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Abstract

System signatures are useful tools in the study and comparison of coherent systems. In
this paper, we define and study a similar concept, called the joint signature, for two
coherent systems which share some components. Under an independent and identically
distributed assumption on component lifetimes, a pseudo-mixture representation based
on this joint signature is obtained for the joint distribution of the lifetimes of both systems.
Sufficient conditions are given based on the respective joint signatures of two pairs of
systems, each with shared components, to ensure various forms of bivariate stochastic
orderings between the joint lifetimes of the two pairs of systems.
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1. Introduction

The present investigation is focused on the joint behavior of pairs of systems which have one
or more shared components. Our main goal is to characterize the joint (bivariate) distribution
of the lifetimes T1 and T2 of the two systems. Our approach involves the expansion of the
scope of the theory of system signatures. We will develop representation results for the joint
distribution G(t1, t2) = P(T1 ≤ t1, T2 ≤ t2) in terms of the newly defined joint signature of the
two systems. Before reviewing the characteristics of system signatures in the univariate case
that will be relevant to the present study, and before we proceed with the development of joint
signatures and their applications, we will begin with a brief discussion of the type of systems
and scenarios from which the present work is motivated.

A frequently encountered example of systems with shared components occurs in networked
computing in which a server (say a file server or Web server) is used in tandem with several
individual computers. It is typical that departments within a company or university will store
almost all of the files for the department’s individual PCs on one central server. If the central
server goes down, the PCs with local disks may retain certain limited capabilities, while other
PCs may not work at all. The performance of any given pair of PCs will depend on the
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performance of the shared components (those in the central server) and the performance of
its own individual components. An appropriate abstraction of the situation above is the case
of two ‘slave’ computers linked to a server. The former computers have components with
lifetimes U1, U2, . . . , Ur and V1, V2, . . . , Vs , respectively, while the server has components
with lifetimes W1, W2, . . . , Wk . The lifetime T1 of the first slave computer is thus a function
of the Us and the W s, while the lifetime T2 of the second slave computer depends on the V s
and the W s. Here, we will focus on the development of exact representations, in quite general
settings, of the joint lifetime distribution G of the pair (T1, T2) as a function of a pair of matrices
(S, S∗) we will call the joint signature of the two systems, a distribution-free measure of the
designs of the two systems. The representation theorems presented in Section 2 assume that all
component lifetimes are independent and identically distributed (i.i.d.) random variables with
common lifetime distribution F . Our result explicitly displays the distribution function G as a
function f ((S, S∗), F ) depending solely on the signature (S, S∗) of the joint system and the
underlying component distribution F .

We make brief mention of other applications in which systems with shared components
arise. Computers based on the notion of a ‘redundant array of independent disks’ (or RAID
computers) were studied theoretically by various researchers in the 1980s and were developed
further by Patterson and his co-workers at the University of California, Berkeley, as vehicles
for achieving high levels of storage reliability from redundant configurations of less reliable
PC-class disk-drive components. In RAID systems, it is often the case that the disks in a central
server are fully duplicated, so that if one disk in the central server goes down, the (slave) PCs
will still operate fully. Repeated (and unrepaired) failures of disks in the central server will
eventually cause the PCs to fail. A similar situation arises in the area of computer networks.
In this case, there is typically a shared gateway to a given network, and all computers in the
network route their communications (e.g. email) through the gateway. In all the examples
above, a given pair of systems of interest will share the components of an external system and,
thus, have dependent joint lifetimes that are functions of the performance of the components
they have in common.

The signature of a coherent system in n i.i.d. components is defined as the probability vector
s = (s1, s2, . . . , sn), whose ith element is the probability that the system fails upon the ith
component failure, that is, si = P(T = Xi:n) for i ∈ {1, 2, . . . , n}, where T is the system’s
lifetime and X1:n, X2:n, . . . , Xn:n are the order statistics corresponding to the n component
lifetimes. A system’s signature has proven to be quite a useful proxy for a system’s design, as
it is a distribution-free measure (that is, one that does not depend on F ) that efficiently captures
the precise features of a system’s design which influence its performance. System signatures
were introduced in [7]; their theory and applications are treated in detail in [8]. The utility of
signatures in gauging the performance of systems in i.i.d. components derives, in part, from
representation theorems such as the following.

Theorem 1.1. ([7].) Consider a coherent system of order n based on components with i.i.d.
lifetimes X1, X2, . . . , Xn distributed according to the common continuous distribution F . Let
T be the system’s lifetime. Then the distribution function FT (t) = P(T ≤ t) can be written as

FT (t) =
n∑

i=1

siFi:n(t), (1.1)

where Fi:n(t) = P(Xi:n ≤ t) and X1:n, X2:n, . . . , Xn:n are the order statistics associated to
X1, X2, . . . , Xn.
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The above result has been shown to apply to ‘mixed systems’ as well, that is, to stochastic
mixtures of coherent systems (see [8, pp. 28–32]). Similar representations for the residual
lifetime (T − t | T > t) of T can be seen in [4] and [9]. Navarro et al. [6] proved that
this representation can be extended to systems with exchangeable components. Moreover, they
proved that the distribution of the lifetime of a coherent system with n components can be written
as a mixture of the order statistics obtained from the lifetimes of m > n components. The vector
of coefficients in that representation was called signature of order m. These representations
allow us to compare systems of different orders (see [6]) and to obtain bounds for their variances
(see [2]). The following is a simple version of this representation result that relates the signature
s of a system of n components with i.i.d. lifetimes ∼ F to the signature s∗ of a system of n + 1
such components which has an identical lifetime distribution

s∗ =
(

n

n + 1
s1,

1

n + 1
s1 + n − 1

n + 1
s2,

2

n + 1
s2 + n − 2

n + 1
s3, . . . ,

n

n + 1
sn

)
. (1.2)

The equivalent signatures referred to in the sequel may all be calculated by repeated application
of (1.2).

The remainder of this paper is organized as follows. In Section 2, we treat the definition and
basic properties of the joint signature of two coherent systems. In Section 3, we use the joint
signatures to obtain ordering properties. A discussion is given in Section 4. Throughout the
paper, when we say that a function g is increasing or decreasing, we mean that g(a) ≤ g(b) or
g(a) ≥ g(b) for a < b, respectively.

2. The joint signature of two coherent systems

We will assume throughout this paper that the components of the systems considered have
i.i.d. lifetimes with common continuous distribution F (and reliability function F̄ = 1 − F ).
We will also take the support set of the distribution to be (0, ∞). The lifetimes of the
components will be represented by X1, X2, . . . , Xn and the associated order statistics by
X1:n, X2:n, . . . , Xn:n. The distribution function of Xi:n will be represented by Fi:n and its
reliability function by F̄i:n = 1 − Fi:n for i = 1, 2, . . . , n.

Suppose that we have two coherent systems based on some of these components, that is, the
lifetimes of the systems can be written as T1 = φ1(Y1, Y2, . . . , Ym1) and T2 = φ2(Z1, Z2, . . . ,

Zm2), where {Y1, Y2, . . . , Ym1} and {Z1, Z2, . . . , Zm2} are subsets of {X1, X2, . . . , Xn}. We
will denote the joint distribution of (T1, T2) by G(t1, t2) = P(T1 ≤ t1, T2 ≤ t2) and its
reliability function by Ḡ(t1, t2) = P(T1 > t1, T2 > t2). Note that, as the two systems can
share some components, they may fail at the same time with positive probability, so their joint
distribution can have a singular part.

