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Abstract

An infinite family of vertex- and edge-transitive, but not arc-transitive, graphs of degree 4 is
constructed.

1991 Mathematics subject classification (Amer. Math. Soc): 05 C 25.

1. Introduction

If G is a graph, then the arcs of G are obtained by taking one arc for each
orientation of each edge of G so that there are twice as many arcs as edges. A
k-arc of G is a directed walk of length k using the arcs of G except that one
cannot follow an arc (u, v) by the arc (v, u) in the directed walk. A k-path P of
G with end vertices u and v is a walk (undirected) of length k such that each of
u and v is incident with one edge of P, and all other vertices of P are incident
with two edges of P. A graph G is said to be vertex-transitive, edge-transitive
and arc-transitive provided its automorphism group Aut(G) acts transitively
on the vertices, edges and arcs of G, respectively. (The terms symmetric and
l-transitive also have been used instead of arc-transitive.) In general, a graph
is said to be k-arc-transitive if Aut(G) acts transitively on the £-arcs of G.
Biggs [3] defines a graph G to be k-transitive if Aut(G) acts transitively on
the )t-arcs of G, but does not act transitively on the (k + l)-arcs. Since we
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deal with graphs G for which Aut(G) is vertex- and edge-transitive but not
arc-transitive and we wish to avoid that cumbersome phrase, in keeping with
Biggs' definition (and viewing the vertices of G as 0-arcs), we shall call such
graphs l/2-transitive. In general, a graph G is (2m + l)/2-transitive if Aut(G)
acts transitively on the m-arcs and the (m + l)-paths of G, but does not act
transitively on the (m + l)-arcs of G.

Of course, there exist vertex-transitive graphs which are not edge-transitive.
Likewise, an edge-transitive graph is not necessarily regular, and thus not ne-
cessarily vertex-transitive. Even more, there are regular edge-transitive graphs
which are not vertex-transitive [6]. The only general result linking vertex-
and edge-transitivity to arc-transitivity is due to Tutte [15] who proved that a
vertex- and edge-transitive graph of odd degree is necessarily arc-transitive.
With regard to even degree, Bouwer [4] in 1970 constructed an infinite family
of l/2-transitive graphs. The smallest order graph in his family has 54 vertices.
More recently, Holt [7] found one with 27 vertices.

The automorphism groups of Holt's graph and Bouwer's family of graphs
act imprimitively on the vertex-set. This prompted Holton [8] to ask if the
automorphism group of every l/2-transitive graph is necessarily imprimitive.
This question has been answered by Xu and Praeger [12] in the negative. They
found several examples of l/2-transitive graphs, the smallest of which has 253
vertices and is of degree 24, whose automorphism groups are primitive.

As mentioned above, Holt has produced a l/2-transitive graph on 27 vertices.
Using the facts that every vertex- and edge-transitive Cayley graph on an abelian
group or with 2p vertices, p a prime, is also arc-transitive, McKay's list of all
vertex-transitive graphs with 19 or fewer vertices [10], McKay and Royle's list
of vertex-transitive graphs with 20 and 21 vertices [11], and Praeger and Royle's
proof that there are no l/2-transitive graphs with 24 vertices, we conclude that
there are no l/2-transitive graphs with fewer than 27 vertices. In his paper, Holt
mentions that a referee informed him that Kornya found another example with
27 vertices. However, Xu has informed the authors (personal communication)
that he has shown that Holt's graph is the only l/2-transitive graph with 27
vertices and of degree 4.

