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Abstract
All vital functions of living cells rely on the production of various functional molecules through gene expression.
The production periods are burst-like and stochastic due to the discrete nature of biochemical reactions. In certain
contexts, the concentrations of RNA or protein require regulation to maintain a fine internal balance within the cell.
Here we consider a motif of two types of RNA molecules – mRNA and an antagonistic microRNA – which are
encoded by a shared coding sequence and form a feed forward loop (FFL). This control mechanism is shown to be
perfectly adapting in the deterministic context. We demonstrate that the adaptation (of the mean value) becomes
imperfect if production occurs in random bursts. The FFL nevertheless outperforms the benchmark feedback loop
in terms of counterbalancing variations in the signal. Methodologically, we adapt a hybrid stochastic model, which
has widely been used to model a single regulatory molecule, to the current case of a motif involving two species;
the use of the Laplace transform thereby circumvents the problem of moment closure that arises owing to the
mRNA–microRNA interaction. We expect that the approach can be applicable to other systems with nonlinear
kinetics.

1. Introduction

All events in a cell life cycle are primarily governed by changes in the expression (or production) of
a wide variety of functional products, such as RNA. They arise in a process called gene expression,
which is decoding the information in the gene and managing the synthesis of a gene product. We focus
on its first stage – transcription, during which mRNA is produced based on one of the two strands of
DNA by an enzyme called RNA polymerase, which binds to the DNA exactly at the beginning of the
coding sequence. The promoter determines this starting site; its accessibility to the RNA polymerase is
controlled by special proteins called transcriptional factors. While the promoter is accessible, the RNA
polymerase may produce not only a single but a portion of mRNA molecules, which is called a tran-
scriptional burst [10]. Then follows a post-transcriptional stage, where mRNA gains final modifications
(becomes mature); only later on it can finally leave the nucleus and be further processed. Thus, mRNA
is delivered via mobile export receptors to a ribosome, where translation is performed [30].

Significant fluctuations in RNA quantities are mostly inherited from the randomness of transcription
and accompanying biochemical reactions [18, 40]. The main source of stochasticity is the low copy
number of product-coding regions and peculiarity of their processing [4, 5, 39]. Moreover, transcrip-
tional bursts are stochastic in nature [31, 37]. These facts motivate the study of production stability;
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in particular, due to presented randomness, it is imperative to find control mechanisms, which are not
sensitive to fluctuations in biochemical parameters.

One way to regulate the process is to influence directly when and how much mRNA is produced.
A common example of such a mechanism is negative feedback (NFB), which is based on the self-
regulation principle; that is, the protein is capable to reduce the rate of its own expression by preventing
transcription [3, 20]. Such proteins are inhibiting transcriptional factors to their own gene promoter
(Figure 1a); thereby, the production explicitly depends on the current concentration of the protein in
the cell.

Another way was found after qualitative improvement of laboratory technologies, which gave specific
information about the aforementioned biochemical reactions [52, 53]. In particular, it was discovered that
some RNAs, called non-coding RNA, are released into the cell immediately after transcription, avoid-
ing further stages of processing. Mainly, they have support functions such as transferring amino acids
(tRNA), forming ribosomes (rRNA), supporting splicing (snRNA) and maintaining spermatogenesis
(piRNA) [21, 36, 51].

Our topic of interest is microRNA (miRNA) – short (approximately 21 nucleotides) non-coding RNA,
which is engaged in transcriptional and post-transcriptional regulation of gene expression [13, 27]. Each
miRNA is complementary, that is, has perfect pairing, to a specific type of an untranslated region (UTR)
of an mRNA molecule [12, 43]. MiRNA recognises the target UTR and binds to it, causing degradation
or suppressing further translation of the mRNA molecule (Figure 2a). In essence, microRNAs can be
classified into two fundamental types based on the genomic location of their coding sequence. Intergenic
miRNAs are located in the non-coding regions in between protein-coding sequences and have their
own promoter; thus, they are usually transcribed independently [33, 59]. Intragenic miRNAs, which are
located in the intron (intronic miRNA) or the exon (exonic miRNA) of host genes, are co-transcribed
in a long transcript precursor (pre-mRNA) and then spliced into separate molecules [34]. In this work,
we focus on the intronic miRNAs, the specific role of which is to directly regulate the production of the
host gene [8, 22].

