Canad. Math. Bull. Vol. **53** (3), 2010 pp. 404–411 doi:10.4153/CMB-2010-044-6 © Canadian Mathematical Society 2010

Invariant Theory of Abelian Transvection Groups

Abraham Broer

Abstract. Let G be a finite group acting linearly on the vector space V over a field of arbitrary characteristic. The action is called *coregular* if the invariant ring is generated by algebraically independent homogeneous invariants, and the *direct summand property* holds if there is a surjective $k[V]^G$ -linear map $\pi: k[V] \rightarrow k[V]^G$.

The following Chevalley–Shephard–Todd type theorem is proved. Suppose *G* is abelian. Then the action is coregular if and only if *G* is generated by pseudo-reflections and the direct summand property holds.

1 Introduction

Let *V* be a vector space of dimension *n* over a field *k*. A linear transformation $\tau: V \rightarrow V$ is called a *pseudo-reflection* if its fixed-points space $V^{\tau} = \{v \in V ; \tau(v) = v\}$ is a linear subspace of codimension one. Let G < GL(V) be a finite group acting linearly on *V*. Then *G* acts by algebra automorphisms on the coordinate ring k[V], which is by definition the symmetric algebra on the dual vector space V^* . We shall say that *G* is a *pseudo-reflection group* if *G* is generated by pseudo-reflections; it is called a *non-modular* group if the order of *G* is not divisible by the characteristic of the field. The action is called *coregular* if the invariant ring is generated by *n* algebraically independent homogeneous invariants. Finally we say that the *direct summand property* holds if there is a surjective $k[V]^G$ -linear map $\pi: k[V] \rightarrow k[V]^G$ respecting the gradings.

For a non-modular group the direct summand property always holds, because in that case we can take the *transfer* Tr^{G} as projection, defined by

$$\operatorname{Tr}^{G}: k[V] \to k[V]^{G}: \operatorname{Tr}^{G}(f) = \sum_{\sigma \in G} \sigma(f),$$

since for any invariant f we have $\text{Tr}^G(|G|^{-1}f) = f$. A theorem of Serre [1, Theorem 6.2.2] implies that if the action is coregular then G is a pseudo-reflection group and the direct summand property holds. We conjectured that the converse also holds [2]. The theorem of Chevalley–Shephard–Todd [1, Chapter 6] says that the converse holds if the group is non-modular. In this note we prove that the converse holds if G is abelian. Elsewhere we show that the converse is also true if V is an irreducible kG-module [3].

Theorem 1.1 Suppose G < GL(V) is an abelian group acting on the finite dimensional vector space V. Then the action is coregular if and only if G is a pseudo-reflection group and the direct summand property holds.

Received by the editors May 31, 2007.

Published electronically May 11, 2010.

AMS subject classification: 13A50.

As corollary we get a special case of a conjecture made by Shank–Wehlau [8]. Suppose the characteristic of the field is p > 0.

Corollary 1.2 Let G < GL(V) be an abelian p-group acting linearly on the vector space V. The image of the transfer map Tr^G is a principal ideal in $k[V]^G$ if and only if the action is coregular.

2 Hilbert Ideal and the Direct Summand Property

For elementary facts on the invariant theory of finite groups we refer to [1], for a discussion of the direct summand property and the different see [2]. We recall that the different θ_G of the action can be defined as the largest degree homogeneous form in k[V] such that $\text{Tr}^G(f/\theta) \in k[V]^G$ for all $f \in k[V]^G$; it is unique up to a multiplicative scalar. The direct summand property holds if and only if there exists a $\tilde{\theta}_G$ such that $\text{Tr}^G(\tilde{\theta}_G/\theta_G) = 1$ and then we can take as $k[V]^G$ -linear projection

$$\pi: k[V] \to k[V]^G: \pi(f) := \operatorname{Tr}^G\left(\frac{\tilde{\theta}_G f}{\theta_G}\right).$$

If $J \subseteq k[V]^G$ is an ideal, we define $J^e := J \cdot k[V]$, the ideal in k[V] generated by J. If $I \subseteq k[V]$, we define $I^c := I \cap k[V]^G$, the ideal in $k[V]^G$ generated by the invariants contained in I. An important consequence of the direct summand property is that it implies $J = J^{ec}$ [2, Proposition 6].