The objective of this paper is to give an infinite family of 1 /2-transitive graphs
of degree 4. All of them are metacirculant graphs.
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2. A family of graphs

Let n > 2. A permutation on a finite set is said to be (m,n)-semiregular if it has
m cycles of length n in its disjoint cycle decomposition. We shall be sloppy and
refer to the orbits of the group (a) generated by a as the orbits of a. A graph G is
an (m,n)-metacirculant if it has an (m, «)-semiregular automorphism a together
with another automorphism fi normalizing a and cyclically permuting the orbits
of a such that as a permutation there is a cycle of length m in the disjoint cycle
decomposition of /J. Therefore, we may partition the vertex-set of an (m, «)-
metacirculant into the orbits Xo, Xu ..., Xm_i of a, where Xi+i = /J(X,) for
all / € Zm. We shall refer to the orbits of a as the blocks of the metacirculant
graph. It should be pointed out that the blocks of a metacirculant graph need
not be blocks of imprimitivity of the automorphism group of the graph.

If G is a graph and A and B are two vertex-disjoint subsets of the vertex-set
V(G) of G, we let (A) denote the subgraph induced by G on A, and let (A, B)
denote the bipartite subgraph induced by G on A U B, that is, all edges of
G with one endvertex in A and the other endvertex in B. If So Q Zn\{0} is
the symbol of the subcirculant (Xo) and, for all i e Zm\{0], Tt c Zm is the
symbol of the bipartite subgraph (Xo, X,), then there exists an r e Z*m, where
Z*m denotes the multiplicative group of units in Zm, such that for all j € Zm,
the symbol of (Xj) is rJS0 and the symbol of the bipartite graph (Xj, Xj+l),
i € Zm, is rjTj. Moreover, for all i e Zm, we have 7m_, = —rm~'Ti. Thus,
the metacirculant graph is completely determined by the Y(m + 4)/2J-tuple
(r; So, Tu T2,..., Tymi2\) which is called a symbol of G. (For a more detailed
discussion of metacirculants, the reader is referred to [1, 2].)

We are now ready to define a family of metacirculants of degree 4 containing
infinitely many 1/2-transitive graphs. The smallest among them has 27 vertices.

Let n > 5 be an integer and r € Z* be an element of order m or 2m such
that m > 3. Then let M(r; m, n) denote the (/n, n)-metacirculant graph with
symbol (r; 0, {1, n — 1}, 0 , . . . , 0). For example, the graph M(2; 3, 9) can be
thought of as having vertices {xj : 0 < i < 2 and 0 < j < 8} with JCQ adjacent
to x{±l, x{ adjacent to x[±2, and x'2 adjacent to xJ

0
±A, where the superscripts are

reduced modulo 9. This graph is in fact the Holt graph of [7]. This suggests
there may be other 1/2-transitive M(r;m,n) graphs, as indeed is the case, for
other values of the parameters r, m and n.

Throughout the paper, a is the (m, n)-semiregular automorphism of M =
m(r; m, n) with orbits Xo, Xu ..., Xm_i, where X, = {JC,°, * / , . . . , x"~1} and
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a(xj) = JC/+1 for all / e Zmandj e Zn. Similarly, /} is the automorphism of M
mapping according to the formula f}{xf) = xr/+l, for / e Zm, j e Zn. Finally,
another automorphism r of M(r; m, n) which will prove useful is defined by
*(*/) = x7j.

DEFINITION. A cycle of M{r; m, n) of length at least m is said to be coiled
if every subpath with m vertices intersects each one of Xo, X\,..., Xm-\. It is
easy to see that a coiled cycle must have length a multiple of m.

DEFINITION. The coiled girth of M(r; m, n) is the length of a shortest coiled
cycle in M(r; m,n).

PROPOSITION 2.1. The coiled girth ofM{r; m, n) is either m or 2m.

PROOF. Assume that M(r; m,n) does not contain a coiled cycle of length m.
Consider the closed trail

v 0 1 l+r v l+ r+r 2 +-+r ' " - 2 \+r+r2+--+rm~1 r+r2+-+rm-] r2+-+rm~i 0
- * 0 A l A 2 • • • " t m - l -*0 X \ X2 • ' • • * 0 -

Since M{r\m,ri) has no coiled cycles of length m, all of the vertices of the
closed trail are distinct. Thus, it is a coiled cycle of length 2m as required.