The main result of the paper is given in the following theorem, in which we show that G

can be written as a pseudo-mixture of the distributions of the order statistics associated to the
component lifetimes.

Theorem 2.1. The joint distribution G of T1 and T2 can be written as

G(t1, t2) =
n∑

i=1

n∑
j=0

si,jFi:n(t1)Fj :n(t2) for t1 ≤ t2 (2.1)

and

G(t1, t2) =
n∑

i=0

n∑
j=1

s∗
i,jFi:n(t1)Fj :n(t2) for t1 > t2, (2.2)
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where Fi:n, i = 1, 2, . . . , n, are the distribution functions of the order statistics associated to
the component lifetimes, F0:n = 1 (by convention), and {si,j } and {s∗

i,j } are collections of

coefficients (which do not depend on F ) such that
∑n

i=1
∑n

j=0 si,j = ∑n
i=0

∑n
j=1 s∗

i,j = 1.

Proof. From [1, p. 12], the lifetime of the first coherent system can be written as

T1 = min
i=1,2,...,r

XCi ,

where C1, C2, . . . , Cr are subsets of {1, 2, . . . , n}, called minimal cut sets, such that
⋃r

i=1Ci =
{1, 2, . . . , n} and XC denotes the lifetime of the parallel system with components in C, that
is, XC = maxj∈C Xj for C ⊆ {1, 2, . . . , n}. Analogously, the lifetime of the second coher-
ent system can be written as T2 = minj=1,2,...,s XDj , where D1, D2, . . . , Ds are subsets of
{1, 2, . . . , n} such that

⋃s
i=1 Di = {1, 2, . . . , n}. Therefore, the joint distribution function can

be written as

G(t1, t2) = P(T1 ≤ t1, T2 ≤ t2)

= P
(

min
i=1,2,...,r

XCi ≤ t1, min
j=1,2,...,s

XDj ≤ t2

)

= P

( r⋃
i=1

{XCi ≤ t1},
s⋃

j=1

{XDi ≤ t2}
)

= P

( r⋃
i=1

s⋃
j=1

({XCi ≤ t1} ∩ {XDi ≤ t2})
)

.

Then, using the inclusion–exclusion formula for the probability of a union of events, we find
that G(t1, t2) is a linear combination of probabilities such as P({XC ≤ t1}∩ {XD ≤ t2}), where
C and D are unions of C1, C2, . . . , Cr and D1, D2, . . . , Ds , respectively. Moreover, if t1 ≤ t2,
then P({XC ≤ t1} ∩ {XD ≤ t2}) = P({XC ≤ t1} ∩ {XD−C ≤ t2}), where ∅ ⊆ D − C ⊆ D.
Then, using the fact that the component lifetimes are i.i.d. with common distribution function
F , we have

P({XC ≤ t1} ∩ {XD−C ≤ t2}) = F |C|(t1)F |D−C|(t2)

for t1 ≤ t2, where |C| and |D − C| denote the cardinality of sets C and D − C, respectively.
Note that if D − C = ∅ then |D − C| = 0 and the corresponding probability depends only
on t1. Therefore, the joint distribution can be written, for t1 ≤ t2, as

G(t1, t2) =
n∑

i=1

n−i∑
j=0

ci,jF
i(t1)F

j (t2),

where ci,j are integers which do not depend on F (that is, they depend only on the minimal
cut sets), and F i(t1) and Fj (t2) are the distribution functions of parallel systems with i and j

i.i.d. components, respectively. Hence, using the property that the distribution of any coherent
system (and, in particular, that of parallel systems) with fewer than n components can be
written as a mixture of the distribution functions of the order statistics X1:n, X2:n, . . . , Xn:n
(see [6]), we obtain (2.1). The proof of (2.2) in the case t1 > t2 is analogous. Moreover, note
that if we take t1, t2 → ∞ with t1 ≤ t2, then we obtain

∑n
i=1

∑n
j=0 si,j = 1. The fact that∑n

i=0
∑n

j=1 s∗
i,j = 1 follows similarly.

https://doi.org/10.1239/jap/1269610828 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1269610828


Joint signature of coherent systems 239

The vector of matrices (S, S∗), where S = (si,j ) and S∗ = (s∗
i,j ), with the coefficients used

in representations (2.1) and (2.2), is called the joint signature of the systems. The proof of the
preceding theorem shows how these coefficients can be computed. This procedure is illustrated
in the following examples.

Example 2.1. Let us consider the coherent systems with lifetimes T1 = max(X1, X2) and
T2 = max(X2, X3), where X1, X2, X3 are the i.i.d. component lifetimes. Note that the systems
have the same structure and that they share one component. Hence, the joint distribution G of
(T1, T2) can be written, for t1 ≤ t2, as

G(t1, t2) = P(T1 ≤ t1, T2 ≤ t2)

= P(X1 ≤ t1, X2 ≤ t1, X3 ≤ t2)

= P(X1 ≤ t1) P(X2 ≤ t1) P(X3 ≤ t2)

= F 2(t1)F (t2)

= F2:2(t1)F1:1(t2).

Then, as the signatures of order 3 of X2:2 and X1:1 can be shown to be (0, 1
3 , 2

3 ) and ( 1
3 , 1

3 , 1
3 ),

respectively, using the representations given in [6], we obtain

G(t1, t2) = ( 1
3F2:3(t1) + 2

3F3:3(t1)
)( 1

3F1:3(t2) + 1
3F2:3(t2) + 1

3F3:3(t2)
)

= 1
9F2:3(t1)F1:3(t2) + 1

9F2:3(t1)F2:3(t2) + 1
9F2:3(t1)F3:3(t2)

+ 2
9F3:3(t1)F1:3(t2) + 2

9F3:3(t1)F2:3(t2) + 2
9F3:3(t1)F3:3(t2)

for t1 ≤ t2. Analogously, for t1 > t2, we obtain

G(t1, t2) = F(t1)F
2(t2)

= 1
9F1:3(t1)F2:3(t2) + 2

9F1:3(t1)F3:3(t2) + 1
9F2:3(t1)F2:3(t2)

+ 2
9F2:3(t1)F3:3(t2) + 1

9F3:3(t1)F2:3(t2) + 2
9F3:3(t1)F3:3(t2).

Therefore, the joint signature is determined by

S =
⎛
⎜⎝

0 0 0 0
0 1

9
1
9

1
9

0 2
9

2
9

2
9

⎞
⎟⎠

and S∗ = S
, where S
 represents the transpose of the matrix S. Note that the system lifetimes
can be equal with probability

P(T1 = T2) = P(X2 > max(X1, X3)) = 1
3 .

Hence, G has a singular part. Also, note that T1 and T2 are equal in law and that T1 and T2 are
exchangeable (i.e. (T1, T2) =st (T2, T1)).

