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Abstract. We consider rotational motion of an arbitrarily composed and 
shaped, deformable weakly self-gravitating body being a member of a 
system of Ν arbitrarily composed and shaped, deformable weakly self-
gravitating bodies in the post-Newtonian approximation of general relativ-
ity. Considering importance of the notion of angular velocity of the body 
(Earth, pulsar) for adequate modelling of modern astronomical observa-
tions, we are aimed at introducing a post-Newtonian-accurate definition of 
angular velocity. Not attempting to introduce a relativistic notion of rigid 
body (which is well known to be ill-defined even at the first post-Newtonian 
approximation) we consider bodies to be deformable and introduce the post-
Newtonian generalizations of the Tisserand axes and the principal axes of 
inertia. 

1. Introduction 

In the framework of general relativity the spin (angular momentum) of 
an arbitrarily composed and shaped, weakly self-gravitating deformable 
body being a member of a system of Ν arbitrarily composed and shaped, 
weakly self-gravitating deformable bodies is a well-defined notion (see, e.g., 
Damour, Soffel, Xu , 1993). However, from the astronomical (observational) 
point of view not only the spin, but also the angular velocity of rotation of 
celestial bodies plays an important role. Indeed, it is the angular velocity of 
the Earth's rotation which is directly related to the observable quantities 
in the modern geodynamical observational techniques (VLBI, SLR, LLR, 
GPS/GLONASS) . On the other hand, the angular velocity of rotation of 
pulsars plays the primary role in modelling pulsar timing data. Permanently 
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increasing accuracy of geodynamical and pulsar timing observations makes 

it very important to have a relativistic definition of angular velocity of real 

bodies as well as relativistic equations describing time-dependence of the 

angular velocity. 

For the first time, rotational equations of motion of extended bodies in 

general relativity have been discussed by Fock (1959). Fock succeeded to 

derive at the first post-Newtonian level the rotational equations of motion 

of an extended body being a member of a system of Ν gravitationally in-

teracting extended bodies. Later the equations derived by Fock have been 

thoroughly investigated in Brumberg (1972) assuming the rigid-body dis-

tribution of the velocity of the matter of each body relative to a global 

reference system. Recently the result has been significantly improved by 

Damour, Soffel and Xu (1993). In that paper the post-Newtonian rota-

tional equations of motion of an arbitrarily shaped, weakly self-gravitating 

bodies being members of a system of Ν bodies have been derived. Consider-

ing each body in its own local reference system the authors showed how to 

define a post-Newtonian spin vector of a body whose local-time evolution 

can be entirely expressed through bilinear couplings between the Blanchet-

Damour (BD) multipole moments of that body and the tidal moments of 

the external gravitational field it experiences. 

In order to introduce the post-Newtonian angular velocity we have to 

understand how the post-Newtonian spin vector can be split into a product 

of a tensor of inertia and an angular velocity. This problem, being quite 

trivial in Newtonian physics, is nontrivial and, so far, unsolved problem in 

the framework of general relativity (see, Thome, Giirsel, 1983; Soffel, 1994). 

Until now virtually all papers dealing with the problem in question were 

devoted to relativistic generalizations of the rigid-body rotation. It is quite 

understandable since the coupling between the relativistic effects in the ro-

tational motion of the Earth or a pulsar and the effects of their non-rigidity 

seem to be much smaller than the relativistic effects themselves which were 

the primary goal of the investigations. However, in the relativistic frame-

work it is impossible to define rigorously a precessing, rigidly rotating body 

even at the first post-Newtonian approximation (see, e.g., Thorne, Giirsel, 

1983; Soffel, 1994 and references cited therein). That is why, the authors 

were forced to drop all the terms nonlinear with respect to angular velocity 

which might be a critical restriction. Moreover, it seems to be unsatisfac-

tory to introduce, into relativistic considerations, a notion which cannot be 

rigorously defined even in the first post-Newtonian approximation. 

