdots f_k(x_k) = \tilde{f}\left(h^{-1}\left(\sum_{i=1}^k h(|x_i|)\right)\right)$$

If $f_i(0) = 0$ for some *i*, (5) and the conditions on *h* imply $f \equiv 0$ and thus $f \equiv 0$ which is impossible. So we obtain by taking $x_j = 0$ for all $j \neq i$ in (5)

(6)
$$f_i(x_i) = c_i \tilde{f}(|x_i|), \quad i = 1, ..., k,$$

for some constants c_1, \ldots, c_k . Inserting (6) into (5) yields

(7)
$$\tilde{f}(|x_1|)\cdots\tilde{f}(|x_k|)=C\tilde{f}\left(h^{-1}\left(\sum_{i=1}^k h(|x_i|)\right)\right).$$

If we take $u_i = h(|x_i|)$, we arrive at

(8) $F(u_1)\cdots F(u_k)=CF(u_1+\cdots+u_k), \quad u_1,\ldots,u_k\in [0,\infty).$

The only measurable solution of (8) is given by $F(u) = \beta e^{-\alpha u}$, where $\beta = C^{1/(k-1)}$ and α is a complex constant. If f is a characteristic function, it follows from f(0) = 1 that $\beta = 1$. Since f(x) = f(-x), f is real-valued, and from $|f| \le 1$ we can conclude that $\alpha \ge 0$. If f is a density, α , $\beta > 0$ follows from $f \ge 0$ and $\int f dx = 1$.

EXAMPLES. (i) Let $h(t) := |t|^p$ for some p > 0. Then $f(x) = \beta \exp\{-\alpha \sum_{i=1}^k |x_i|^p\}$. The normal case comes out for p = 2.

(ii) Let $h(t) := \log(1 + |t|^p)$, p > 0. Then we get $f(x) = \beta [\prod_{i=1}^k (1 + |x_i|^p)]^{-\alpha}$. The Cauchy distribution belongs to this class. We now prove two theorems on $N_k(\mu, \sigma^2 I_k)$ which generalize the Maxwell characterization in different ways. The following notation is used: For $n \in \mathbb{N}$, λ^n is the *n*-dimensional Lebesgue measure, \mathfrak{B}^n is the Borel σ -algebra in \mathbb{R}^n . p_H denotes the projection on the linear subspace H of \mathbb{R}^k , H^{\perp} the orthogonal complement of H in \mathbb{R}^k . For a probability measure P on $(\mathbb{R}^k, \mathfrak{B}^k)P_H$ is the projection Pp_H^{-1} of P.

THEOREM 2. Let P be a k-dimensional rotationally symmetric distribution with density $f(x) = \tilde{f}(|x|)$. If a projection P_H of P on some lower-dimensional linear subspace H has a density f_H of the same functional form as P, that is, $f_H(x) = C\tilde{f}(|x|)$ for some normalizing constant C, then P is normal.

This result is somewhat surprising, if one notes that for *all* rotationally symmetric P the characteristic function ϕ_H of P_H is of the same functional form as that of P ($\phi_H(\lambda) = \tilde{\phi}(|\lambda|)$, where $\zeta \to \tilde{\phi}(|\zeta|)$, $\zeta \in \mathbb{R}^k$, is the characteristic function of P).

PROOF OF THEOREM 2. We can assume that P has a continuous density f, since otherwise we can consider the convolution $P * N_k(0, I_k)$ and then use the proof below to show that $P * N_k(0, I_k) = N_k(0, \sigma^2 I_k)$ for some $\sigma^2 \ge 0$ which implies that $\sigma^2 \ge 1$ and $P = N_k(0, (\sigma^2 - 1)I_k)$. Thus let f and, consequently, also \tilde{f} be continuous. Let $H_n := \{x \in \mathbb{R}^k | x_j = 0, j > n\}$. $p_{H_n}(X)$ has the continuous density f_{H_n} given by

(8)
$$f_{H_n}(x) = \frac{2\pi^{(k-n)/2}}{\Gamma((k-n)/2)} \int_{|x|}^{\infty} c(c^2 - |x|^2)^{(k-n-2)/2} \tilde{f}(c) dc$$

(see the remark following this proof). There are continuous functions \tilde{f}_{H_n} , $\tilde{f}_{H_n^{\perp}}$: $[0,\infty) \to [0,\infty)$ such that $f_{H_n}(x) = \tilde{f}_{H_n}(|x|)$, $f_{H_n^{\perp}}(x) = \tilde{f}_{H_n^{\perp}}(|x|)$ for all $x \in \mathbb{R}^k$. Now for t > 0 we have $\tilde{f}(t) = \tilde{f}_{H_n}(0)\tilde{f}_{H_n^{\perp}}(t)$. Further, if we set $m := \tilde{f}_{H_n}(0)$, we obtain