Example 2.2. Let us consider the coherent systems with lifetimes T1 = min(X1, max(X2, X3))

and T2 = max(X1, X2, X3) = X3:3, where X1, X2, X3 are the i.i.d. component lifetimes. Note
that the systems have different structures and that they share all the components. Also, note that
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T1 ≤ T2, so the value of T1 can be used to predict the value of T2. Hence, the joint distribution
G of (T1, T2) can be written, for t1 ≤ t2, as

G(t1, t2) = P(min(X1, max(X2, X3)) ≤ t1, max(X1, X2, X3) ≤ t2)

= P({X1 ≤ t1} ∪ {max(X2, X3) ≤ t2}, max(X1, X2, X3) ≤ t2)

= P(X1 ≤ t1, max(X1, X2, X3) ≤ t2)

+ P(max(X2, X3) ≤ t1, max(X1, X2, X3) ≤ t2)

− P(X1 ≤ t1, max(X2, X3) ≤ t1, max(X1, X2, X3) ≤ t2)

= P(X1 ≤ t1, X2 ≤ t2, X3 ≤ t2) + P(X2 ≤ t1, X3 ≤ t1, X1 ≤ t2)

− P(X1 ≤ t1, X2 ≤ t1, X3 ≤ t1)

= F(t1)F
2(t2) + F 2(t1)F (t2) − F 3(t1)

= F1:1(t1)F2:2(t2) + F2:2(t1)F1:1(t2) − F3:3(t1).

Then, as the signatures of order 3 of X1:1, X2:2, and X3:3 are ( 1
3 , 1

3 , 1
3 ), (0, 1

3 , 2
3 ), and (0, 0, 1),

respectively, using the representations given in [6], we obtain

G(t1, t2) = 1
9F1:3(t1)F2:3(t2) + 2

9F1:3(t1)F3:3(t2)
+ 1

9F2:3(t1)F1:3(t2) + 2
9F2:3(t1)F2:3(t2) + 3

9F2:3(t1)F3:3(t2)
− F3:3(t1) + 2

9F3:3(t1)F1:3(t2) + 3
9F3:3(t1)F2:3(t2) + 4

9F3:3(t1)F3:3(t2)

for t1 ≤ t2. Analogously, for t1 > t2, we obtain

G(t1, t2) = P(T1 < t1, T2 < t2) = P(T2 < t2) = F3:3(t2).

Therefore, the joint signature is determined by

S =
⎛
⎜⎝

0 0 1
9

2
9

0 1
9

2
9

3
9

−1 2
9

3
9

4
9

⎞
⎟⎠ and S∗ =

⎛
⎜⎜⎝

0 0 1
0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎠ .

In this case P(T1 = T2) = 0 and, hence, the joint distribution G is absolutely continuous.
However, G is not exchangeable.

Example 2.1 shows that G can have a singular part and Example 2.2 shows that some
coefficients in the joint signature can be negative. Note that Fi:n(t1)Fj :n(t2) is the absolutely
continuous distribution function of two independent k-out-of-n systems (with k = n− i+1 and
k = n−j +1) in a parallel structure. Hence, it is not possible to obtain a representation similar
to (2.1) for G(t1, t2) for all t1 and t2 (e.g. when G has a singular part). For this reason, we need
the pseudo-mixture representation given in (2.1) and (2.2). If F is absolutely continuous then
it is easy to see that G is absolutely continuous if and only if P(T1 = T2) = 0. In this case, its
joint probability density function can be obtained from (2.1) and (2.2).

In particular, we can apply Theorem 2.1 to the order statistics T1 = Xi:n and T2 = Xj :n
(i < j ), obtaining an expression for their joint distribution (or density) function. We can
also apply it to T1 = Xi:m and T2 = Xj :n for arbitrary i, m, j, n, but, in this case, the joint
distribution can have a singular part. For example, if T1 = X1:1 = X1 and T2 = X2:3, then
P(T1 = T2) = 1

3 and the joint distribution of (T1, T2) has a singular part.
A similar representation for the joint reliability function of two coherent systems is obtained

in the following theorem.
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Theorem 2.2. The joint reliability Ḡ of T1 and T2 can be written as

Ḡ(t1, t2) =
n+1∑
i=1

n∑
j=1

s̄i,j F̄i:n(t1)F̄j :n(t2) for t1 ≤ t2 (2.3)

and

Ḡ(t1, t2) =
n∑

i=1

n+1∑
j=1

s̄∗
i,j F̄i:n(t1)F̄j :n(t2) for t1 > t2, (2.4)

where F̄i:n, i = 1, 2, . . . , n, are the reliability functions of the order statistics associated to
the component lifetimes, F̄n+1:n = 1 (by convention), and {s̄i,j } and {s̄∗

i,j } are collections of
coefficients (which do not depend on F ) such that

n+1∑
i=1

n∑
j=1

s̄i,j =
n∑

i=1

n+1∑
j=1

s̄∗
i,j = 1.

The proof is analogous to the proof of Theorem 2.1 using the representations of the coherent
system lifetimes based on the minimal path sets given in [1, p. 12]. The vector of matrices
(S̄, S̄∗), where S̄ = (s̄i,j ) and S̄∗ = (s̄∗

i,j ), with the coefficients used in representations (2.3)
and (2.4), is called the joint reliability signature of the systems. The following example shows
the relationships between the coefficients in (2.3) and (2.4) and the coefficients in the joint
signature of the dual systems (the definition and basic properties of dual systems can be seen
in [1, pp. 5, 8, 12, 15]).

Example 2.3. Let us consider the coherent systems with lifetimes

T1 = max(X1, min(X2, X3)) and T2 = min(X1, X2, X3) = X1:3,

where X1, X2, X3 are the i.i.d. component lifetimes. These systems are the dual systems of the
systems considered in Example 2.2. Hence, the joint reliability Ḡ of (T1, T2) can be written,
for t1 > t2, as

Ḡ(t1, t2) = F̄1:1(t1)F̄1:2(t2) + F̄1:2(t1)F̄1:1(t2) − F̄1:3(t1).

Then, as the signatures of order 3 of X1:1, X1:2, and X1:3 are ( 1
3 , 1

3 , 1
3 ), ( 2

3 , 1
3 , 0), and (1, 0, 0),

respectively, using the representations given in [6], we obtain

Ḡ(t1, t2) = 4
9 F̄1:3(t1)F̄1:3(t2) + 3

9 F̄1:3(t1)F̄2:3(t2) + 2
9 F̄1:3(t1)F̄3:3(t2) − F̄1:3(t1)

+ 3
9 F̄2:3(t1)F̄1:3(t2) + 2

9 F̄2:3(t1)F̄2:3(t2) + 1
9 F̄2:3(t1)F̄3:3(t2)

+ 2
9 F̄3:3(t1)F̄1:3(t2) + 1

9 F̄3:3(t1)F̄2:3(t2)

for t1 > t2. Analogously, for t1 ≤ t2, we obtain

Ḡ(t1, t2) = P(T1 > t1, T2 > t2) = P(T2 > t2) = F̄1:3(t2).