A feed forward loop (FFL) is a frequently arising control motif in gene regulatory networks [42]. Its
basic principle is to anticipate external disturbance in a controlled quantity and immediately provide a
counterbalancing response. A subtype of FFL, called incoherent FFL (IFFL), appears when a controlled
quantity Z is amplified by X and dampened by Y indirectly through X. The miRNA–mRNA interaction
is also an IFFL since an upstream transcriptional activator amplifies the level of mRNA directly and at
the same time dampens it indirectly through amplification of its miRNA antagonist [54]. In particular,
it is present in transcriptional networks of S. cerevisiae [32] and E. coli [28, 49]. This control motif was
modelled as a deterministic system and proved to be perfectly adaptating [2, 55]; that is, IFFL retains
expression at a required level regardless of the strength of an upstream signal.

Usually, studies concerning the distribution of a protein/RNA treat the amount of molecules as a
discrete quantity [6, 23, 48], yet it can be treated as a continuous variable [11, 14]. We will use a hybrid
model, which allows to study the IFFL as a process with random production jumps and deterministic
decay [24, 25, 35]. It is thereby supposed that the lengths of periods, when the gene is not available for
transcription, are distributed exponentially. The aim of our work is to derive analytical equation for raw
moments of mRNA concentration distribution; then based on it, we will explore the impact of the IFFL
on the mRNA level in a steady state.

We model the bursty production of mRNA in an IFFL as a Markov drift-jump process, gradually
increasing the complexity of the studied models. In section 2, we will start with the well-studied model of
NFB, where only a single species is involved; we will derive the stationary distribution of the protein and
subsequently find its steady-state mean concentration. Then we will extend the model in section 3 so that
it describes the joint probability function of two species involved in the FFL (i.e. mRNA and miRNA).
We will prosecute a solution approach using the Laplace transform, which broadens the number meth-
ods of applicable to the model. Sections 4–5 will be dedicated to the steady-state mean concentrations
of mRNA and miRNA both under the low noise assumption and in the bursty stochastic case. Finally,
this will allow us to compare the performance of the NFB and FFL models in the context of adapting to
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Figure 1. (a) Scheme of the protein synthesis with implemented negative autoregulation: bold arrows
correspond to reactions presented to the right, and the inhibiting arrow corresponds to the regulatory
function λ(x) (the figure was created with BioRender.com); (b) formalisation of the model in terms of
chemical kinetics: B is a jump process associated with bursts, and the empty set symbol indicates that
reactants or products are out of our interest.

external disturbances. Our work is focused on the accuracy of the analytical results, which will be vali-
dated using computer simulations; the generality of the approach makes it possible to use the methods
of this work in further research.

2. Negative feedback model

In this section, we consider a model with negative autoregulation, which includes only the protein X
itself. The mathematical model for the single protein dynamics, as well as for mRNA–miRNA inter-
action in the next section, is studied in terms of a piecewise-deterministic Markov process [15] in a
continuous time and state space. Continuous space state is achieved by studying protein concentration–
– the number of protein molecules per unit of volume – as opposed to the number of protein molecules
[58]. In Figure 1b, the process is expressed as a sequence of chemical reactions, where X is produced in
random bursts with frequency governed by the response function λ(x) in the reaction R1 and naturally
degrades in R2.

We suppose that the burst size is drawn from exponential distribution with mean β. The value one of
the degradation rate constant corresponds to measuring time in units of the protein lifetime, which can
be done without any loss of generality. According to the reaction channel R2, the deterministic motion
is given by

ẋ=−x,

that is, the protein concentration trajectory x(t) is proportional to e−t inside any time interval which does
not contain a burst event.

The (stationary) distribution of protein concentration is obtained as a steady-state solution of the
single-valued Chapman-Kolmogorov equation associated to the process described above (the general
form (A.2) of which is considered in Appendix A). Here the master equation reads [38]

∂p(x, t)

∂t
= ∂

∂x
(xp(x, t))− λ(x)p(x, t)+ Jin(x, t), (2.1)

where as Jin we denoted the probability influx, which is given by

Jin(x, t)=
∫ x

0

ω(bx) λ(x− bx)p(x− bx, t)dbx.