The *Hilbert ideal* $\mathfrak{H} \subset k[V]$ is the ideal generated by all positive degree homogeneous invariants. Hilbert already noticed that if the direct summand property holds, then any collection of homogeneous *G*-invariants generating the Hilbert ideal also generates the algebra of invariants. We say that the Hilbert ideal is a *complete intersection ideal*, if it can be generated by *n* homogeneous invariants where $n = \dim V$. Those invariants necessarily form a (very special) homogeneous system of parameters. We shall use the following criterion for coregularity.

Proposition 2.1 The action is coregular if and only if the Hilbert ideal \mathfrak{H} is a complete intersection ideal and the direct summand property holds.

Proof If the action is coregular, then $k[V]^G = k[f_1, ..., f_n]$ and so $\mathfrak{H} = (f_1, ..., f_n)$ is a complete intersection ideal. Coregularity also implies the direct summand property [2, Proposition 5(ii)].

Conversely, suppose the direct summand property holds and $\mathfrak{H} = (f_1, \ldots, f_n)$, where f_1, \ldots, f_n are homogeneous invariants of positive degree. Now we recall Hilbert's argument showing that $R := k[f_1, \ldots, f_n]$ is equal to $k[V]^G$. Suppose R is not equal to $k[V]^G$. Then let $f \in k[V]^G$ be of minimal degree such that f is not in R. But $f \in \mathfrak{H}$, so there are $h_1, \ldots, h_n \in k[V]$ of degree strictly smaller than the degree of f, such that $f = h_1 f_1 + \cdots + h_n f_n$. By hypothesis there is a $k[V]^G$ -linear projection operator $\pi : k[V] \to k[V]^G$ respecting grading. We can assume $\pi(1) = 1$. We use it to get $f = \pi(f) = \pi(h_1) f_1 + \cdots + \pi(h_n) f_n$. Each $\pi(h_i)$ is now invariant and of strictly lower degree than f, hence is in R. But then $f \in R$, which is a contradiction. It follows that $k[V]^G$ is generated by f_1, \ldots, f_n , and so the action is coregular.

Let $U \subseteq V^G$ be a linear subspace, and $U^{\perp} \subset V^* = k[V]_1$ the space of linear forms vanishing on U. Let I(U) be the ideal in $k[V]^G$ generated by U^{\perp} . We shall define \mathfrak{H}_U , the *Hilbert ideal relative to U*, to be $I(U)^{ce}$, *i.e.*, \mathfrak{H}_U is the ideal of k[V]generated by all the invariants contained in I(U). In particular, for $U = \{0\}$ we get the original Hilbert ideal \mathfrak{H} . Let *s* be the codimension of *U* in *V*. Then we say that \mathfrak{H}_U is a *complete intersection ideal* if it can be generated by *s* homogeneous invariants.

Lemma 2.2 Let \mathfrak{H}_U be the Hilbert ideal relative to $U \subset V^G$. If \mathfrak{H}_U is a complete intersection ideal then the Hilbert ideal \mathfrak{H} is also a complete intersection ideal.

Proof We shall use that the quotient algebra $k[V]^G/I(U)^c$ is a polynomial ring, a result due to Nakajima [7, Proof of Lemma 2.11]. We recall the quick proof.

To prove this result we can suppose that *k* is algebraically closed so that we can use the language of algebraic geometry. Let $\pi_G: V \to V/G$ be the quotient map. The linear algebraic group *U* acts on *V* by translations:

$$U \times V \rightarrow V \colon (u, v) \mapsto u + v.$$

Since $U \subseteq V^G$, the translations commute with the *G*-action on *V*, hence the *U*-action on *V* descends to an action on the quotient variety

$$U \times V/G \rightarrow V/G$$
: $(u, \pi_G(v)) \mapsto \pi_G(u+v)$.