In Newtonian case the notion of rigid body plays a fundamental role 

in discussing the spatial rotation of extended bodies. Rigid-body rotation 

is not only a first-order (though usually quite accurate) approximation for 

real celestial bodies, but it also intimately relates to the properties of the 
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absolute Newtonian space which is an Euclidean 3-dimensional manifold 

from the mathematical point of view. However, it is well known what to 

do if the body under consideration cannot be considered as rigid: we have 

to consider velocity distribution of the matter inside the body and split 

the velocity field into a rigid rotation and a deformation (see, e.g., Moritz, 

Mueller, 1987). In this way we can introduce the so-called Tisserand axes 

(a rigidly rotating reference system with respect to which the Newtonian 

angular momentum of the body vanishes identically) or the principal axes 

of inertia (a rigidly rotating reference system in which the Newtonian tensor 

of inertia is diagonal at any moment of time). Both these rigidly rotating 

reference systems allow one to define the angular velocity of a non-rigid 

body which has some definite physical meaning. This angular velocity is not 

in fact directly related to the body. It is the angular velocity of rotation 

of some rigidly rotating reference system (in which the body appears to 

be nonrotating in one sense or another) with respect to the corresponding 

Newtonian inertial reference system. 

In analogy to Newtonian physics it is quite natural idea to consider 

deformable bodies in general relativity. However, the first and probably the 

only paper dealing with rotation of non-rigid bodies in general relativity 

is Voinov (1988). The principal idea is to consider relativistic effects in 

internal motions within the body as additional deformations which can 

be treated in analogy to Newtonian deformations. Unfortunately, because 

of several unjustified (or, sometimes, unnecessary) assumptions the paper 

can be considered only as a preliminary one. Our aim is to follow the 

principal idea formulated above as rigorously as possible, and generalize the 

Newtonian concepts of the Tisserand axes and the principal axes of inertia 

onto the post-Newtonian approximation of general relativity without any 

attempt to introduce the notion of a post-Newtonian rigid body. 

2. Relativistic reference systems 

Although it is well known that in the framework of general relativity any 

reference systems covering the space-time region under consideration are 

mathematically equivalent, one can prefer one reference system or another 

to perform actual calculations. The basic reason for the preference is phys-

ical adequacy (or convenience) of a reference system for the problem under 

consideration. In fact, the choice of an adequate reference system is an im-

portant part of solving any problem. Recently it has been shown that to 

describe adequately physics within an isolated system of Ν gravitating bod-

ies one should use several relativistic reference systems: one global reference 

system covering all the bodies simultaneously and one local reference sys-

tem for each of the bodies (see, e.g., Brumberg, Kopejkin (1989), Kopejkin 
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(1988) and Damour, Soffel, Xu (1991), (1992), (1993)). 
The global reference system is suitable for describing relative motion of 

the bodies. We will designate it as BRS (Barycentric Reference System). 
The local reference systems are physically adequate for describing local 
physical processes related to the body under consideration. The local ref-
erence systems are proved to be suitable to describe rotational motion of 
the individual bodies (Damour, Soffel, Xu , 1993). Bearing in mind that the 
Earth is the primary body whose motion and rotation is to be investigated 
we will designate the local reference system of the body under consideration 
as GRS (Geocentric Reference System), although "GRS" can be related not 
only to the Earth, but to any other body. 

We assume general continuous distribution of the matter having the 
energy-momentum tensor Ta&According to the usual post-Newtonian as-
sumptions for the matter 

T o o = 0 r c 2 ^ Toi = Tij = Q^y (!) 

We also suppose that the matter is localized in Ν separate blobs (bodies) 
and we discuss rotation of one of them. 