DEFINITION. We obtain natural edge-partitions of M(r; m,n) using coiled
girth cycles and a. If M(r; m, n) has coiled girth m, let C be a coiled cycle of
length m. If C = X'QX'^ • • • x£i\, let a(C) denote the cycle obtained under the
substitution of a (JCJO forxj',0 < j <m-l. ThenC, a(C), a 2 (C) , . . . , a"-l(C)
is a 2-factor of M{r\ m, n). It is easy to see that the remaining edges also form a
2-factor made up of coiled cycles of length m. If C is a coiled cycle of length 2m
such that of the two edges from X, to XJ+l in C, one is of the form x'jxj+[ and

the other is of the form xljxlj+[ ,thenC, a ( C ) , a 2 ( C ) , . . . , a"""1^) is a partition
of the edge-set of M(r; m, n) into 2m-cycles. We call both of the above the
a-partition of M(r; m, n) induced by C.

DEFINITION. When M(r;m,n) has coiled girth m and the a-partition of
M(r;m,n) induced by every coiled m-cycle yields the same 2-factorization of
M(r; m, n), then we shall say that M(r; m, n) is tightly coiled. Otherwise, we
shall say that the graph is loosely coiled. A similar definition applies in the case
that the coiled girth of M(r; m, n) is 2m. However, in the latter case, M (r; m, n)
is always loosely coiled as we shall see soon.
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We now set about proving some lemmas which will be useful in establishing
that certain M(r;m,n) metacirculants are 1/2-transitive.

LEMMA 2.2. IfM — M(r; m, n) has coiled girth 1m, then M is loosely coiled.

PROOF. AS seen in the proof of Proposition 2.1,

v 0 1 l+r l+r+r2H hrm~2
 vl+r+r2H \-rm~' r+r2-\ f-rm~' r2-i l-r"1"1 0

A 0 A j A 2 • • • - * m _ i -*o xl X2 ' ' ' A 0

is a coiled cycle C of length 2m. Obtain another coiled cycle of length 2m by
taking the first edge from x® to x"~x and then taking the same kind of edge as in
C until reaching Xo again. This means the vertex in Xj will be xjl+r+r +'"+r' '.
When leaving Xo the second time, use the edge to x[+r + +r" from which point
the vertices will be the same as in C.

LEMMA 2.3. Let M = M(r; m, n). If a € Aut(M) fixes two adjacent blocks
of M pointwise, then o is the identity.

PROOF. Let a fix X, and X,+1 pointwise. Then X,_i is fixed setwise by a.
The subgraph (X,_i, X,) is either a 2«-cycle or two rc-cycles because r e Z*.
The automorphism a fixes alternate vertices of the 2n -cycle or the two n -cycles,
and thus it fixes every vertex. This means that a also fixes X,_i pointwise.
Continuing in this way establishes the result.

LEMMA 2.4. Let M = M(r; m, n). If a e Aut(M) fixes some block of M
pointwise, then a is the identity.

PROOF. Without loss of generality we may assume Xx is the block of M which
is fixed pointwise by a. The neighbors of xf are x\, x^r, xl and XQ~\ and the
neighbors of x\ are xr

2
+1, x^2, x^ and x^. Since both x° and x\ are fixed by a,

either x\ is also fixed by a or {xr
2,x2

r, x^'1} D {xr
2
+2, x2

r+1, JCQ} is non-empty.
In the latter case, x$~l ^ xl because n > 5. This forces either x2 — x2

r+2 or
x2

r = x2
+2. In the first case r = (n + 2)/2 must hold and in the second case

r = (n — 2)/2 must hold. Neither are possible when n is odd. If n is a multiple
of 4, then r2 = 1 in Z* contradicting the fact that r has order at least 3. If n is
even and not a multiple of 4, then r is even contradicting the fact that r € Z*.
This implies XQ is fixed by o. Continuing in this way we obtain that Xo is fixed
pointwise. The preceding lemma yields the desired result.
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LEMMA 2.5. Let M — M(r; m, n) and suppose that whenever o e Aut(M)
fixes two adjacent vertices of M, a is the identity. Then either Aut(M) =
(a, j8,r) or |Aut(Af)| = 2|(a, 0 , T ) | .