It acts simply transitively on itself and on its image $\pi_G(U)$ in V/G. So $\pi_G(U)$ is isomorphic to $U \simeq k^{n-s}$, hence the coordinate ring of $\pi_G(U)$ is isomorphic to a polynomial ring with n - s variables. The coordinate ring of V/G can be identified with $k[V]^G$ and then $\pi_G(U)$ is defined by $I(U)^c$. It follows that $k[V]^G/I(U)^c$ is a polynomial ring in n - s variables. This finishes the proof of Nakajima's result.

So we can find n - s homogeneous invariants $f_{s+1}, f_{s+2}, \ldots, f_n$ such that

$$I(U)^{c} + (f_{s+1}, f_{s+2}, \dots, f_n)k[V]^{G} = k[V]_{+}^{G},$$

the maximal homogeneous ideal of $k[V]^G$. So

$$\mathfrak{H} = (k[V]_{+}^{G})^{e} = I(U)^{e} + (f_{s+1}, f_{s+2}, \dots, f_{n})k[V] = \mathfrak{H}_{U} + (f_{s+1}, f_{s+2}, \dots, f_{n})k[V].$$

Now if \mathfrak{H}_U is a complete intersection ideal, hence generated by *s* elements, it follows that \mathfrak{H} is generated by *n* elements and is also a complete intersection ideal.

3 Abelian Transvection Groups

For any pseudo-reflection ρ on V there is a vector $e_{\rho} \in V$ such that $(\rho - 1)(V) = ke_{\rho}$ and a functional $x_{\rho} \in V^*$ such that $\rho(v) - v = x_{\rho}(v)e_{\rho}$. Then $v \in V^{\rho}$ if and only if $x_{\rho}(v) = 0$, or x_{ρ} is a linear form defining the fixed-points set V^{ρ} . There also is a unique linear map Δ_{ρ} : $k[V] \rightarrow k[V]$ such that for $f \in k[V]$

$$\rho(f) - f = \Delta_{\rho}(f) x_{\rho}.$$

406

The pseudo-reflection is called a *transvection* if $\rho(e_{\rho}) = e_{\rho}$, *i.e.*, $e_{\rho} \in V^{\rho}$, or equivalently if $\Delta_{\rho}(x_{\rho}) = 0$. The fixed-points set V^{ρ} is then called a transvection hyperplane. Otherwise the pseudo-reflection is diagonalisable over k, and called *homology*, *i.e.*, there is a basis of V consisting of eigenvectors. A *transvection group* is a group generated by transvections.

Proposition 3.1 Let G be a finite abelian transvection group acting on V.

- (i) \mathfrak{H}_{V^G} is a complete intersection ideal, where \mathfrak{H}_{V^G} is the Hilbert ideal relative to V^G .
- (ii) *G* is an abelian *p*-group, where *p* is the characteristic of the field.

Proof (i) Let r_1 and r_2 be two transvections in *G*, whose fixed-point sets are defined by the two linear forms x_1 and x_2 . Then for any $f \in k[V]$ there is a unique $\Delta_1(f)$ and $\Delta_2(f)$ such that $r_i(f) = f + \Delta_i(f)x_i$, for i = 1, 2. Since the r_i are transvections, we have $\Delta_i(x_i) = 0$. For any linear form *y* we have that $\Delta_i(y)$ is a scalar and

$$r_1(r_2(y)) = r_1(y + \Delta_2(y)x_2) = y + \Delta_1(y)x_1 + \Delta_2(y)x_2 + \Delta_2(y)\Delta_1(x_2)x_1,$$

$$r_2(r_1(y)) = r_2(y + \Delta_1(y)x_1) = y + \Delta_2(y)x_2 + \Delta_1(y)x_1 + \Delta_1(y)\Delta_2(x_1)x_2.$$

Since *G* is abelian we get for all $y \in V^*$ that $\Delta_2(y)\Delta_1(x_2)x_1 = \Delta_1(y)\Delta_2(x_1)x_2$.