Not going into complicated details of constructing the global and local 
reference systems (see, e.g., Brumberg, Kopejkin (1989); Kopejkin (1988); 
Damour, Soffel, Xu (1991); Klioner, Voinov (1993) for details), let us write 
down the generic form of the metric tensor which is valid for both the BRS 
and the GRS 

5 0 0 = 1 - ^ W + 1 ( W 2 - χ,οο - α,ο) + 0(c-% 

5 i i = - ^ ( l + | ^ ) + ö ( ^ 4 ) . (2) 

Here, as usual, comma denotes a partial derivative (so that, a$ = -j^a and 

= ^ a ) , ÄfJ' is the Kronecker symbol and a = a( t ,x) is an arbitrary 

function which parameterizes a class of coordinate gauges allowed by our 

formalism and can be interpreted as a transformation of time t = t + c " 4 a. 

This function can be left unspecified since the post-Newtonian equations 

of motion (both translational and rotational) are well known to be inde-

pendent of a. Note that a = 0 corresponds to the harmonic gauge, while 

a = — xto leads to the standard PPN (isotropic) gauge. The post-Newtonian 

potential W , the vector potential U%, and the superpotential χ can be de-

rived from the Einstein equations reduced with the corresponding gauge 

conditions 

WM = -4π G σ , = - 4 π G σ\ χ,,·,· = W, (3) 
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where following Damour, Soffel and Xu (1991) we designate 

σ = ^ Τ α α , σ{ = - Γ ° \ (4) 

Equations (3) should be solved with the account for specific boundary con-
ditions which are to be chosen differently in the BRS and the GRS (see, 
e.g., Kopejkin, 1988; Damour, Soffel, Xu , 1991). In both the BRS and the 
GRS the potentials W , Ux and χ can be split into parts generated by the 
body under consideration and the external potentials induced by the rest 
of the matter (and, in case of the GRS, by inertial forces) 

W = W i n t + W e x t , U^UU + UU x = x i n t + x e x t . (5) 

3. Post-Newtonian rotational equations of motion 

Let us consider a reference system (/, x) which can be either the BRS or the 
GRS. We will call this reference system RS. There are several ways to derive 
the post-Newtonian rotational equations of motion of an extended body 
relative to the RS. One can mention the Fock approach and the Landau-
Lifshitz one. The former consists in evaluating the following integral over 
the support V of the body under consideration 

tijk I (-g)xjTk%dx3 = 0, (6) 

which vanishes due to the local equations of motion of the matter 

Ταβφ = 0. (7) 

Here semicolon denotes the covariant derivative, 

-g = l + ±4W + 0(c-4) (8) 

is the determinant of the metric tensor gQp defined by (2) , and Sijk is the 
fully antisymmetric Levi-Civita symbol ( £ 1 2 3 = + 1 ) . 

The Landau-Lifshitz approach is based on the use of the so-called 
Landau-Lifshitz pseudotensor ta& of energy-momentum of gravitational 
field defined in such a way that (see, e.g., Landau, Lifshitz (1971)) 

[(-9)(τ^ + ̂ ))β = 0. (9) 
Then one can derive the rotational equations of motion from the integral 

εν„1ζί((-9)(τ» + ΐ!*))φάζ* = 0. 
(10) 
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Both approaches mentioned above result in the same post-Newtonian 

rotational equations of motion which can be written as (details will be 

published elsewhere) 

= F + 0(c-4). (11) 
at 

Here 5* is the post-Newtonian spin which can be written as a well-defined 
compact support integral 

Si = e i j k Jv xjQkdx3 + 0(c~4), (12) 

Qk = * l + ^W)-±Ga/νσ·(ί,χΟ ^ χ ! ^ dx'3 + 0(c^). (13) 

»' = f ^ - (14) |x - x'| 
Now let us assume the following relation between the components of 

the energy-momentum tensor, which, in fact, is valid under very general 
assumptions on the matter (see, e.g., Fock, 1959) 

i - g y = + Iptf) & + 0(c-% p* = (-g) I T 0 0 , (15) 

where p*i is the stress tensor of the matter. Then we get 

Qk = p*^ + i . ^ p k 3 i 3 _ Igp* j y p*(t,x')à*^ + ^j"'άχ'ή + 0( 

(16) 
On the right-hand side of (11) we have a post-Newtonian torque F* defined 
as 