In the probability flux Jin(x, t), describing an instant growth of the protein level in bursts, ω(bx) is a jump
kernel, which defines the probability that concentration will jump up by bx to x in an infinitesimal period
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of time, and the jump rate λ( · ) is the non-increasing function, which depends on concentration right
before a burst. In particular, we define the response function λ(x) as a step function:

λ(x)=

⎧⎪⎨
⎪⎩
λ, x<K,
λ

2
, x=K,

0, x>K,

(2.2)

where the parameter K limits the possibility of production according to the following: bursts cannot
occur as long as the concentration level is higher than K; once x falls beneath K, bursts occur with a
constant frequency λ. This type of response function is a limiting case of the Hill function [56].

At steady state, the master equation (2.1) reduces to a Volterra integral equation. Since bursts follow
the exponential distribution with mean β, the probability of a burst exceeding the size of bx is given by
the jump kernel ω(bx)= e−bx/β . Then the integral kernel is given by the product of the response function
λ(x) and the jump kernel w(bx):

xp(x)=
∫ x

0

λ(x− bx)e
−bx/βp(x− bx)dbx.

The general solution of the above equation is [7]

p(x)=Cx−1e−x/β exp

(∫
λ(x)

x
dx

)
.

After we substitute the specific choice of the response function defined in (2.2), the solution becomes a
function with discontinuity at x=K, that is,

p(x)=
{

CK−λe−x/βxλ−1, x<K,

Ce−x/βx−1, x≥K,
(2.3)

where the normalisation constant is C= (
γ (λ, K/β)(K/β)−λ + E1(K/b)

)−1
, the function E1 is a real-

valued exponential integral, that is, E1(a)= ∫ ∞
a

t−1e−tdt.
The mean steady-state concentration of X is obtained by multiplying the probability density function

p(x) by the state x and integrating over positive values [57], leading to

E(X)= λβγ (λ, K/β)

γ (λ, K/β)+ (K/β)λE1(K/β)
, (2.4)

where γ (·, ·) is an incomplete gamma function, which is a special function given by an improper integral
γ (s, x)= ∫ x

0
ts−1e−tdt.

Equation (2.4) can be used to obtain the mean concentration in the limiting case of the infinitely high
frequency:

lim
λ→∞

E(X)= βe−K/β

E1(K/β)
. (2.5)

In the infinite frequency mode, the concentration of protein never falls beneath the threshold value
K. The value (2.5) thus corresponds to the mean level of protein in homeostasis with the strongest NFB
response to concentration changes. We use it in section 6 as a benchmark for the evaluation of IFFL
under similar conditions.

3. Feed forward model

We proceed with a chemical system with two species X and Y (mRNA and miRNA), which are subject to
reactions given in Figure 2b. The bursty production R1 is modelled by stochastic jumps, while inhibition
and degradation reactions R2 and R3 are modelled deterministically. We assume that X has a relatively
long lifetime, so we neglect its spontaneous degradation. Therefore, a molecule of X can be eliminated
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Figure 2. (a) Scheme of the protein synthesis in which miRNA is included; bold arrows correspond to
reactions presented to the right (the figure was created with BioRender.com); (b) the studied model in
terms of chemical kinetics; the empty set symbol indicates that either reactants or product of reaction is
out of our interest.

only via the interaction R2. While a molecule of Y survives in R2, it degrades independently due to
natural decay via the reaction channel R3. As it follows from R3, all reaction rates are normalised to the
lifetime of Y; also the hazard rate of the interaction between X and Y is constant and equal to δ. The
model, in which mRNA is unstable and degrades at a constant rate γ , is further studied in Appendix B.

Since two species X and Y are involved, a state of their concentrations is given by a two-dimensional
vector (x, y). Deterministic decay of concentrations between bursts is described by the mass-action
kinetics of reactions R2 and R3:

ẋ=−δxy, ẏ=−y. (3.1)

The evolution of the probability density function (pdf) p(x, y, t) is given by the equation:
∂p(x, y, t)

∂t
= ∂

∂x
(δxyp(x, y, t))+ ∂

∂y
(yp(x, y, t))− λ(x, y, t)p(x, y, t)+ Jin(x, y, t), (3.2)

where

Jin(x, y, t)= λ(x, y, t)
∫ x

0

∫ y

0

ω(bx, by)p(x− bx, y− by, t)dbxdby,

gives the probability influx, λ(x, y, t) is the burst rate, and ω(bx, by) is the burst size distribution, which
will be made explicit below. Note that we do not incorporate feedback in our model; the regulation is only
of feed forward type. The integro-differential equation (3.2) can be treated as a special two-dimensional
case of the Chapman-Kolmogorov equation, which is reviewed in Appendix A.