If x_1 and x_2 are dependent then $\Delta_i(x_j) = 0$. Supposing they are independent, we get $\Delta_2(y)\Delta_1(x_2) = 0$ for all linear forms y, hence $\Delta_1(x_2) = 0$. Similarly $\Delta_2(x_1) = 0$. Therefore we get $r_i(x_j) = x_j$. Since our group is an abelian transvection group, it follows that any linear form defining a transvection hyperplane is a *G*-invariant linear form.

Let $\mathfrak{T} \subset G$ be the collection of transvections in *G*. For any $\tau \in \mathfrak{T}$ fix x_{τ} as above. Since the transvections generate *G* we get

$$(V^G)^{\perp} = \left(\bigcap_{\tau \in \mathfrak{T}} V^{\tau}\right)^{\perp} = \sum_{\tau \in \mathfrak{T}} (V^{\tau})^{\perp} = \sum_{\tau \in \mathfrak{T}} \langle x_{\tau} \rangle = \langle x_{\tau} ; \tau \in \mathfrak{T} \rangle.$$

Since we just proved that each $x_{\tau} \in (V^*)^G \subseteq k[V]^G$, it follows that $(V^G)^{\perp}$ is generated by linear invariants, say x_1, \ldots, x_{n-s} , and so \mathfrak{H}_{V^G} is a complete intersection ideal, since

$$I(V^G) = (x_1, \ldots, x_{n-s}) = I(V^G)^{ce} = \mathfrak{H}_{V^G}.$$

(ii) Suppose *G* is not a *p*-group. Then (by extending the field if necessary) there exists a $\sigma \in G$ and a linear form $y \in V^*$ such that $\sigma(y) = cy$, where $c \neq 1$. Since *G* is generated by transvections, there must be a transvection $\tau \in G$, with corresponding x_{τ} and Δ_{τ} , such that $\tau(y) \neq y$, or $\Delta_{\tau}(y) \neq 0$. Then

$$\sigma\tau(y) = \sigma(y + \Delta_{\tau}(y)x_{\tau}) = cy + \Delta_{\tau}(y)\sigma(x_{\tau})$$

$$\tau\sigma(y) = \tau(cy) = cy + \Delta_{\tau}(y)cx_{\tau}.$$

Comparing, we get $\sigma(x_{\tau}) = cx_{\tau}$ and so $x_{\tau} \notin (V^*)^G$, which contradicts (i). So *G* is a *p*-group.

407

A. Broer

4 Reduction to Abelian Transvection Groups and Diagonalisable Pseudo-Reflection Groups

The following proposition allows us to treat separately abelian transvection groups and diagonalisable pseudo-reflection groups. The first two parts were known to Nakajima [6, Proof of Proposition 2.1].

Proposition 4.1 Let G < GL(V) be an abelian pseudo-reflection group G acting on V. Denote T for the subgroup of G generated by the transvections and D for the subgroup generated by the homologies in G.

- (i) Then D is a non-modular group, T is a p-group and $G = T \times D$.
- (ii) There is a direct sum decomposition of kG-modules $V = V^D \oplus V_D$, where D acts trivially on V^D and T acts trivially on V_D . For the invariant rings we get

$$k[V]^G \simeq k[V^D]^T \otimes k[V_D]^D$$

Consequently, the G-action on V is coregular if and only if the T-action on V^D (or on V) and the D-action on V_D (or on V) are coregular.

(iii) The direct summand property holds for the G-action on V if and only if the direct summand property holds for the T-action on V^D (or V).

Proof (i) Since every generator of *D* is diagonalisable over *k* and *D* is abelian, the group *D* is simultaneously diagonalisable; in particular it is non-modular. Since *T* is an abelian transvection group, it is a *p*-group by Lemma 3.1. So $T \cap D = \{1\}$ and $G = T \times D$.

(ii) Let V^D be the space of invariants and V_D the direct sum of the remaining eigenspaces of D, so at least $V = V^D \oplus V_D$ as kG-modules.

If $\tau \in T$, then by commutativity also $\tau(v) \in V^D$, so V^D is a *kG*-submodule.