F^eijk Jv σ(ί, x) xi fk dx3 + 0(c-% 

fk=WT + ^ {^L + X # - * Wxt )fc + x j & ) ) (17) 

Note that fk is proportional to the external potentials, and therefore, in 
analogy to Newtonian case the post-Newtonian torque F* vanishes for iso-
lated bodies (Wext = 0, U*xt = 0, % e x t = 0) . 

It is important to note also that casting the integrals (6) or (10) into the 
form (11) is not unique. For example, the equations of rotational motion 
which we quoted above do not coincide with those derived in Brumberg 
(1972) where a part of our post-Newtonian torque F% have been moved to 
the left-hand side of (11) and interpreted as a part of the post-Newtonian 
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spin S*. However, Eqs. (11)—(17) allow us to re-write the post-Newtonian 
spin density Qk in the form (13)-(16) which makes it (and, therefore, Sl 

itself) explicitly proportional to σ% and therefore to the velocity xl of the 
matter). The latter circumstance will be important for further considera-
tions. Note also that our form of the rotational equations of motion ( 1 1 ) -
(17) being written for a Damour-Soffel-Xu local reference system coincides 
with Eq. (2.4)-(2.8) of Damour, Soffel, Xu (1993). 

4· Rotating reference system 

According to the basic idea exposed in Introduction we have to define a rela-
tivistic rotating reference system (let us designate it as R S + a n d its time and 
space coordinates as (/, x1)). The RS + has to be a post-Newtonian general-
ization of the Newtonian Tisserand axes (or the Newtonian principal axes of 
inertia). This implies that t = t+0(c~2), and x{ = P^{t)x^O{cT2\ where 
P%i(t) is a time-dependent orthogonal matrix. Generally speaking, we could 
add some post-Newtonian pieces 0(c"2) into the transformations. However, 
considering that it is unclear how to introduce relativistically meaningful 
macroscopic spatial rotation in curved space-time of general relativity, it 
is quite reasonable to define the coordinate transformations between the 
R S + a n d the RS as a rigid Newtonian spatial rotation 

ί=ί , 

x^P^WxK (18) 

Here the rotation has the meaning of an Euclidean 3-dimensional time-
dependent rotation in the 3-space formed by the spatial coordinates of the 
RS. Using (18) one can easily derive the metric tensor gaP of the R S + , the 

relations between the components of the stress-energy tensor Ta^ in the 
R S + a n d those in the RS, etc. 

5. Rotational equations of motion relative to the R S + 

There are several ways to derive the rotational equations of motion of an 
extended body relative to the R S + . Let us mention 

- the Fock approach (Eq. (6) written in the R S + ) ; 

- the Landau-Lifshitz approach (Eq. (10) written in the R S + ) ; 
- transforming the rotational equations of motion relative to the RS 

(11)—(17) into those relative to the RS + wi th the aid of the coordinate 
transformations (18). 
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All the approaches result in the same rotational equations of motion relative 

to the rigidly rotating reference system R S + 

where 

(19) 

(20) 

is the angular velocity of rotation of the RS +relative to the RS projected 

onto the axes of the R S + , 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(χ X x ' )* = €ijkxix'ki and V is the support of the body in the R S + . When 

deriving (19)-(29) we supposed that (15) is valid in the RS. Let us note 

that Q (and, therefore, S ) is explicitly proportional to the matter velocity 

x% relative to the R S + . Moreover, Qk and 5* have the same functional form 

as the original spin density Qk and the spin S% relating to the RS (see, 

(12) - (16) ) . Not pretending to a rigorous physical meaning, we can call 5* 

"post-Newtonian angular momentum of the body relative to the R S + " . On 

the other hand, the matrix C u, being symmetric C?3 = C3% can be called 

"post-Newtonian tensor of inertia in the R S + " . 