According to the model requirements, bursts satisfy the following:

• the burst rate is time-homogeneous and does not depend on the state: λ(x, y, t)≡ λ.
• the burst size bz = z− z′ is also independent of the time; it is drawn from a probability density

function f (bz) with the non-negative support.
• both species are increased simultaneously and by the same amount so that the jump kernel takes the

form:

ω(bx, by)= f (bx)f (by)δ(F(bx)− F(by)),

where F(bz) is the cumulative distribution function corresponding to f (bz) and δ( · ) is the Dirac
delta function. Furthermore, using a property of the Dirac delta function, having an argument that
is a differentiable function [29] allows us to simplify δ(F(bx)− F(by)):

ω(bx, by)= f (bx)δ(bx − by).

In our problem, bz is drawn from an exponential distribution with mean β, which leads to f (bz)=
e−bz/β/β.
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Figure 3. Sample trajectories of X and Y concentrations. Between stochastic bursts, X and Y decay
deterministically as per (3.1). Despite the fact that X degrades faster than Y, once level of Y is close to
zero, X also stops decreasing; this indicates that the only way for X to degrade is interaction with Y. In
the simulation, the parameters are the following: λ= 0.25, δ = 1, β = 1.

Application of the conditions above to (3.2) leads to the influx of the form:

Jin(x, y, t)= λ

β

∫ x

0

∫ y

0

e−by/βp(x− bx, y− by, t)δ(bx − by) dby dbx. (3.3)

We proceed with simplification of the influx. Since an integral
∫

A
f (x)δ(x− x0)dx= f (x0), only if x0 ∈ A;

in the inner integral of (3.3) with respect to by, we set the root of the delta function x0 = bx and obtain

Jin(x, y, t)= λ
β

∫ x

0

θ (y− bx)e
−bx/βp(x− bx, y− bx, t) dbx. (3.4)

The appearance of the Heaviside step function θ ( · ) can be explained as follows: if a burst size of one
RNA is greater than the final value of another one, then the condition of equally sized bursts cannot be
satisfied. Thereby permissible values of bx are in the interval (0, y], and at the same time, the integration
interval is (0, x]. After we eliminate θ ( · ), the upper limit becomes minimum of x and y.

Combining production jumps with decay drift, we obtain the dynamics of the Markovian drift-jump
process (its sample paths are shown in Figure 3); an integro-differential equation for p(x, y, t) is the
following:

∂

∂t
p(x, y, t)= ∂

∂x
(δxy p(x, y, t))+ ∂

∂y
(yp(x, y, t))− λp(x, y, t)

+ λ
β

∫ M

0

e−bx/βp(x− bx, y− bx, t) dbx. (3.5)

where M =min{x, y} gives the upper bound. Note that the equation will remain the same if we change
the order of integration in (3.3) and then let the root of the delta function x0 be equal to bx. This is
due to the evenness of the Dirac delta function and the above-mentioned relation between θ ( · ) and the
integration limit M.

Proceeding to solve (3.5): we apply a double Laplace transform to p(x, y, t) with respect to variables
x and y and obtain its image as a function of Laplace variables φ and ψ :

P(φ,ψ , t)=
∫ ∞

0

∫ ∞

0

e−φx−ψyp(x, y, t) dxdy. (3.6)

Note that the integral term in (3.5) is by definition a convolution about an axis [9]:

f ∗
a b

g=
∫ M

0

f (x− aν, y− bν)g(ν) dν, where M=min
{ x

a
,

y

b

}
,
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where parameters a and b are equal to β, f ( · ) is joint pdf p( · ), and g( · ) is an exponential function.
Hence, its Laplace transform is

L
[
f ∗

a b
g
]

(φ,ψ)=L[f ](φ,ψ)L[g](aφ + bψ).