Therefore, the joint signature (S̄, S̄∗) for the reliability function is determined by

S̄ =

⎛
⎜⎜⎝

0 0 0
0 0 0
0 0 0
1 0 0

⎞
⎟⎟⎠ and S̄∗ =

⎛
⎜⎝

4
9

3
9

2
9 −1

3
9

2
9

1
9 0

2
9

1
9 0 0

⎞
⎟⎠ .
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Note the relationships with the joint signature of the dual systems given in Example 2.2. In this
case P(T1 = T2) = 0 and, hence, the joint distribution G is absolutely continuous.

In general, the following relationships can be established.

Theorem 2.3. If s̄i,j and s̄∗
i,j are the coefficients in the joint reliability signature of two systems,

and ri,j and r∗
i,j are the coefficients in the joint signature of the dual systems, then

s̄i,j = r∗
n−i+1,n−j+1, s̄∗

i,j = rn−i+1,n−j+1, s̄n+1,j = r∗
0,n−j+1, s̄∗

i,n+1 = rn−i+1,0,

for i, j = 1, 2, . . . , n.

Navarro et al. [5] obtained representations similar to (1.1) based on parallel and series system
distributions. Specifically, they showed that the distribution function of a coherent system T

with i.i.d. (or exchangeable) components can be written as

F(t) =
n∑

i=1

aiF1:i (t) =
n∑

i=1

biFi:i (t),

where F1:i and Fi:i are the distribution functions of X1:i and Xi:i , respectively. The vectors of
coefficients a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) were called minimal signature (or
domination) and maximal signature, respectively. All these coefficients are nonnegative and
negative integers which do not depend on F and are such that

∑n
i=1 ai = ∑n

i=1 bi = 1. In
the next theorems we obtain similar representations for the joint distribution of two coherent
systems.

Theorem 2.4. The joint reliability Ḡ of T1 and T2 can be written as

Ḡ(t1, t2) =
n∑

i=0

n∑
j=1

ai,j F̄1:i (t1)F̄1:j (t2) for t1 ≤ t2 (2.5)

and

Ḡ(t1, t2) =
n∑

i=1

n∑
j=0

a∗
i,j F̄1:i (t1)F̄1:j (t2) for t1 > t2, (2.6)

where F̄1:i , i = 1, 2, . . . , n, are the reliability functions of the order statistics X1:i associated to
the component lifetimes, F̄1:0 = 1 (by convention), and {ai,j } and {a∗

i,j } are collections of
coefficients (which do not depend on F ) such that

n∑
i=0

n∑
j=1

ai,j =
n∑

i=1

n∑
j=0

a∗
i,j = 1.

Theorem 2.5. The joint distribution G of T1 and T2 can be written as

G(t1, t2) =
n∑

i=1

n∑
j=0

bi,jFi:i (t1)Fj :j (t2) for t1 ≤ t2 (2.7)

and

G(t1, t2) =
n∑

i=0

n∑
j=1

b∗
i,jFi:i (t1)Fj :j (t2) for t1 > t2, (2.8)

where Fi:i , i = 1, 2, . . . , n, are the distribution functions of the order statistics Xi:i associated
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to the component lifetimes, F0:0 = 1 (by convention), and {bi,j } and {b∗
i,j } are collections of

coefficients (which do not depend on F ) such that

n∑
i=1

n∑
j=0

bi,j =
n∑

i=0

n∑
j=1

b∗
i,j = 1.

The proofs are analogous to the proof of Theorem 2.1. The vectors (A, A∗) and (B, B∗)
with the matrices of coefficients can be called the joint minimal signature (or joint domination)
and the joint maximal signature, where A = (ai,j ), A∗ = (a∗

i,j ), B = (bi,j ), and B∗ = (b∗
i,j ).

Sometimes, these representations can be simpler than the representations obtained from Theo-
rems 2.1 and 2.2. For example, the representations for the systems considered in Example 2.1
are

G(t1, t2) = F2:2(t1)F1:1(t2) for t1 ≤ t2

and

G(t1, t2) = F1:1(t1)F2:2(t2) for t1 > t2.

3. Ordering properties using joint signatures

In this section we study bivariate ordering properties based on joint signatures, generalizing
results obtained in [3] for the univariate case. We begin with what we believe is a new ordering
between two m × n matrices with the same total mass. The total mass of a given matrix is the
sum of its elements. The total mass of the matrix A will be denoted by [A].
Definition 3.1. Let A and B be two m × n matrices with real-valued elements and the same
total mass. The matrix A is said to be smaller than the matrix B in the south-east shift ordering
(denoted by A ≤s/e→ B) if the matrix B may be obtained from the matrix A by a finite
sequence of shifts of nonnegative mass from a given element of A to another element of A that
is either lower or to the right of the original element, or both. Such shifts may be represented
as a subtraction of the value c ≥ 0 from the element ai,j of A together with the addition of c

to the element ak,l of A, where k ≥ i and l ≥ j .

Remark 3.1. We may immediately infer that if A ≤s/e→ B, then A
 ≤s/e→ B
.

Remark 3.2. It is clear that a similar ordering may be defined based on shifts of positive mass
from an element of a matrix A to elements that are either higher or to the left of that element, or
both. If a finite sequence of such shifts transform matrix A into the matrix B, then we would
say that A is smaller than B in the north-west shift ordering. While this alternative ordering will
not be used in the sequel, it may be of independent interest and applicable in other scenarios.

An example of two matrices which satisfy the south-east shift ordering follows.

Example 3.1. Let S1 and S2 be the 3 × 4 matrices given by

S1 =
⎛
⎜⎝

1
3

2
9

1
9 0

0 2
9

1
9 0

− 1
3

2
9

1
9 0

⎞
⎟⎠ and S2 =

⎛
⎜⎝

0 0 0 0
0 1

9
1
9

1
9

0 2
9

2
9

2
9

⎞
⎟⎠ .
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It is evident that [S1] = [S2] = 1. One sequence of shifts which transforms S1 into S2 is

S1 =
⎛
⎜⎝

1
3

2
9

1
9 0

0 2
9

1
9 0

− 1
3

2
9

1
9 0

⎞
⎟⎠

→
⎛
⎜⎝

0 2
9

1
9 0

0 2
9

1
9 0

0 2
9

1
9 0

⎞
⎟⎠

→
⎛
⎜⎝

0 0 1
9 0

0 2
9

1
9 0

0 2
9

1
9

2
9

⎞
⎟⎠

→
⎛
⎜⎝

0 0 0 0
0 2

9
1
9

1
9

0 2
9

1
9

2
9

⎞
⎟⎠

→
⎛
⎜⎝

0 0 0 0
0 1

9
1
9

1
9

0 2
9

2
9

2
9

⎞
⎟⎠

= S2. (3.1)

Now, as in Section 2, suppose that X1, X2, . . . , Xn ∼ F represent the i.i.d. lifetimes of n

components available for use, and let T1 and T2 be the lifetimes of two coherent systems based
on subsets of these components. Assuming that the systems share one or more components, T1
and T2 are dependent random variables, and their joint distribution G is given in Theorem 2.1.
Specifically, (2.1) and (2.2) hold, where the n × (n + 1) matrix S = (si,j ) and the (n + 1) × n

matrix S∗ = (s∗
i,j ) both have total mass 1. We have noted that the matrices S and S∗ do not

depend on the underlying distribution F , and we thus refer to the pair of matrices (S, S∗) as
the joint signature of the two systems with one or more shared components and with lifetimes
T1 and T2.