PROOF. By hypothesis, the stabilizer of an edge of M is either the identity or
has order 2. Thus, |Aut(M)| = 2mn or Amn and the result follows.

LEMMA 2.6. Let M = M(r;m,n), with m and n odd, have coiled girth m
and be loosely coiled. Ifcre Aut(M) fixes two adjacent vertices of M, then a
is the identity.

PROOF. Suppose x e X, and y e X,+1 are two adjacent vertices of M fixed
by a. Let y' be the other neighbor of x in X,+1 and let z and z' be the two
neighbors of x in X,-_i. Since m is odd, neither of the two triples zxz' and yxy'
are in m -cycles. On the other hand, since M is loosely coiled, each of the four
triples zxy, zxy', z'xy and z'xy' are in m-cycles. Therefore, a must also fix y'
in addition to fixing x and y. For the same reason, a must fix the other neighbor
of y' in X,. Continuing in this way, we see that a fixes all the vertices of X, and
X,+i. By Lemma 2.3, the conclusion follows.

THEOREM 2.7. Let M = M(r; m, n), with m and n odd, have coiled girth m.
If M is loosely coiled, n > 1 andm > 3, then M is \/2-transitive.

PROOF. If Aut(M) = (a, £, T), then M is 1/2-transitive. Assume Aut(M) ^
{a, ft, x) and M is arc-transitive. Then there is a a e Aut(M) interchanging two
adjacent vertices, say JC e X, and y e X,+1. Let a, a' e X,_] and y' e X,+1 be
the remaining neighbors of x, and let u, u' e X,+2 and x' e X, be the remaining
three neighbors of y. The triples uyx' and u'yx' are contained in an m-cycle but
uyu' is not. Similarly, axy' and a'xy' are contained in /w-cycles but yxy' is not.
We know a interchanges {u, u', x'} and {a, a', y'} so that a must interchange x'
and y'. Hence, a interchanges X, and X,+i which implies a interchanges X,_i
and X,+2, X,_2 and X,+3, and so on. Thus, Aut(M) acts imprimitively with the
orbits of a as blocks. Since a2 fixes x and y, a is an involution by Lemma 2.6.

Note that the automorphism group of (X, U X,+1) is dihedral of order An.
Hence, the restriction of oao to (X, U Xl+i) is the restriction of a"1. Thus, the
restriction of (era)2 to (X, U X,+i) is 1 implying that (era)2 = 1 by Lemma 2.1.
This together with the fact that xax = a"1 implies that ax centralizes a. Clearly,
the action of a t on the orbits of a is identical to the action of a. Thus, there
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is an orbit Z of a which is fixed by ax. The restriction of ar to Z is then
the same as that of some a'. Let y — oxoT1. Note that y restricted to Z is 1
and that y interchanges the neighboring orbits, say U and IV, of Z. However,
the structure of the graph M implies that whenever two vertices of Z have a
common neighbor in U, they do not have a common neighbor in W. Therefore,
an automorphism such as y cannot exist. This means that Aut(M) = (a, ft, r)
and M is 1/2-transitive.

COROLLARY 2.8. Let p be a prime and r a divisor of p — 1 whose order
m in Z* is odd and composite. Then M = M{r\m,p) is l/2-transitive. In
particular, there are infinitely many l/2-transitive graphs of degree 4.