(9)
$$\tilde{f}(t) = m\tilde{f}_{H_n^{\perp}}(t) = m\int_{\mathbf{R}^n} \tilde{f}(\sqrt{t^2 + |x|^2})\lambda^n(dx)$$
$$= m^2 \int_{\mathbf{R}^n} \tilde{f}_{H_n^{\perp}}(\sqrt{t^2 + |x|^2})\lambda^n(dx)$$
$$= m^2 \int_{\mathbf{R}^n} \int_{\mathbf{R}^n} \tilde{f}(\sqrt{t^2 + |x|^2})\lambda^n(dx^{(1)})\lambda^n(dx^{(2)})$$
$$= m^2 \int_{\mathbf{R}^{2n}} \tilde{f}(\sqrt{t^2 + |x|^2})\lambda^{2n}(dx)$$
$$= \cdots = m^j \int_{\mathbf{R}^{/n}} \tilde{f}(\sqrt{t^2 + |x|^2})\lambda^{jn}(dx)$$

for all $j \in \mathbb{N}$. Let Q_j be the probability measure on $\mathbb{R}^{(j+1)n}$ with density $y \to C_j \tilde{f}(|y|), y \in \mathbb{R}^{(j+1)n}$, where C_j is some normalizing constant. By (9), P can be expressed as a projection of Q_j . Since this property of P holds for arbitrarily large j, it follows from Theorem 2 of [3], p. 394, that P is a variance mixture of the normal distributions $N_k(0, \sigma^2 I_k)$. Hence f can be written as

(10)
$$f(x) = \int_0^\infty (2\pi)^{-k/2} \sigma^{-k} e^{-|x|^2/2\sigma^2} \alpha(d\sigma), \qquad x \in \mathbb{R}^k,$$

for some probability measure α on $(0, \infty)$.

Inserting (10) into the first line of (9) one obtains

(11)
$$\int_{0}^{\infty} (2\pi)^{-k/2} \sigma^{-k} e^{-|x|^{2}/2\sigma^{2}} \alpha(d\sigma)$$
$$= m \int_{0}^{\infty} \int_{\mathbf{R}^{n}} (2\pi)^{-k/2} \sigma^{-k} e^{-(|x|^{2}+|y|^{2})/2\sigma^{2}} \lambda^{n}(dy) \alpha(d\sigma)$$
$$= \int_{0}^{\infty} m (2\pi)^{(n-k)/2} \sigma^{n-k} e^{-|x|^{2}/2\sigma^{2}} \alpha(d\sigma).$$

Next we have to note that the mapping $f \to \alpha$ is one-to-one: If one defines the probability measure $\overline{\alpha}(0, t] := \alpha(0, \sqrt{t}]$, the Laplace transform of $\overline{\alpha}$ coincides with the characteristic function ϕ of f, since

(12)
$$\phi(u) = \int_0^\infty e^{-|u|^2 \sigma^2/2} \alpha(d\sigma) = \int_0^\infty e^{-|u|^2 \sigma/2} \overline{\alpha}(d\sigma)$$

But α is determined by $\overline{\alpha}$, and $\overline{\alpha}$ by its Laplace transform which can be computed from f.

Hence the measures $\alpha(d\sigma)$ and $m(2\pi)^{n/2}\sigma^n\alpha(d\sigma)$ are equal which is possible only if α is the point mass in $(2\pi)^{-1/2}m^{-1/n}$. By (10) it is now seen that

(13)
$$f(x) = m^{k/n} e^{-|x|^2 m^{2/n} \pi}$$

The proof is now complete.

REMARK. Equation (8) follows easily from the results of Eaton [3]. He proved that if X is rotationally symmetric, then X/|X| and |X| are independent, and $p_{H_{c}}(X/|X|)$ has the density

(14)
$$g_{k,n}(u) = \frac{\Gamma\left(\frac{k}{2}\right)}{\pi^{n/2}\Gamma((k-n)/2)} \left(1 - |u|^2\right)^{(k-n-2)/2} \mathbb{1}_{(-1,1)}(|u|)$$

for $u \in H_n$. Hence,

(15)
$$P\left(p_{H_n}(X) \leq t\right) = \int P\left(p_{H_n}(X) \leq t \mid |X| = c\right) P\left(|X| \in dc\right)$$
$$= \int P\left(p_{H_n}(X/|X|) \leq \frac{t}{c}\right) \nu(dc),$$

where $t \in \mathbb{R}^k$ and $\nu(a, b] := P\{x | |x| \in (a, b]\}, a, b \in \mathbb{R}$. Inserting (15) into (14) shows that $p_{H_a}(X)$ has the density