We now turn to the problem of comparing two pairs of systems, each pair based on compo-
nents with i.i.d. lifetimes having the common continuous distribution F and sharing one or more
components. Let (T (1)

1 , T
(1)

2 ) and (T
(2)

1 , T
(2)

2 ) be the joint lifetimes of the first and second paired
systems. Our goal is to identify conditions which imply some form of stochastic relationship
between (T

(1)
1 , T

(1)
2 ) and (T

(2)
1 , T

(2)
2 ). Our first result in this direction gives sufficient conditions

based on the shift ordering between the signatures of two systems for their respective lifetimes
to obey the bivariate lower orthant stochastic ordering (see [10, p. 308]) defined by

(T
(1)

1 , T
(1)
2 ) ≤lo (T

(2)
1 , T

(2)
2 )

⇐⇒ P(T
(1)

1 ≤ x, T
(1)
2 ≤ y) ≥ P(T

(2)
1 ≤ x, T

(2)
2 ≤ y) for all x, y.

Theorem 3.1. For r = 1, 2, let (T
(r)
1 , T

(r)
2 ) be the joint lifetimes of two pairs of systems with

shared components, and let (Sr , S
∗
r ) be the joint signatures of these pairs of systems. Assume

that all the components in the above systems have i.i.d. lifetimes with common continuous
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distribution F on (0, ∞). If S1 ≤s/e→ S2 and S∗
1 ≤s/e→ S∗

2 , then

(T
(1)

1 , T
(1)

2 ) ≤lo (T
(2)
1 , T

(2)
2 ).

Proof. Let us consider the effect on the value of the joint distribution G given in (2.1) for
t1 ≤ t2 when a value c > 0 is shifted from an element of S to another element that is to the right
and/or below the original element; more specifically, suppose that the value c > 0 is shifted
from element si,j to element sk,l , where k ≥ i and l ≥ j . The net change in (2.1) from such a
shift is the amount

c(Fk:n(t1)Fl:n(t2) − Fi:n(t1)Fj :n(t2)).

The negativity of this difference for 1 ≤ i ≤ k ≤ n and 1 ≤ j ≤ l ≤ n is implied by the
well-known stochastic ordering of order statistics, that is, by the fact that, for 1 ≤ u < v ≤ n,
Xu:n ≤st Xv:n. The negativity of this difference for 1 ≤ i ≤ k ≤ n and j = 0 ≤ l ≤ n

follows from the fact that, by convention, F0:n = 1. Hence, it follows that, for t1 ≤ t2, the
joint distribution G(t1, t2) in (2.1) strictly decreases through any such shift. Since S1 ≤s/e→ S2
implies that we may transform S1 into S2 by a finite sequence of such shifts, it follows that
G(1)(t1, t2) ≥ G(2)(t1, t2) for t1 ≤ t2, where G(r) represents the joint distribution of the pair of
lifetimes (T

(r)
1 , T

(r)
2 ) for r = 1, 2.

Similarly, consider the effect on the value of G in (2.2) for t1 > t2 when a value c > 0 is
shifted from an element of S∗ to another element that is to the right and/or below the original
element; more specifically, suppose that the value c > 0 is shifted from element s∗

i,j to element
s∗
k,l , where k ≥ i and l ≥ j . The net change in (2.2) from such a shift is, again, the amount

c(Fk:n(t1)Fl:n(t2) − Fi:n(t1)Fj :n(t2)).

The negativity of this difference 0 ≤ i ≤ k ≤ n and 1 ≤ j ≤ l ≤ n is implied again by the
stochastic ordering of order statistics and by the fact that, by convention, F0:n = 1. Hence, it
follows that, for t1 > t2, the joint distribution G(t1, t2) in (2.2) strictly decreases through any
such shift. Since S∗

1 ≤s/e→ S∗
2 implies that we may transform S∗

1 into S∗
2 by a finite sequence

of such shifts, it follows that G(1)(t1, t2) ≥ G(2)(t1, t2) for t1 > t2.
We thus have, under the assumptions S1 ≤s/e→ S2 and S∗

1 ≤s/e→ S∗
2 , that

G(1)(t1, t2) ≥ G(2)(t1, t2) for all (t1, t2),

or, equivalently, that (T
(1)

1 , T
(1)

2 ) ≤lo (T
(2)

1 , T
(2)
2 ).

Example 3.2. Suppose that component lifetimes X1, X2, X3 ∼ F , a continuous distribution on
(0, ∞), and let Y1, Y2, Y3 ∼ F be independent copies of the Xs. Consider two pairs of coherent
systems, one with lifetimes T

(1)
1 = min(X1, X2) and T

(1)
2 = min(X2, X3), and the other with

lifetimes T
(2)
1 = max(Y1, Y2) and T

(2)
2 = max(Y2, Y3). From Example 2.1, we know that the

joint signature (S2, S
∗
2 ) of the second pair of systems is

S2 =
⎛
⎜⎝

0 0 0 0
0 1

9
1
9

1
9

0 2
9

2
9

2
9

⎞
⎟⎠ ,

with S∗
2 = S


2 . To obtain the joint signature (S1, S
∗
1 ) of (T

(1)
1 , T

(1)
2 ), note that, for t1 < t2,
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we have

G(t1, t2) = P(T
(1)
1 ≤ t1, T

(1)
2 ≤ t2)

= P(min(X1, X2) ≤ t1, T
(1)
2 ≤ t2)

= P({X1 ≤ t1} ∪ {X2 ≤ t1}, T
(1)
2 ≤ t2)

= P(X1 ≤ t1, T
(1)

2 ≤ t2) + P(X2 ≤ t1, T
(1)
2 ≤ t2)

− P(X1 ≤ t1, X2 ≤ t1, T
(1)
2 ≤ t2)

= P(X1 ≤ t1) P(T
(1)

2 ≤ t2) + P(X2 ≤ t1) − P(X1 ≤ t1) P(X2 ≤ t1)

= F(t1) − F 2(t1) + 2F(t1)F (t2) − F(t1)F
2(t2)

= F1:1(t1) − F2:2(t1) + 2F1:1(t1)F1:1(t2) − F1:1(t1)F2:2(t2).

Thence, using the signatures of order 3 of X1:1 and X2:2 given in Example 2.1, we have

F1:1(t) = 1
3F1:3(t) + 1

3F2:3(t) + 1
3F3:3(t)

and
F2:2(t) = 1

3F2:3(t) + 2
3F3:3(t).

Hence, a straightforward calculation gives

G(t1, t2) = F1:1(t1) − F2:2(t1) + 2F1:1(t1)F1:1(t2) − F1:1(t1)F2:2(t2)
= 1

3F1:3(t1) + 2
9F1:3(t1)F1:3(t2) + 1

9F1:3(t1)F2:3(t2)
+ 2

9F2:3(t1)F1:3(t2) + 1
9F2:3(t1)F2:3(t2)

− 1
3F3:3(t1) + 2

9F3:3(t1)F1:3(t2) + 1
9F3:3(t1)F2:3(t2),

that is,

S1 =
⎛
⎜⎝

1
3

2
9

1
9 0

0 2
9

1
9 0

− 1
3

2
9

1
9 0

⎞
⎟⎠ .