PROOF. The graph M has coiled girth m because 1 + r + r2 H \- rm~l =
O(modp) implying that x°x\x\+r • • • x]^f""+rm x® is an m-cycle C. It suffices
to show that M is loosely coiled. Let H be the subgroup of Z* of order m
generated by r. Let d be a nontrivial divisor of p — 1. Then the subgroup
Hx of H generated by rd has order {p — \)/d. The sum of the entries in any
subgroup of Z* is congruent to zero modulo p. In fact, the sum of the powers of
r over each of the cosets of Hi in H is also congruent to zero modulo p. Thus,
we can either add or subtract all the elements of a given coset to give us other
m -cycles of M which induce 2-factorizations of M different than that induced
by C. Hence, M is loosely coiled and the corollary follows from Theorem 2.7.

3. Three blocks

In the previous section, the general case for m and n odd is covered when
M(r;m,n) has coiled girth m and is loosely coiled. We take care of the case
when M(r;m,n) is tightly coiled or has coiled girth 2m in this section, but
only for m = 3. The following lemma has the same conclusion as Lemma
2.6, but the proof is completely different. Notice that if r3 = — l(mod«), then
(—r)3 = l(modrt). Since M(r; 3, n) = M{—r; 3, n), we may as well assume r
has order 3.

LEMMA 3.1. Let M = M{r; 3, n), n > 9 and n odd, let r3 = l(modn), and
let M have coiled girth 3. If a e Aut(M) fixes two adjacent vertices ofM, then
a is the identity.
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PROOF. Since r3 = l(mod«), (r - l)(r2 + r + 1) = 0(mod«). This implies
that either r2 + r + 1 = O(modw) or r2 + r + 1 is a zero divisor in Zn. Since 2
is not a zero divisor in Zn when n is odd, r2 + r + 1 ^ 2 (mod «) implying that
r2 + r — 1 ^ O(modrt). Similarly, r2 — r + 1 ^ 0(mod«) because r is a unit
in Zn. Therefore, since M has coiled girth 3, either r2 + r + 1 = 0(mod«) or
r2 — r — 1 = 0(mod«) must hold.

First consider the case that r2 + r +1 = 0(mod n). Without loss of generality,
assume that a fixes XQ and x\. We now determine the vertices at increasing
distances from [x®, x\} and use them to prove the result in this case. The only
problem that may arise is that for small n and certain values of r some of the
apparently different vertices may be the same. The vertex xr

2
+x is the only vertex

adjacent to both x$ and x\ so it too is fixed by o. The other neighbors of x% are
x2 and x [ + r \ and the other neighbors of JCJ are x2 and xr^+2. The vertices JC2,
x[+r , *2+1, and xr

2
 +r are all distinct because n > 9, n is odd and our assumption

about r2 + r + 1.
We now determine the vertices at distance 2 from {x°, x\}. The remaining

neighbors of xf are xr
0 ~

r~x and jcf ~r, of x[2+r are x$~2 and xr
2~

l, of xr
2

+l are x^+2

and x2r+l, of x2 are xf and xr
2

+\ and of x2
r2+2 are x£~r+l and x[2"r+2. We now

show that we may assume all these vertices are distinct and that there is only one
adjacency amongst them. This is based on the following results. The element
r ^ 0; if r = 2, then r3 = l(mod«) implies n — 1 which is a contradiction;
if A- = n — 2, then n = 9 so that M is Holt's graph, which is known to be
1/2-transitive; r ^ 1; r ^ - 1 ; if r - (n - l ) /2, then r2 + r + 1 = 0(mod«)
implies that r2 = r(modn) which is impossible; if r = (n + l)/2, then r2 =
(n — 3)/2 = r — 2(mod n) which implies r3 = (n — 5)/2(mod n) which, in turn,
implies n = 7; and if r — (n — 3)/2, then r2 = (n + l) /2 = r + 2(mod n) again
leading to the contradiction that n =1.

Following are a few examples showing how the above occur. Can XQ~2 =
Xgr+2, that is, can n — 2 = 2r + 2(modn)? Since n is odd, we must have
2r = 2n — 4 or equivalently r = n — 2. As another example consider whether
or not xlr+2 = XQ ~r+l is possible. If the two are equal, then Ar = —2(mod«).
This implies that r — (n — l ) /2 which is one of the above. Checking all other
possibilities leads to one of the above or that n < 9.