Let τ be transvection with corresponding $e_{\tau} \in V$ and $x_{\tau} \in V^*$ such that $\tau(v) - v = \delta(v)e_{\tau}$, for any $v \in V$. Let σ be a homology and $\sigma v = cv$, where v is the eigenvector for σ with eigenvalue $c \neq 1$. Then $\tau \sigma v = \tau cv = cv + x_{\tau}(v)ce_{\tau}$ and $\sigma \tau v = \sigma(v + x_{\tau}(v)e_{\tau}) = cv + x_{\tau}(v)\sigma(e_{\tau})$. Commutativity implies $x_{\tau}(v)(\sigma(e_{\tau}) - ce_{\tau}) = 0$. If $x_{\tau}(v) \neq 0$, it follows that e_{τ} is an eigenvector for σ with eigenvalue $c \neq 1$ is one-dimensional). But since $e_{\tau} \in V^{\tau}$ (since τ is a transvection) it follows that $\tau(v) = v$ and so $x_{v}(v) = 0$, which is a contradiction. So necessarily $x_{\tau}(v) = 0$ and $\tau(v) = v$.

Since the eigenvectors of homologies with non-identity eigenvalue span V_D (since those homologies generate D), it follows that T acts trivially on V_D . In particular V_D is also a kG-submodule and $V = V^D \oplus V_D$ is a decomposition as kG-modules.

Let y_1, \ldots, y_m be a basis of linear forms vanishing on V_D , and z_1, \ldots, z_{n-m} a basis of linear forms vanishing on V^D . So y_1, \ldots, y_m are coordinate functions on V^D , z_1, \ldots, z_{n-m} are coordinate functions on V_D , and

$$k[V] = k[y_1, \dots, y_m, z_1, \dots, z_{n-m}] = k[y_1, \dots, y_n] \otimes k[z_1, \dots, z_{n-m}]$$
$$= k[V_D] \otimes k[V^D].$$

For the invariants we get $k[V]^G \simeq k[V^D]^T \otimes k[V_D]^D$.

408

Invariant Theory of Abelian Transvection Groups

(iii) The different of the *G*-action θ_G is a product of linear forms x_{α} , where the zero-set of x_{α} , say $V_{\alpha} := \{v \in V; x_{\alpha}(v) = 0\}$, is the fixed-point set of a pseudo-reflection [2, Proposition 9]. The same holds for θ_T and θ_D . If τ is a transvection, then $V^{\tau} \supset V_D$; if τ is diagonalisable, then $V^{\tau} \supset V^D$. It follows that $\theta_T \in k[y_1, \ldots, y_m] = k[V^D]$ and $\theta_D \in k[z_1, \ldots, z_{n-m}] \in k[V_D]$ and $\theta_G = \theta_T \cdot \theta_D$. In particular *T* acts trivially on θ_D and *D* acts trivially on θ_T .

Suppose the direct summand property holds for the *G*-action, *i.e*, there exists a $\tilde{\theta}_G \in k[V]$ such that $\operatorname{Tr}^G(\frac{\tilde{\theta}_G}{\theta_C}) = 1$. Put $\hat{\theta}_T := \operatorname{Tr}^D(\frac{\tilde{\theta}_G}{\theta_C})$, then

$$\operatorname{Tr}^{T}\left(\frac{\hat{\theta}_{T}}{\theta_{T}}\right) = \operatorname{Tr}^{T}\left(\frac{1}{\theta_{T}}\operatorname{Tr}^{D}\left(\frac{\tilde{\theta}_{G}}{\theta_{D}}\right)\right) = \operatorname{Tr}^{T}\left(\operatorname{Tr}^{D}\left(\frac{\tilde{\theta}_{G}}{\theta_{D}}\right)\right) = 1,$$

since $\operatorname{Tr}^{G} = \operatorname{Tr}^{T} \circ \operatorname{Tr}^{D}$ and θ_{T} is *D*-invariant. So the direct summand property holds for the *G*-action *V*.