By considerations of symmetry, as in Example 2.1, we obtain S∗
1 = S


1 . It has been shown in
(3.1) that S1 ≤s/e→ S2, and from this, it follows that S∗

1 ≤s/e→ S∗
2 . Thus, from Theorem 3.1

we have (T
(1)
1 , T

(1)
2 ) ≤lo (T

(2)
1 , T

(2)
2 ).

While Theorem 3.1 provides conditions which are sufficient to ensure bivariate lower orthant
ordering when comparing one pair of systems with shared components with another such pair, it
quickly becomes clear that these conditions are by no means necessary. Consider, for example,
the pairs of systems with shared components treated in the following example.

Example 3.3. Given component lifetimes X1, X2, X3 ∼ F , the lifetimes of the systems of
interest are T

(1)
1 = min(X1, max(X2, X3)) and T

(1)
2 = max(X1, X2, X3). As is shown in

Example 2.2, the joint signature of the systems with lifetimes (T
(1)
1 , T

(1)
2 ) is the matrix pair

(S1, S
∗
1 ), with

S1 =
⎛
⎜⎝

0 0 1
9

2
9

0 1
9

2
9

3
9

−1 2
9

3
9

4
9

⎞
⎟⎠ and S∗

1 =

⎛
⎜⎜⎝

0 0 1
0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎠ .
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Now consider the systems with lifetimes

T
(2)

1 = max(Y1, min(Y2, Y3)) and T
(2)
2 = max(Y1, Y2, Y3),

where Y1, Y2, Y3 ∼ F , which should certainly be better than the system above. To obtain the
joint signature of this second pair of systems, we have, for t1 ≤ t2,

G(2)(t1, t2) = P(T
(2)

1 ≤ t1, T
(2)

2 ≤ t2)

= P(Y1 ≤ t1, Y2 ≤ t1, Y3 ≤ t2) + P(Y1 ≤ t1, Y3 ≤ t1, Y2 ≤ t2)

− P(Y1 ≤ t1, Y2 ≤ t1, Y3 ≤ t1)

= 2F 2(t1)F (t2) − F 3(t1)

= 2F2:2(t1)F1:1(t2) − F3:3(t1)
= 2

( 1
3F2:3(t1) + 2

3F3:3(t1)
)( 1

3F1:3(t2) + 1
3F2:3(t2) + 1

3F3:3(t2)
) − F3:3(t1)

= 2
9F2:3(t1)F1:3(t2) + 2

9F2:3(t1)F2:3(t2) + 2
9F2:3(t1)F3:3(t2)

− F3:3(t1) + 4
9F3:3(t1)F1:3(t2) + 4

9F3:3(t1)F2:3(t2) + 4
9F3:3(t1)F3:3(t2).

Similarly, for t1 > t2, we have

P(T
(2)

1 ≤ t1, T
(2)

2 ≤ t2) = P(Y3:3 ≤ t2) = F 3(t2) = F3:3(t2).

From the above, it is evident that the joint signature of this second pair of systems is given by

S2 =
⎛
⎜⎝

0 0 0 0
0 2

9
2
9

2
9

−1 4
9

4
9

4
9

⎞
⎟⎠ and S∗

2 =

⎛
⎜⎜⎝

0 0 1
0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎠ .

Since S∗
1 = S∗

2 , verifying that these two pairs of systems satisfy the bivariate lower orthant
ordering reduces simply to showing that S1 ≤s/e→ S2. However, the latter ordering does not
hold. For example, there is no sequence of shifts to the right or downwards that will convert the
fraction 1

9 in the second row, second column of the matrix S1 into the fraction 2
9 that occupies

that position in the matrix S2. This example motivates the search for alternative sufficient
conditions which will imply bivariate lower orthant ordering.

Let us now consider the following alternative ordering between two m × n matrices.

Definition 3.2. Let C and D be two m × n matrices with real-valued elements and the same
total mass. Assume that n ≥ m and that the first n − m columns of C and D are identical. Let
C# and D# be the m × m matrices obtained by excluding the first n − m columns of each, and
relabel the elements of C# and D# as c#

i,j and d#
i,j , respectively, for 1 ≤ i, j ≤ m. The matrix

D is said to be larger than the matrix C in the south-west symmetric shift ordering (denoted by
‘≤sws→’) if the matrix D# can be obtained from the matrix C# by a finite sequence of shifts of
nonnegative mass from an element c#

i,j of C# to the element c#
j,i of C# for 1 ≤ i < j ≤ m.

An analogous definition can be made when m ≥ n as follows.

Definition 3.3. Let C and D be two m × n matrices with real-valued elements and the same
total mass. Assume that m ≥ n and that the first m − n columns of C and D are identical. Let
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C# and D# be the n × n matrices obtained by excluding the first m − n columns of each, and
relabel the elements of C# and D# as c#

i,j and d#
i,j , respectively, for 1 ≤ i, j ≤ n. The matrix

D is said to be larger than the matrix C in the north-east symmetric shift ordering (denoted by
‘≤nes→’) if the matrix D# can be obtained from the matrix C# by a finite sequence of shifts of
nonnegative mass from an element c#

i,j of C# to the element c#
j,i of C# for 1 ≤ j < i ≤ m.

Example 3.4. Consider the matrices S1 and S2 in the joint signatures of the two systems
discussed in Example 3.3. Then, clearly, S1 ≤sws→ S2, since S#

1 can be transformed into S#
2 in

the following three steps:

S#
1 =

⎛
⎜⎝

0 1
9

2
9

1
9

2
9

3
9

2
9

3
9

4
9

⎞
⎟⎠

→
⎛
⎜⎝

0 0 2
9

2
9

2
9

3
9

2
9

3
9

4
9

⎞
⎟⎠

→
⎛
⎜⎝

0 0 0
2
9

2
9

3
9

4
9

3
9

4
9

⎞
⎟⎠

→
⎛
⎜⎝

0 0 0
2
9

2
9

2
9

4
9

4
9

4
9

⎞
⎟⎠

= S#
2 .

We will now show that the latter matrix orderings will provide alternative sufficient conditions
for the bivariate lower orthant ordering of the lifetimes of two systems, each with shared
components. Our proof will require the following lemma.

Lemma 3.1. Let n be an arbitrary integer greater than 1. Let F0:n = 1, and, for 1 ≤ r ≤ n, let
Fr:n be the distribution of the rth order statistic in a random sample of size n from a common
underlying distribution F . Now, take n as fixed. Then Fr:n(t), when viewed as a function of the
variables r ∈ {0, 1, 2, . . . , n} and t ∈ (0, ∞), is a totally positive function of order 2, that is,
for any 0 ≤ i < j ≤ n and t1 ≤ t2, the determinant �, given by

� =
∣∣∣∣Fi:n(t1) Fj :n(t1)
Fi:n(t2) Fj :n(t2)

∣∣∣∣ ,
is nonnegative.