(16)
$$f_{H_n}(x) = \frac{\Gamma(k/2)}{\pi^{n/2} \Gamma((k-n)/2)} \int_{|x|}^{\infty} c^{-n} \left(1 - \frac{|x|^2}{c^2}\right)^{(k-n-2)/2} \nu(dc).$$

(8) now follows, because ν has the density

(17)
$$(2\pi^{k/2}/\Gamma(k/2))c^{k-1}\tilde{f}(c)1_{(0,\infty)}(c), \quad c \in \mathbb{R}.$$

Formula (15) incidentally shows that f_{H_n} is non-increasing, if $k - n \ge 2$, as has been shown in [3], Proposition 1. However this is not true for k - n = 1 (a case not excluded in [3]), as can be seen by the example of the uniform distribution on S^1 . Then

(18)
$$f_{H_1}(u) = 1/\pi (1-u^2)^{1/2}, \quad -1 < u < 1.$$

The final theorem of this section shows that a "Maxwell characterization" of $N_k(\mu, \sigma^2 I_k)$ is possible without the assumption of rotational symmetry.

THEOREM 3. Let X be a k-dimensional random vector for which there exists a $n \in \{1, ..., k-1\}$ such that $p_H(X)$ and $p_{H^{\perp}}(X)$ are independent for each n-dimensional linear subspace H of \mathbb{R}^k . Then $X \sim N_k(\mu, \sigma^2 I_k)$ for some $\mu \in \mathbb{R}^k$ and $\sigma^2 \ge 0$.

PROOF. Let P be the distribution of X. We have to show that P is rotationally symmetric, for then Theorem 2 can be applied.

If the result holds for all symmetric probability measures Q (satisfying Q(B) = Q(-B) for all $B \in \mathfrak{B}^k$), it is true in general. For if we define $\overline{P}(B) := P(-B)$, $B \in \mathfrak{B}^k$, the convolution $\tilde{P} = P * \overline{P}$ of P and \overline{P} clearly fulfils the assumptions of the theorem and is symmetric so that we have $\tilde{P} = N_k(0, \sigma^2 I_k)$ for some $\sigma \in [0, \infty)$. Then the multivariate version of Cramèr's theorem ([9], page 46) implies that $P = N_k(\mu, \frac{1}{2}\sigma^2 I_k)$ for some $\mu \in \mathbb{R}^k$.

Hence we can assume that P is symmetric. We show that in this case P is even rotationally symmetric. It suffices to prove that, if λ , $\tilde{\lambda} \in \mathbb{R}^k$ satisfy $|\lambda| = |\tilde{\lambda}|$, then $\phi(\lambda) = \phi(\tilde{\lambda})$, where ϕ is the characteristic function of P. We can choose an orthonormal basis e^1, \ldots, e^k of \mathbb{R}^k such that $\lambda = (\lambda_1, \lambda_2, 0, \ldots, 0)'$ and $\tilde{\lambda} = (-\lambda_1, \lambda_2, 0, \ldots, 0)'$ are the coordinate representations of λ and $\tilde{\lambda}$ with respect to this basis. Let H be the span of e^2, \ldots, e^{n+1} . Then clearly $p_H(\lambda) = (0, \lambda_2, 0, \ldots, 0)' = p_H(\tilde{\lambda})$ and $p_{H^{\perp}}(\lambda) = (\lambda_1, 0, \ldots, 0)' = -p_{H^{\perp}}(\tilde{\lambda})$. Now it follows from the assumptions that

(19)
$$\phi(\lambda) = \phi(p_H(\lambda))\phi(p_{H^{\perp}}(\lambda)) = \phi(p_H(\tilde{\lambda}))\phi(-p_{H^{\perp}}(\tilde{\lambda}))$$
$$= \phi(p_H(\tilde{\lambda}))\phi(p_{H^{\perp}}(\tilde{\lambda})) = \phi(\tilde{\lambda}).$$

III. A variational inequality for N

Our final aim is to prove the inequality for N announced in the introduction: Among all Borel sets B of given N-measure the half spaces minimize the N-measure of their euclidean ε -neighbourhood for arbitrary $\varepsilon > 0$. This result indicates a similarity between the relation of S^{k-1} to its surface measure and that of \mathbb{R}^k to the standard normal distribution.