Suppose that $\hat{\theta}_T$ is not in $k[V^D] = k[y_1, \dots, y_n]$. So we can write

$$\hat{\theta}_T = \tilde{\theta}_T + \sum_{i=1}^{n-m} z_i f_i,$$

where $\tilde{\theta}_T \in k[V^D]$ and $f_i \in k[V]$. Then

$$1 = \operatorname{Tr}^{T}\left(\frac{\hat{\theta}_{T}}{\theta_{T}}\right) = \operatorname{Tr}^{T}\left(\frac{\tilde{\theta}_{T}}{\theta_{T}}\right) + \sum_{i=1}^{n-m} z_{i} \operatorname{Tr}^{T}\left(\frac{f_{i}}{\theta_{T}}\right) = \operatorname{Tr}^{T}\left(\frac{\tilde{\theta}_{T}}{\theta_{T}}\right),$$

since $\operatorname{Tr}^{T}(f_{i}/\theta_{T})$ is of negative degree, hence 0. It follows that the direct summand property also holds for the *T*-action on V^{D} .

Conversely, suppose the direct summand property holds for the *T*-action on *V*. Then by the foregoing argument the direct summand property also holds for the *T*-action on V^D . Hence there is a $\tilde{\theta}_T \in k[y_1, \ldots, y_m]$ such that $\operatorname{Tr}^T(\tilde{\theta}_T/\theta_T) = 1$. Put $\tilde{\theta}_G := |D|^{-1} \cdot \theta_D \cdot \tilde{\theta}_T$. This makes sense since *D* is non-modular. Then

$$\operatorname{Tr}^{G}\left(\frac{\tilde{\theta}_{G}}{\theta_{G}}\right) = \operatorname{Tr}^{T} \circ \operatorname{Tr}^{D}\left(\frac{|D|^{-1} \cdot \theta_{D} \cdot \tilde{\theta}_{T}}{\theta_{T} \cdot \theta_{D}}\right) = \operatorname{Tr}^{T}\left(\frac{\tilde{\theta}_{T}}{\theta_{T}} \operatorname{Tr}^{D}(|D|^{-1})\right) = 1$$

and so the direct summand property also holds for the G-action on V.

5 **Proofs of Main Results**

We now prove our main theorem and its corollary.

Theorem 1.1 Suppose G < GL(V) is an abelian group acting on the finite-dimensional vector space V. Then the action is coregular if and only if G is a pseudo-reflection group and the direct summand property holds.

Proof Even when *G* is not abelian, by a theorem of Serre it is generally true that if the action is coregular, then *G* acts as a pseudo-reflection group and the direct summand property holds [2].

Suppose that *G* is an abelian pseudo-reflection group and the direct summand property holds. Then $G = T \times D$, where *T* is the subgroup generated by transvections and *D* the subgroup generated by diagonalisable reflections, as in Proposition 4.1. We use the notation of that proposition. Since *D* is a non-modular pseudo-reflection group acting on V_D , it follows from the classical Chevalley–Shephard–Todd theorem that $k[V_D]^D$ is a polynomial ring. From Proposition 4.1 it also follows that *T* is an abelian transvection group acting on V^D and that this action has the direct summand property. From Proposition 3.1 and Lemma 2.2 it follows that the Hilbert ideal \mathfrak{H} of this action is a complete intersection ideal. So by the criterion in Proposition 2.1 it follows that the *T*-action on V^D is coregular, and so $k[V^D]^T$ is a polynomial ring. So $k[V]^G = k[V_D]^T \otimes k[V_D]^D$ (see Proposition 4.1 again) is a polynomial ring. Hence the *G*-action is coregular.

We get a special case of Shank–Wehlau's conjecture [8].

Corollary 1.2 Let G < GL(V) be an abelian p-group acting linearly on the vector space V. The image of the transfer map Tr^G is a principal ideal in $k[V]^G$ if and only if the action is coregular.

Proof In [2] it was already shown for *p*-groups that the direct summand property holds if and only if the image of the transfer map Tr^G is a principal ideal in $k[V]^G$ and that this condition implies that *G* is a transvection group, and if *G* is abelian, then Theorem 1.1 implies that the action is even coregular. Conversely, if the action is coregular, then the direct summand property holds and the image of the transfer is a principal ideal.