Proof. A direct proof of the total positivity claim may be given by simplifying the standard
expression for the difference Fi:n(t1)Fj :n(t2)−Fj :n(t1)Fi:n(t2) and verifying that it is nonneg-
ative. However, the fact that the order statistics {Xi:n, i = 1, 2, . . . , n} associated with an i.i.d.
sample from a common distribution F obey the reverse hazard rate ordering is well known
(see [10, p. 41]). Thus, for 1 ≤ i < j ≤ n, the ratio Fi:n(t)/Fj :n(t) is known to be decreasing
in t . This property holds for i = 0 as well by virtue of our convention that F0:n(t) = 1. These
facts immediately imply that � ≥ 0 for 0 ≤ i < j ≤ n and t1 < t2.

We note, for future use, that the following complementary result holds as well.
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Lemma 3.2. Let n be an arbitrary integer greater than 1. Let F̄n+1:n = 1, and, for 1 ≤ r ≤ n,
let F̄r:n be the reliability of the rth order statistic in a random sample of size n from a common
underlying distribution F . Now, take n as fixed. Then F̄r:n(t), when viewed as a function of the
variables r ∈ {0, 1, 2, . . . , n} and t ∈ (0, ∞), is a totally positive function of order 2, that is,
for any 0 ≤ i < j ≤ n and t1 ≤ t2, the determinant �, given by

� =
∣∣∣∣F̄i:n(t1) F̄j :n(t1)
F̄i:n(t2) F̄j :n(t2)

∣∣∣∣ ,
is nonnegative.

The proof of Lemma 3.2 follows from the hazard rate ordering of the order statistics (see [10,
p. 31]).

Theorem 3.2. Let (T
(1)
1 , T

(1)
2 ) be the lifetimes of two systems with shared components with

i.i.d. (∼ F ) lifetimes, and let (S1, S
∗
1 ) be the joint signature of these systems. Let (T

(2)
1 , T

(2)
2 )

be the lifetimes of a second pair of systems with shared i.i.d. (∼ F ) components, and let (S2, S
∗
2 )

be the joint signature of these systems. If S1 ≤sws→ S2 and S∗
1 ≤nes→ S∗

2 , then

(T
(1)

1 , T
(1)

2 ) ≤lo (T
(2)
1 , T

(2)
2 ).

Proof. Assuming that i < j , let us consider the effect on the value of the joint distribution
G given in (2.1) for t1 ≤ t2 when a value c > 0 is shifted from the (i, j)th element of S# to
the (j, i)th element of this matrix (where the # notation is used as in Definition 3.2). The net
change in (2.1) from such a shift is the amount

c(Fj :n(t1)Fi:n(t2) − Fi:n(t1)Fj :n(t2)),

which is nonpositive by Lemma 3.1. Thus, it follows that, for t1 ≤ t2, the joint distribution
G(t1, t2) of T1 and T2 cannot increase through any such shift. This argument holds true for
arbitrary values of t1 ≤ t2, and, thus, implies, under the assumption S1 ≤sws→ S2, that

G(1)(t1, t2) ≥ G(2)(t1, t2) for t1 ≤ t2, (3.2)

where G(1) is the cumulative distribution function of the systems with lifetimes (T
(1)
1 , T

(1)
2 )

and G(2) is the cumulative distribution function of the systems with lifetimes (T
(2)
1 , T

(2)
2 ).

Now, assume that i < j and that t1 > t2, and consider the effect on the sums in (2.2) when
a value c > 0 is shifted from the (j, i)th element of (S∗)# to the (i, j)th element of this matrix
(where the # notation is used as in Definition 3.3). The net change in (2.2) from such a shift is
the amount

c(Fi:n(t1)Fj :n(t2) − Fj :n(t1)Fi:n(t2)),

which is nonpositive by Lemma 3.1. It follows that, for t1 > t2, the joint distribution G(t1, t2)

of T1 and T2 cannot increase through any such shift. We thus have, under the assumption
S∗

1 ≤nes→ S∗
2 , that

G(1)(t1, t2) ≥ G(2)(t1, t2) for t1 > t2. (3.3)

The inequalities in (3.2) and (3.3) together imply that (T
(1)
1 , T

(1)
2 ) ≤lo (T

(2)
1 , T

(2)
2 ).

Example 3.5. Let us now examine Example 3.3 further. We have noted that the respective
signatures of the systems with i.i.d. components with lifetimes (T

(1)
1 , T

(1)
2 ) and (T

(2)
1 , T

(2)
2 ),
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where T
(1)

1 = min(X1, max(X2, X3)) and T
(1)
2 = X3:3, while T

(2)
1 = max(Y1, min(Y2, Y3))

and T
(2)
2 = Y3:3, obey the relations S1 ≤sws→ S2 and S∗

1 ≤nes→ S∗
2 . The ordering

(T
(1)

1 , T
(1)
2 ) ≤lo (T

(2)
1 , T

(2)
2 )

thus follows from Theorem 3.2.

A somewhat more general result may be obtained by combining the theorems above in the
following fashion. The proof is immediate.

Theorem 3.3. Let (T
(1)
1 , T

(1)
2 ) be the lifetimes of two systems with shared components with

i.i.d. (∼ F ) lifetimes, and let (S1, S
∗
1 ) be the joint signature of these systems. Let (T

(2)
1 , T

(2)
2 )

be the lifetimes of a second pair of systems with shared i.i.d. (∼ F ) components, and let (S2, S
∗
2 )

be the joint signature of these systems. Let us assume that there exists a sequence of matrices
A1, A2, . . . ,Ak such that

S1 ≤ORD A1 ≤ORD · · · ≤ORD Ak ≤ORD S2,

where the orderings above can be either ‘≤s/e→’ or ‘≤sws→’ in each step. Let us assume that
there exists another sequence of matrices B1, B2, . . . , Bl such that

S∗
1 ≤ORD B1 ≤ORD · · · ≤ORD Bl ≤ORD S∗

2 ,

where the orderings above can be either ‘≤s/e→’ or ‘≤nes→’ in each step. Then

(T
(1)

1 , T
(1)

2 ) ≤lo (T
(2)
1 , T

(2)
2 ).

Now we obtain similar conditions on joint signatures to get the upper orthant stochastic
ordering defined by

(T
(1)
1 , T

(1)
2 ) ≤uo (T

(2)
1 , T

(2)
2 )

⇐⇒ P(T
(1)
1 > x, T

(1)
2 > y) ≤ P(T

(2)
1 > x, T

(2)
2 > y) for all x, y

(see [10, p. 308]). The general result for the uo-ordering analogous to the preceding theorem
can be stated as follows.

Theorem 3.4. Let (T
(1)
1 , T

(1)
2 ) be the lifetimes of two systems with shared components with

i.i.d. (∼ F ) lifetimes, and let (S̄1, S̄
∗
1 ) be the joint reliability signature of these systems. Let

(T
(2)
1 , T

(2)
2 ) be the lifetimes of a second pair of systems with shared i.i.d. (∼ F ) components,

and let (S̄2, S̄
∗
2 ) be the joint reliability signature of these systems. Let us assume that there

exists a sequence of matrices A1, A2, . . . ,Ak such that

S1 ≤ORD A1 ≤ORD · · · ≤ORD Ak ≤ORD S2,

where the orderings above can be either ‘≤s/e→’ or ‘≤nes→’ in each step. Let us assume that
there exists another sequence of matrices B1, B2, . . . , Bl such that

S∗
1 ≤ORD B1 ≤ORD · · · ≤ORD Bl ≤ORD S∗

2 ,

where the orderings above can be either ‘≤s/e→’ or ‘≤sws→’ in each step. Then

(T
(1)
1 , T

(1)
2 ) ≤uo (T

(2)
1 , T

(2)
2 ).
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The proof is obtained from Theorem 2.2 and Lemma 3.2.
We can obtain other ordering results using the joint signatures obtained from representations

(2.5)–(2.8). To this end, we need the following orderings between two matrices with the same
total mass.