https://doi.org/10.1017/S0074180900127585 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900127585


RELATIVISTIC ANGULAR VELOCITY 317 

6. Post-Newtonian Tisserand axes and principal axes of inertia 

It is to note that although all the quantities entering (19) contain explicit 
post-Newtonian terms, (19) itself looks formally analogous to the Newto-
nian rotational equations of motion relative to a rigidly rotating reference 
system. This allows us to introduce the post-Newtonian Tisserand axes and 
the principal axes of inertia in a formally Newtonian way as it was done, 
e.g., in Moritz, Mueller (1987). Thus we can define 

- The post-Newtonian Tisserand reference system RSf by imposing the 

condition 

S* = 0. (29) 

- The post-Newtonian reference system of principal axes of inertia RS J 
by imposing the condition 

Cij(t) = diag(.4(<),B(i),C(i)). (30) 

Both (29) and (30) should be considered as the definitions of the rota-
tional matrix P**(t) which relates the RS and the R S + . 

In the RSi the rotational equations of motion (19) read 

j t (Cijüj) + eijkC
ksüjus = F>F> + 0(c'4). (31) 

The condition (29) which fixes the RSf can be expressed through the co-
ordinates of the RS as 

Sijk JyX
jQkdx3 = 0, (32) 

S* = Ρ*ν" + έ (pkSVS - \GP* jy 'T' ̂ V''7%-«"'rf ' (33) 

V* = x{ - eijkuixk, Vl{ = x* - eijkuix'\ (34) 

where 

is the angular velocity of rotation of the RS +relative to the RS projected 
onto the axes of the RS. Then (32)-(34) can be written as a system of linear 
algebraic equations defining ω* at each moment of time 

5 e " ( i ) - C y ( i ) ^ ( * ) = 0, (36) 

C i j = paipbjçab= i p * , 6 i j x s x s _ x i x 3 ) d x * + 1 ε.^ ε [ X«X

bpk*dx3 

Jv cl Jv 

- ^ { 7 6 i J a S S - 7 ( * i J + ßiJ)> (37) 
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aij = paipbj^ab = Jvjv p*(t,X)/>*(Î,X')^*'^dx'3dx3, (38) 

ßij = paipbjjb = ^ ^ ^ χ ) ρ ^ Χ / ) ( Χ X X ' V ( X X X 0 J

 dx,3dx3^ ( 3 9 ) 

where ( χ χ x')*' = eijkx
jx,k, S{ is defined by (12)-(16) , and both S* and 

C*i = are obviously independent of ω*. 

According to (36) the post-Newtonian spin 5 ' = C' J a; J and, therefore, 

it can be split into a product of the angular velocity ω ' and the tensor of 

inertia C , J . Hence the rotational equations of motion (11) can be re-written 

as 

S ( C ' V ) = F>, (40) 

ω% being defined by (36). 

It is interesting to note that the post-Newtonian tensor of inertia C 1 J 

defined by (37)-(39) formally coincides with the expression for the post-

Newtonian tensor of inertia derived in Soffel (1994) in the first post-

Newtonian approximation for an isolated, rigidly rotating body with the aid 

of the approach proposed by Thorne and Gürsel (1983). The approach used 

in Soffel (1994) accounts only for first-order terms in e = CJR/C, where R is 

typical linear size of the body (that is, the body is supposed to rotate slowly 

enough). On the contrary, we make use of the general post-Newtonian ap-

proximation scheme. 