Example 1 The simplest example of an abelian transvection group that satisfies neither the direct summand property nor the coregularity property is the following. Take p = 2, $k = \mathbb{F}_2$, $G = \langle \sigma_1, \sigma_2, \sigma_3 \rangle \simeq (\mathbb{Z}/2\mathbb{Z})^3$, $V = \mathbb{F}_2^3$ and the action is defined by the three matrices

	/1	0	0	0)		/1	0	0	0)		/1	0	0	0)	
$\sigma_1 =$	0	1	0	0	; $\sigma_2 =$	0	1	0	0	; $\sigma_3 =$	0	1	0	0).
	1	0	1	0		0	0	1	0		1	1	1	0	
	0	0	0	1/		0	1	0	1/		1	1	0	1/	

In fact σ_1 , σ_2 , and σ_3 are the only transvections in the group, with transvection hyperplanes defined by x_1 , x_2 , and $x_1 + x_2$, respectively. So the ideal *I* defining V^G is $I = (x_1, x_2)$ and the Dedekind different is $\theta = x_1 x_2 (x_1 + x_2)$. A minimal generating set of invariants is (see [5]) x_1 , x_2 and

$$f_3 := x_1 x_3 (x_1 + x_3) + x_2 x_4 (x_2 + x_4);$$

$$N(x_3) = x_3 (x_3 + x_1) (x_3 + x_2) (x_3 + x_1 + x_2);$$

$$N(x_4) = x_4 (x_4 + x_1) (x_4 + x_2) (x_4 + x_1 + x_2).$$

There is one generating relation among the generators.

The Hilbert ideals are complete intersection ideal $\mathfrak{H} = (x_1, x_2, N(x_3), N(x_4))$, and $\mathfrak{H}_{V^G} = (x_1, x_2)$. But the direct summand property does not hold, since if it would hold we would have for $J = (x_1, x_2)k[V]^G$ that $J = J^{ec}$, but $J^{ec} = (x_1, x_2, f_3)k[V]^G$. Or more directly, a calculation shows that if $f \in k[V]$ is of degree 3, then $\operatorname{Tr}^G(f/\theta_G) = 0$.

Acknowledgement The author wishes to thank Jianjun Chuai for some interesting discussions on the Hilbert ideal.

References

- D. J. Benson, *Polynomial Invariants of Finite Groups*. London Mathematical Society Lecture Note Series 190. Cambridge University Press, Cambridge, 1993.
- [2] A. Broer, The direct summand property in modular invariant theory. Transform. Groups 10(2005), no. 1, 5–27. doi:10.1007/s00031-005-1001-0
- [3] _____, On Chevalley–Shephard–Todd's theorem in positive characteristic. In: Symmetry and spaces, Progress in Mathematics, 278, Birkhäuser, Boston, 2010, pp. 21–34.
- [4] H. Derksen and G. Kemper, *Computational invariant theory*. Invariant Theory and Algebraic Transformation Groups, I. Encyclopaedia of Mathematical Sciences 130. Springer-Verlag, Berlin, 2002.
- [5] H. Nakajima, Invariants of finite groups generated by pseudoreflections in positive characteristic. Tsukuba J. Math. 3(1979), no. 1, 109–122.
- [6] _____, Modular representations of abelian groups with regular rings of invariants. Nagoya Math. J. 86(1982), 229–248.
- [7] _____, Regular rings of invariants of unipotent groups. J. Algebra 85(1983), no. 2, 253–286. doi:10.1016/0021-8693(83)90094-7
- [8] R. J. Shank and D. L. Wehlau, *The transfer in modular invariant theory*. J. Pure Appl. Algebra 142(1999), no. 1, 63–77. doi:10.1016/S0022-4049(98)00036-X

Département de mathématiques et de statistique, Université de Montréal, Montréal, QC H3C 3J7 e-mail: broera@dms.umontreal.ca