Definition 3.4. Let A and B be two m × n matrices with real-valued elements and the same
total mass. The matrix A is said to be smaller than the matrix B in the south, east, south-west
shift ordering (denoted by A ≤s/e/sw→ B) if the matrix B may be obtained from the matrix
A by a finite sequence of shifts of nonnegative mass, where each shift may be represented as
a subtraction of the value c ≥ 0 from the element di,j together with the addition of c to the
element di+1,j (south), di,j+1 (east), or di+1,j−1 (south-west), where D = (di,j ) represents A

or any matrix in the finite sequence.

Definition 3.5. Let A and B be two m × n matrices with real-valued elements and the same
total mass. The matrix A is said to be smaller than the matrix B in the south, east, north-east
shift ordering (denoted by A ≤s/e/ne→ B) if the matrix B may be obtained from the matrix
A by a finite sequence of shifts of nonnegative mass, where each shift may be represented as
a subtraction of the value c ≥ 0 from the element di,j together with the addition of c to the
element di+1,j (south), di,j+1 (east), or di−1,j+1 (north-east), where D = (di,j ) represents A

or any matrix in the finite sequence.

We can now state the following result.

Theorem 3.5. For r = 1, 2, let (T
(r)
1 , T

(r)
2 ) be the joint lifetimes of two pairs of systems

with shared components, and let (Br , B
∗
r ) be the joint maximal signatures of these pairs of

systems. Assume that all the components in the above systems have i.i.d. lifetimes with common
continuous distribution F on (0, ∞). If B1 ≤s/e/sw→ B2 and B∗

1 ≤s/e/ne→ B∗
2 , then

(T
(1)

1 , T
(1)

2 ) ≤lo (T
(2)
1 , T

(2)
2 ).

Proof. From (2.7) we have

G(t1, t2) =
n∑

i=1

n−i∑
j=0

bi,jF
i(t1)F

j (t2) for t1 ≤ t2.

Therefore, if B1 ≤s/e/sw→ B2, using the facts that

F i(t1)F
j (t2) ≥ F i+1(t1)F

j (t2), F i(t1)F
j (t2) ≥ F i(t1)F

j+1(t2),

and F i(t1)F
j (t2) ≥ F i+1(t1)F

j−1(t2),

we obtain G(1)(t1, t2) ≥ G(2)(t1, t2) for t1 ≤ t2. The proof for t1 > t2 is similar using (2.8).
Thus, we obtain G(1)(t1, t2) ≥ G(2)(t1, t2) for all t1, t2.

Analogously, the conditions for uo-ordering based on the joint minimal signatures are the
following. The proof is similar.

Theorem 3.6. For r = 1, 2, let (T
(r)
1 , T

(r)
2 ) be the joint lifetimes of two pairs of systems

with shared components, and let (Ar , A
∗
r ) be the joint minimal signatures of these pairs of

systems. Assume that all the components in the above systems have i.i.d. lifetimes with common
continuous distribution F on (0, ∞). If A1 ≤s/e/ne→ A2 and A∗

1 ≤s/e/sw→ A∗
2, then

(T
(1)
1 , T

(1)
2 ) ≥uo (T

(2)
1 , T

(2)
2 ).
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The following example illustrates how to obtain the lower orthant order between two pairs
of coherent system lifetimes using the joint maximal signatures.

Example 3.6. Let us consider the coherent system lifetimes T
(1)
1 = max(X1, X2) and T

(1)
2 =

max(X2, X3) studied in Example 2.1. Let us denote its joint distribution function as G(1)

and its joint maximal signature as (B1, B
∗
1 ). Let us consider the coherent system lifetimes

T
(2)

1 = max(Y1, Y2) and T
(2)

2 = max(Y1, Y2, Y3), where Y1, Y2, Y3 are the i.i.d. component
lifetimes with the same law as X1, X2, X3. Let us denote its joint distribution function as
G(2) and its joint maximal signature as (B2, B

∗
2 ). From the expressions for G(1) given in

Example 2.1, we have

B1 =
⎛
⎝0 0 0 0

0 1 0 0
0 0 0 0

⎞
⎠

and B∗
1 = B


1 . It is easy to see that G(2) can be written as

G(2)(t1, t2) = F 2(t1)F (t2)

for t1 ≤ t2 and
G(2)(t1, t2) = F 3(t2)

for t1 > t2. Hence, B2 = B1 and

B∗
2 =

⎛
⎜⎜⎝

0 0 1
0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎠ .

Note that B∗
1 ≤s/e/ne→ B∗

2 and, hence, from Theorem 3.5 we have (T
(1)
1 , T

(1)
2 ) ≤lo (T

(2)
1 , T

(2)
2 ).

4. Discussion

The representation of a system’s lifetime distribution as a function of the system’s ‘signature’
has proven to be a very useful tool in studying the behavior of coherent systems. Such
representations allow us to separate the influence of a system’s structure on that behavior from
the influence of the stochastic behavior of the components. The goal of the present study has
been to consider extensions of the concept of system signatures to bivariate situations in which
pairs of systems share some components and, thus, have dependent lifetimes. The problem
explored here is motivated by examples of sharing of components in the design of selected
computer networks.

In Section 2 of this paper we obtained representations for the joint distribution (and joint
reliability function) of pairs of coherent systems with shared components under the assumption
that all components have i.i.d. lifetimes. The expression derived for the joint distribution G,
for example, depended on a pair of matrices S and S∗, each of which has ‘total mass’ 1. The
pair (S, S∗) is referred to as the joint signature, and, under the assumption of i.i.d. component
lifetimes, is independent of the underlying component distribution. Given two pairs of such
joint systems, we have studied various forms of stochastic ordering among the systems’ joint
lifetimes. In Section 3 we provided a variety of conditions on the joint signatures of the two pairs
of systems which were sufficient to ensure that the two joint distributions satisfied a specific
bivariate stochastic ordering. Similar results are obtained in studying the ordering of two joint
reliability functions.
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The potential applications of ‘joint signatures’ of systems with shared components appear
to be quite broad. In work in progress we have found the representation theorems in this
paper to be useful in computing measures of dependence between the lifetimes of two systems
with shared components. Work on inference about the residual lifetime distribution of one of
these two systems, given that the other is known to have failed at a fixed time t , is of some
practical interest and appears to be analytically feasible. While we have restricted our attention
here to the bivariate case, it should be mentioned that our results extend to higher dimensions.
Problems that are open at the moment include possible extensions of our results to systems with
shared components having exchangeable lifetimes or, perhaps, various forms of independent
and nonidentically distributed lifetimes.
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