This allows us to apply a double Laplace transform to (3.5), which results in a PDE:
∂P

∂t
= δφ ∂2P

∂φ∂ψ
−ψ ∂P

∂ψ
− P

λβ(φ +ψ)

β(φ +ψ)+ 1
, (3.7)

which is, in comparison with (3.5), more suitable for further analysis, as it is shown in the next sections.

4. Mean-field model

From definition (3.6), it follows that we can derive the mixed moments of random processes X = X(t)
and Y = Y(t) using the image of p(x, y, t). It is done by differentiating (3.6) and setting (φ,ψ)= (0, 0):

E(XkYm)= (−1)k+m ∂ k+mP

∂φk∂ψm
(0, 0). (4.1)

In particular, applying this to (3.7), we obtain the system of moment equations:

Ė(X)= λβ − δE(XY)

Ė(Y)= λβ −E(Y). (4.2)
As is typical for kinetics systems with bi-molecular reactions, the moment equations are not closed [50];
that is, higher-order moments appear in the equations for the means. This difficulty can be eliminated
provided that the noise in the concentrations of x and y is low; then we can remove the expectation
operators from (4.2), obtaining the mean-field model:

ẋ= λβ − δxy

ẏ= λβ − y. (4.3)
We take a look at steady-state mean concentrations of x and y; this leads us to the solutions:

x= 1

δ
, y= λβ. (4.4)

Interpreting transcription as input, which is characterised by production rate λβ, and the concentration
X as the ultimate output of the system, the first equality in (4.4) indicates that the model is perfectly
adaptating: the steady state of X does not depend on the rate of transcription. Thus, the model in the
small noise regime successfully balances out any disturbance of the input. This statement is reinforced by
deriving a time-dependent solution (see Appendix C), which is drawn as a red curve in Figure 4. In what
follows, we investigate how the inclusion of a moderate noise affects this perfect adaptation property.

5. Stationary moments

The smallness of noise is guaranteed only in the asymptotic regime of small but frequent bursts, that
is, provided that β→ 0, λ→∞, while assuming that the production rate λβ =O(1). However, these
assumptions are restrictive, and we are interested in general large-time behaviour of p(x, y, t). We assume
∂

∂t
p(x, y, t)= 0; then the probability density function p(x, y) as well as its image P(φ,ψ) do not depend

on time:

δφ
∂2P

∂φ∂ψ
−ψ ∂P

∂ψ
− P

λβ(φ +ψ)

β(φ +ψ)+ 1
= 0. (5.1)

Notice that according to (3.6), the image P(φ,ψ) at φ = 0 is equal to the single Laplace transform of
the marginal distribution of the species Y, which is pY(y)= ∫ ∞

0
p(x, y)dx. From this follows that we can
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Figure 4. Response of FFL to changes in the input signal. A positive shift of the production rate leads
to a significant short-term increase in the concentration of the species X. Otherwise, a negative shift
leads to a short-term decrease in X. Note that the lower the production rate is, the longer time is needed
to bring X to the steady level. FFL, feed forward loop.

derive pY(y) directly by equating φ = 0 in (5.1). The solution of the derived equation provides an image
of pY(y):

P(0,ψ)= (βψ + 1)−λ. (5.2)

The obtained function is the Laplace image of the probability density function of unregulated gene
expression [57]. This is not surprising since within our model, the synthesis of Y is not affected by any
regulatory mechanisms.

Adhering to this logic, the marginal distribution of X can in principle be obtained from P(φ, 0), yet it
does not seem possible to obtain an analytical solution as setting ψ = 0 in (5.1) does not yield a closed
equation. Nevertheless, it is possible to derive explicit expressions for E(X), cf. equation (4.1), as well
as higher-order moments of X:

E(Xk)= (−1)k ∂
kP

∂φk
(0, 0). (5.3)

Let us start with the differentiation of (5.1) with respect to φ, then equating φ to zero:

(δ−ψ)
∂

∂ψ

(∂P

∂φ
(0,ψ)

)
− λβψ

βψ + 1

∂P

∂φ
(0,ψ)− λβ

(βψ + 1)2
P(0,ψ)= 0. (5.4)