Let μ_k be the normalized surface area of S^{k-1} . In the following μ_k is considered as a measure on $(\mathbb{R}^k, \mathfrak{B}^k)$ concentrated on S^{k-1} by setting $\mu_k(B) := \mu_k(B \cap S^{k-1})$. We first note that the conclusion (2) in Section I remains valid if K is replaced by an arbitrary $B \in \mathfrak{B}^k$, because for all $\varepsilon' < \varepsilon$

(20)
$$\mu_{k}\left(U_{k,\epsilon'}^{\Delta}(H)\right) \leq \mu_{k}\left\{y \in \mathbb{R}^{k} | \exists x \in \operatorname{cl}(B) : |x - y| < \epsilon\right\}$$
$$= \mu_{k}\left\{y \in \mathbb{R}^{k} | \exists x \in B : |x - y| < \epsilon\right\}$$
$$\leq \mu_{k}\left\{U_{k,\epsilon}^{\Delta}(B \cap S^{k-1})\right\}.$$

Let $\varepsilon' \uparrow \varepsilon$.

THEOREM 3. Let $B \in \mathfrak{B}^k$ and $H = \{x \in \mathbb{R}^k | x'x^0 \leq a\}, a \in \mathbb{R}, x^0 \in \mathbb{R}^k$. Then we have

(21)
$$N(H) \leq N(B) \Rightarrow N(H^{\epsilon}) \leq N(B^{\epsilon})$$
 for all $\epsilon > 0$.

PROOF. By p_{nk} : $\mathbb{R}^n \to \mathbb{R}^k$ we denote the projection $(x_1, \ldots, x_n)' \to (x_1, \ldots, x_k)'$, n > k. Let $\mu_{n,c}$ be the uniform distribution on $cS^{k-1} := \{x \in \mathbb{R}^k \mid |x| = c\}$ (also considered as a measure on \mathbb{R}^k). By (18) we immediately obtain

(22)
$$\mu_{n,\sqrt{n}} p_{nk}^{-1} \to N$$
 in total variation, as $n \to \infty$,

because the corresponding sequence of densities converges pointwise to the density of N. Without loss of generality we assume $x^0 = (1, 0, ..., 0)'$ and consequently $H = \{x \in \mathbb{R}^k | x_1 \leq a\}$. Let $\Delta_{n,c}$ be the geodesic metric on cS^{n-1} and $U^{\Delta}_{n,c,\epsilon}(B)$ be the closed ϵ -neighbourhood with respect to $\Delta_{n,c}$. Then it is seen that

(23)
$$U^{\Delta}_{n,\sqrt{n},\epsilon}\left(\sqrt{n}\,S^{n-1}\cap p_{nk}^{-1}(H)\right) = p_{nk}^{-1}\left(\left\{x\in\mathbb{R}^{k}\,|\,x_{1}\leqslant a+\epsilon_{n}\right\}\right)\cap\sqrt{n}\,S^{n-1},$$

where ε and ε_n satisfy the equation

(24)
$$\varepsilon = \sqrt{n} \left(\arccos\left(\frac{a}{\sqrt{n}}\right) - \arccos\left(\frac{a+\varepsilon_n}{\sqrt{n}}\right) \right).$$

The Taylor expansion of arccos yields

$$\varepsilon = (1 - \xi_n^2)^{-1/2} \varepsilon_n$$
 for some $\xi_n \in [a/\sqrt{n}, (a + \varepsilon_n)/\sqrt{n}].$

From this it is seen that $\lim_{n\to\infty} \varepsilon_n = \varepsilon$. By (22) for each $\delta > 0$ there exists a $n_0 \in \mathbb{N}$ such that for $n \ge n_0$

$$(25) \quad \mu_{n,\sqrt{n}} \left(U_{n,\sqrt{n},\varepsilon}^{\Delta} \left(\sqrt{n} S^{n-1} \cap p_{nk}^{-1}(H) \right) \right) \\ = \mu_{n,\sqrt{n}} \left(p_{nk}^{-1} \left\{ \left\{ x \in \mathbb{R}^{k} \mid x_{1} \leq a + \varepsilon_{n} \right\} \right) \right) \\ \in \left[N \left\{ x \in \mathbb{R}^{k} \mid x_{1} \leq a + \varepsilon - \delta \right\}, N \left\{ x \in \mathbb{R}^{k} \mid x_{1} \leq a + \varepsilon + \delta \right\} \right].$$