We now may assume that the vertices at distance 2 from {x°, xj} listed above
are distinct. We now consider adjacencies amongst these vertices. Notice that
there is an edge joining XQ ~r+1 and x[ ~r. Now consider the vertex XQ2~r+1 as an
example. Its other neighbor in X2 is x2~

2r~2. For example, can x2~
2r~2 = x2

+3l
If so, then r + 3 = r2-2r-2 = -3r - 3(mod«). This implies that Ar =
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—6(mod«) which, in turn, implies that r — (n — 3)/2. This means the vertex
x2 ~2r~2 cannot lie at distance 2 from {JCQ, JCJ}. Checking all other possibilities
leads us to be able to assume the above edge between XQ "r + 1 and x\ ~r is the
only edge joining any two vertices at distance 2 from {x$, x{}.

This implies that a cannot interchange x2
+2 and x% since there is a path of

length 4 from xr
2
 +2 to x%, but not from x2, to x§. Similarly, a cannot interchange

x2 and x""1. In particular, this implies that a fixes x"~l and x2,. Now repeat the
same argument with the adjacent vertices x% and x\ leading to x\ being fixed
by a. Because n is odd, continuing in this way leads to a fixing every vertex
of Xo and Xi. By Lemma 2.3, a is the identity. This completes the case for
r2 + r + \ =0(mod/i).

The case for r2 — r — 1 = 0 (modw) is done in the same way. The only
adjacency between two vertices at distance 2 from {XQ, X\) is between x^2r and
xf2'"1. A new contradiction is used in this case. Several times — r — 3 =
r + 3(mod«) arises. This forces r = — 3 which implies n = 11 because of
r2 — r — 1 = O(modn). But then r3 ^ l(mod 11) which is a contradiction.

LEMMA 3.2. Let M = M(r; 3, «), n > 9 andn odd, let r3 = l(modw), and
let M have coiled girth 6. If a e Aut(M) fixes two adjacent vertices ofM, then
a is the identity.

PROOF. This proof hinges on the difference between coiled 6-cycles and
non-coiled 6-cycles. If C is a non-coiled 6-cycle, then it must contain three
successive vertices u, v, w such that u e X,+1, v e X, and w e X,+i, and such
that if the 6-cycle is uvwyztu, then y e X,, z e X,_! and t e X, does not
happen. Call the 2-path uvw an anchor of C. Because of the action of a and
ft, it is easy to see that if M has a non-coiled 6-cycle, then there is a non-coiled
6-cycle which has the 2-path x^xfix] as an anchor.

Without loss of generality, let a e Aut(M) fix x° and x\. It is easy to see
that each of the 2-paths x2 x^x\, x2 x°x^1, x2

r2xlx\, and x2
r x^x^1 is contained

in a coiled 6-cycle. If the 2-path X^XXQX{ is not contained in a 6-cycle (that is,
every 6-cycle is coiled), then o must also fix xf1. If the 2-path x^xx%x\ is not
in a 6-cycle, then neither is the 2-path x^xj"'.*^. Hence, a also must fix x^2.
Continuing in this way leads to the conclusion that a fixes every vertex of Xo

and Xi. This implies that a is the identity.
Now consider the case that there are non-coiled 6-cycles. We now de-

scribe the possible non-coiled 6-cycles with anchor x^x^xj. One possibility
is XQXIXQX^XQX^XQ. However, this possibility would force n = 6 which is a
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contradiction. A second possibility is X^X\XQX\X\X^XJCQ which implies either
r = 2 or r = —2. The former implies n = 7, which is a contradiction, and the
latter implies n = 9 and M is the Holt graph.