We define the function f (ψ)= ∂φP(0,ψ); its expanded form is the following:

f (ψ)=−
∫ ∞

0

∫ ∞

0

xp(x, y)e−ψydydx. (5.5)

Afterwards, using substitution (5.5) and replacement (5.2) for P(0,ψ), we reduce the initial PDE (5.4)
to the following ODE:

(δ−ψ)f ′(ψ)− f (ψ)
λβψ

βψ + 1
− λβ

(βψ + 1)λ+2
= 0, (5.6)

the general solution of which is

f (ψ)=C
(
(βψ + 1)−q(δ −ψ)−δβq

)
− βψ + λβδ+ 1

δ(δβ(λ+ 1)+ 1)

1

(βψ + 1)λ+1
, (5.7)

where q= λ

1+βδ .
However, we do not have initial conditions for equation (5.6) to determine the integration constant

C. Instead, we can see from definition (5.5) the solution f (ψ) as ψ = 0 is the negative value of the first
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Figure 5. (Left) Sample trajectories of the mRNA concentrations given that initial conditions are
drawn from the uniform distribution on the interval [0, 2E(X)]. In the long-term observation, the ini-
tial conditions are not influencing the dynamics of the process. (Right) Convergence of the numerically
computed M1 and M2 (dashed lines) to the corresponding analytical values of E(X) and E(X2) (solid
lines), respectively. The parameters of the simulation are the following: δ = 1, λ= 2, β = 2.

moment of X, that is, f (0)=−E(X); therefore, there are indirect conditions on (5.7) due to the studied
model. First, concentration of the protein must be non-negative value; next, the model is placed in a
cell, whose capacity is bounded, so E(X) must be a finite value. Using the limit comparison theorem for
improper integrals [45], the formulated restrictions can also be applied to the solution (5.7):

−∞< f (ψ)≤ 0. (5.8)

Any non-zero C leads to a singularity at a point ψ = δ and a contradiction with the conditions (5.8);
then the only satisfying value is C= 0, and the solution of (5.6) is

f (ψ)=− βψ + λβδ + 1

δ(δβ(λ+ 1)+ 1)

1

(βψ + 1)λ+1
. (5.9)

As was mentioned before, the definition of f (ψ) makes it possible to use the Laplace image property
(5.3) to obtain the steady-state mean value of X by setting ψ = 0 in (5.9); this yields (Figure 5)

E(X)= 1

δ
− β

δβ(λ+ 1)+ 1
, (5.10)

a graph of which is shown in Figure 6 (left panel). Clearly, in a high-frequency mode, the mean value
in steady state only depends on the hazard rate of interaction between the species:

lim
λ→∞

E(X)= 1

δ
, (5.11)

which is consistent with the mean-field result (4.4).
Let us take the second derivative of (5.1) as φ = 0 and repeat the same approach. The second moment

of x is

E(X2)= (ξ − δβ)2

δ2ξ (ξ + δβ)
+ 2β(ξ − δβ)

δ(λ+ 2)(2ξ − 1)(ξ + δβ)

+ λβ

δ(λ+ 2)
, where ξ = βδ(λ+ 1)+ 1. (5.12)

Although we do not provide a definite proof, we expect that an explicit formula can be derived for any
k-th moment.

The verification of the obtained results (5.10) and (5.12) was performed using a stochastic simulation
approach. We constructed an algorithm, in which burst events are simulated using the inversion sam-
pling method and between two consecutive bursts; the trajectories of species X and Y are determined by
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Figure 6. (Left) Influence of production rate on the steady-state mean concentration of X as δ = 1;
(Right) influence of IFFL (bold lines) and negative feedback (dashed lines) on E(x); both models were
tuned so that in the high-frequency mode E(x) approaches to the same limit (dotted lines). We let
dissociation constant K = 2.

the solutions of (3.1). Let us denote the generated trajectory of X on a time interval [0, T] as the function
xT(t). By the mean value theorem for integrals, we calculate the i-th sample moment Mi(X) as follows:

Mi(X)= 1

T

∫ T

0

xi
T(t)dt. (5.13)

The simulations show that the first moment M1(X) (sample mean) and the second moment M2(X)
consistently converge to the obtained values of E(X) and E(X2) (Figure 5, right panel). Deviation of
the computational results are due to the influence of the initial conditions; thus, it is crucial that the
simulation duration is sufficiently long and the process is stabilised (Figure 5, left panel). Further
details concerning simulations of a piecewise continuous trajectory x(t) and the computations of Mi(X)
are discussed in Appendix D.