7. The post-Newtonian torque and the B D moments 

In Voinov (1988), and Damour, Soffel and Xu (1993) it has been shown 

that the local reference system (GRS) is physically adequate for modelling 

rotational motion of a body being a member of an N-body system. From 

now on, we consider the "nonrotating" reference system (t,x%) used above 

to coincide with the GRS. In the latter of the two papers cited above it has 

been shown also that the post-Newtonian torque F% defined by (17) can-

not be expressed through the Blanchet-Damour mass and spin moments 

of the body under consideration and that it is possible to define the post-

Newtonian spin as S% = S% + c ~ 2 S'\ where Sn is an additional term van-

ishing together with external potentials. Then the rotational equations of 

motion read 

^ • = F + 0 ( c - < ) , + £ < 5 « , (41) 

and Sn can defined in such a way that 

0 0 1 

F% - Siab Σ Τι 

1 1+ 1 
MaLGbL + -̂ 7"—̂  SaLÜbL 

C2 I + 2 
+ ö(c-% (42) 

https://doi.org/10.1017/S0074180900127585 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900127585


RELATIVISTIC ANGULAR VELOCITY 319 

where L = i\%2.. Λ\ is the multiindex, ML and SL are the BD mass and 
spin moments, and G L and EL are the electric- and magnetic type tidal 
moments of external gravitational field (see, Damour, Soffel, Xu (1993) for 
details). 

Starting from (41) and applying the same arguments, which allowed us 
to derive (31) and (40) from (11), we can introduce another version of the 
post-Newtonian Tisserand reference system RS3. Making use of the R S £ , 
the rotational equations of motion can be written as 

j t = Ρ + 0(c-4), (43) 

j t + sijkC
k3m3

 = Pip + 0(c~4). (44) 

where ώ% is defined by 

5 · " ( 0 - ^ ( ί ) ^ ( < ) = 0, (45) 

and the relations between angular velocities ώ% ω and the corresponding 
orthogonal matrix P^ are the same as above (see, (20) and (35)) . 

The definition of angular velocity of a non-rigid body is not unique even 
in Newtonian physics (as we mentioned above one can introduce the Tis-
serand axes and the principal axes of inertia which give different definitions 
of angular velocity). In general relativity there is also another reason of the 
nonuniqueness: the post-Newtonian spin itself of a body being a member of 
an N-body system is not unique due to contributions of the gravitational 
field binding the system (see, also Damour, Soffel, Xu (1993)). Considering 
this nonuniqueness of the angular velocity, the definitions (36) and (45) can 
be considered as conventions which make the laws of rotational motion as 
simple as possible. 

8. A note on astronomical applications 

We showed above that the post-Newtonian rotational equations of mo-

tion can be written in a formally Newtonian way. Therefore, many of the 

Newtonian results concerning the rotational motion of non-rigid bodies are 

also valid in the post-Newtonian approximation of general relativity. For 

example, if we suppose the body to be "dynamically rigid" in the R S + 

CtJ = const then (31) or (44) are precisely equivalent to the Euler equa-

tions. The influence of general relativity results in the non-Newtonian ex-

pressions for the torque F% and for the tensor of inertia CXK As for the 

latter, one could try to derive a system of differential equations defining 

time-dependence of C u and C%3 (related to the post-Newtonian hydrody-

namical equations). However, since the internal structure of celestial bodies 
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(including the Earth) is not known well enough to obtain the tensor of iner-
tia with sufficient accuracy by evaluating the integrals (37)-(39) or the like, 
C*-7 is to be derived from various kinds of astronomical observations. There-
fore, probably the most important difference between the post-Newtonian 
rotational equations of motion derived above and their Newtonian coun-
terparts is the relativistic corrections to the torque. Eq. (31) can be used 
to derive relativistic effects in the forced polar motion. Eq. (43) can be 
used to investigate relativistic effects in the forced precession and nutation 
(see, Bizouard, et al. (1992)). More detailed evaluation of the astronomical 
consequences will be published elsewhere. 

Acknowledgement. The author is indebted to Prof. M.Soffel and Dr. 
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