A third possibility involves completing the 4-path x^1"'x^]XQx\x\+r in Xo.
However, if Xjl~r and x\+r have a common neighbor in Xo, it must be x%. This
implies M has coiled girth 3 which is a contradiction. Likewise, the possibility
that the 4-path JC^1"1"''jcf1x®x\x\~r completes to a 6-cycle in Xo leads to the same
contradiction.

The two remaining possibilities come from completing the two preceding
4-paths in Xi. One resulting possibility is the 6-cycle x%x\x\+r x®X2l~r x±l x®
which implies that r = {n — l)/2. The other resulting possibility is the 6-cycle
xlx\x\~r x°xX2l+r X\l x% which implies that r = (n + l)/2. We see that the 2-
path X\XQX^1 lies in precisely two non-coiled 6-cycles in both cases. Thus, if
r ^ (n — l)/2 and r ^ (n + l)/2, there are no non-coiled 6-cycles and the first
part of the proof establishes the result. Suppose that r = (n — l)/2. Then the
2-paths X^XQX} and X^XQX^1 lie in three 6-cycles and the remaining 2-paths
with XQ as central vertex lie in two 6-cycles. Thus, o must also fix the vertex
xfr . The same argument applied to the 2-paths centered at x^ implies that o
must also fix x^r~r\ Continuing in this way, o also fixes XQ1~r~r\ X2l~r~2r\
x-l-2r-2r*^ x~2-2r-2r2^ an (j SQ Q n u n t j j e v e n w a Hy w e r e a c h x{ at Which point We

have completed a cycle C in M. If d = gcd(«, 1 + r + r2), then the vertices of
Xo lying in C are x%, x$, xff,..., XQ~d. It is still possible that a interchanges
xr2 and jcj"1. If so, then a must also interchange *0

1+r+r and x$l~r~rl. However,
the latter two vertices are distinct and lie on C. This contradicts the fact that a
fixes every vertex of C and we conclude that a also fixes xj~\ x^1"', x^l'r~rl,
x^2~r~r ,..., xr

2
2. By repeating the preceding argument with x\ replacing JCQ and

so on, we eventually achieve that a must fix every vertex of M.
We are left with the case that r = (n +1 )/2. However, this case does not arise

as it is an easy number theoretic exercise to show that if ((«+1)/2)3 = 1 (mod n),
then either n = 3 or n = 7. This contradicts our assumption that n > 9.

THEOREM 3.3. Let M = M(r; 3, n), n > 9andn odd, and let r3 = l(mod«).
Then M is l/2-transitive.

PROOF. We know that either Aut(M) = (a, 0, x) or |Aut(M)| = 12« because
of Lemmas 3.1 and 3.2. In the former case, M is l/2-transitive as required. In
the latter case, if M is arc-transitive, there must be an automorphism a e Aut(Af)
such that a & (a, fi, r), Aut(M) = (a, /3, x, o) and o interchanges the vertices
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XQ and x\. Orient the edge x$x\ from x% to x\ obtaining the arc (x®, x\). The
group (a, p, T) is regular on edges, so orienting the edge gixfyg&l) from g(x%)
to g(jc') for each g e (a, /J, T) gives an orientation of M which we denote by
M*. The digraph M* is arc-transitive under the group (a, fi, x) and the latter
group acts regularly on the arcs of M*. Since a interchanges x° and x\,o must
be orientation-reversing on M*. We now carefully examine the action of a.

Since a interchanges JC° and x\ and is orientation reversing, a must also
interchange jcf1 and x\. Then it must interchange xf3 and ^Q- Continuing in
this way, we see that o must interchange *f* and XQ+1 for all t e Z , . Now x\
and x|+2r have the common neighbor x\+r in X2. Thus, Xo and x^2r must have
a common neighbor in X2. If they have a common neighbor, it must be x2

r.
But the neighbors of x° are JC£2 and xfr . Now — r and — r2 clearly cannot be
the same. Likewise, if — r and r2 are the same, then r = — 1 is forced which is
impossible. Therefore no such a exists and M is not arc-transitive as required.
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