From (25) it follows that

(26)
$$\lim_{n\to\infty} \mu_{n,\sqrt{n}} \left(U^{\Delta}_{n,\sqrt{n},\varepsilon} \left(\sqrt{n} \, S^{n-1} \cap p_{nk}^{-1}(H) \right) \right) = N(H^{\varepsilon})$$

Further from $|x - y| \leq \Delta_{n,\sqrt{n}}(x, y)$ for all $x, y \in \sqrt{n} S^{n-1}$ we can conclude that

(27)
$$U^{\Delta}_{n,\sqrt{n},\epsilon}\left(p^{-1}_{nk}(B)\right) \subset p^{-1}_{nk}(B^{\epsilon}) \cap \sqrt{n} S^{n-1}.$$

Set $H_b := \{x \in \mathbb{R}^k | x_1 \leq b\}$. Under the supposition of (21) (22) shows that for each b < a there is a $n_1 \in \mathbb{N}$ so that

(28)
$$\mu_{n,\sqrt{n}}\left(p_{nk}^{-1}(H_b)\right) \leq \mu_{n,\sqrt{n}}\left(p_{nk}^{-1}(B)\right) \quad \text{for all } n \geq n_1.$$

The isoperimetric inequality (2), when applied to $\sqrt{n} S^{n-1}$, yields for all $\varepsilon > 0$ and $n \ge n_1$

(29)
$$\mu_{n,\sqrt{n}}\left(U_{n,\sqrt{n},\varepsilon}^{\Delta}\left(p_{nk}^{-1}(H_{b})\cap\sqrt{n}\,S^{n-1}\right)\right) \leq \mu_{n,\sqrt{n}}\left(U_{n,\sqrt{n},\varepsilon}^{\Delta}\left(p_{nk}^{-1}(B)\cap\sqrt{n}\,S^{n-1}\right)\right).$$

Further we have (again by (22))

(30)
$$\lim_{n\to\infty}\mu_{n,\sqrt{n}}\left(p_{nk}^{-1}(B^{\epsilon})\right)=N(B^{\epsilon}).$$

Finally combining (26) (applied to H_b), (24), (27) and (30) we obtain

(31)
$$N(H_b^{\epsilon}) = \lim_{n \to \infty} \mu_{n,\sqrt{n}} \left(U_{n,\sqrt{n},\epsilon}^{\Delta} \left(p_{nk}^{-1}(H_b) \cap \sqrt{n} S^{n-1} \right) \right)$$
$$\leq \liminf_{n \to \infty} \mu_{n,\sqrt{n}} \left(U_{n,\sqrt{n},\epsilon}^{\Delta} \left(p_{nk}^{-1}(B) \cap \sqrt{n} S^{n-1} \right) \right)$$
$$\leq \liminf_{n \to \infty} \mu_{n,\sqrt{n}} \left(p_{nk}^{-1}(B^{\epsilon}) \right) = N(B^{\epsilon}).$$

 $b \uparrow a$ yields the conclusion of (21).

Whether N is the only distribution on \mathbb{R}^k which satisfies (21) is an open question.

References

- A. Dinghas, 'Einfacher Beweis der isoperimetrischen Eigenschaft der Kugel in Riemannschen Räumen konstanter Krümmung', Math. Nachr. 2 (1949), 148–162.
- [2] T. Figiel, J. Lindenstrauss and V. D. Milman, 'The dimension of almost spherical sections of convex bodies', Acta Math. 139 (1977), 53-94.
- [3] M. L. Eaton, 'On the projections of isotropic distributions', Ann. Statist. 9 (1981), 391-400.
- [4] M. Fisz, Probability theory and mathematical statistics, (Wiley, New York-London, 1963).
- [5] J. Lord, 'The use of Hankel transforms in statistics I', Biometrika 41 (1954), 44-55.
- [6] A. M. Mathai and G. Pederzoli, *Characterizations of the normal probability law*, (Wiley Eastern Limited, New Delhi-Bangalore-Bombay, 1977).
- [7] W. H. Olson and V. R. Rao Uppuluri, 'Characterization of the distribution of a random matrix by rotational invariance', Sankhyā A 32 (1970), 325–328.
- [8] E. Schmidt, 'Die Brunn-Minkowski-Ungleichung', Math. Nachr. 1 (1948), 81-157.
- [9] M. S. Srivastava and C. G. Khatri, An introduction to multivariate statistics, (North-Holland, New York-Oxford, 1979).

Fachbereich Mathematik Universität Osnabrück Albrechtstrasse 28 West Germany