6. Imperfect adaptation

In the previous sections, we constructed a stochastic model of gene expression that implements the FFL
motif. This allowed us to obtain analytical values of mean concentration in a steady state. According to
the obtained results, the IFFL exhibits a nearly perfect adaptation in the low noise regime, that is, if the
mean burst size β is relatively small. This version of FFL is well suited to support homeostasis in cell
processes. Nevertheless, it is not obvious how robust it is in the presence of high noise.

One way to evaluate is by comparison with another control mechanism. We have chosen gene expres-
sion, where the production of gene product X is regulated by applying the NFB loop to its production.
For this, we have obtained an explicit formula for the steady-state mean concentration of X (2.4).

Despite the different mechanics of regulation and parameter sets, comparing equations (2.5) and
(5.11) allows us to set

δ = β−1eK/βE1(−K/β)

to ensure that both IFFL and NFB approach the same value (Figure 6, right panel).
As also shown in the right panel of Figure 6, in the presence of high noise, the FFL becomes insen-

sitive to changes in production rate much earlier than the NFB. Although the system’s parameters have
a greater impact as the mean burst size grows, the FFL still provides a non-zero concentration even
for vanishingly small burst frequencies, unlike the NFB. This can be explained by noting that the main
source of decreasing mRNA concentration X in FFL is miRNA Y (which is unstable), but not natural
degradation.
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Based on these observations, we can conclude that if fine-tuning of factors is possible in a system,
FFL provides a much narrower interval of possible steady-state concentrations; it can be an efficient way
of maintaining homeostasic expression of a gene.

7. Conclusion

We described the mRNA–miRNA interaction by a Markov process with stochastic jumps and determin-
istic drift which incorporates the main biochemical features of the regulatory motifs. In contrast with
previous uses of the framework, the current model is two-dimensional and requires, in particular, the use
of the double Laplace transform. Another distinction is the appearance of the convolution about an axis,
which is the nonlocal term of the master equation. This appears because of a perfect correlation between
mRNA and miRNA bursts; that is, both species are produced simultaneously and in equal proportions,
which notably affected the solution approach.

We have studied the steady-state moments of the species in FFL, with the main focus on their
analytical expressions. Since the model has nonlinear kinetics, the moment equations are not closed.
Nevertheless, the Laplace transform still provided a convenient means to derive the explicit moments.
Thus, using the current framework a variety of interactions between species forming an IFFL [41], for
example, pair holin-antiholin [11], can be also studied.

It is expected that the current approach can be extended to general burst size distributions or fur-
ther regulation of the underlying processes. Furthermore, we believe that the simple model can help in
understanding expanded descriptions that reflect realistic cell scenarios, especially ones involving cell
growth and cell division [26, 46].
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A. Drift-jump framework

In the main text, we study two distinct types of gene expression regulation using a hybrid model. Here
we consider a Markov process with drift and jumps in general.

On the one hand, we assume that a deterministic motion x= x(t) is given by a dynamical system:
ẋ(t)=A(x(t), t), A : Rn × [0,+∞)→R

n. (A.1)
On the other hand, random jumps are governed by a random process B(t), where a conditional probability
to jump from x′ to x= x′ + b in an infinitesimal interval t is

Pr{B(t) ∈ [b; b+ db] | x(t)= x′} =ω(b|x′, t)dx,

which we will refer to as a jump kernel. Then the trajectory of the process is [47]:

x(t+t)=
{

x(t)+A(x, t)t, w.p. 1− λ(x, t)t

x(t)+A(x, t)t+B(t), w.p. λ(x, t)t,

where λ(x, t) is a jump rate. Thus, particles can either proceed drifting along solutions of A or per-
form the random jump. Then a joint pdf of the vector x(t) is governed by the Chapman-Kolmogorov
differential equation [16]:

∂

∂t
p(x, t)=−

n∑
i=1

∂

∂xi

(Ai(x, t)p(x, t))− λ(x, t)p(x, t)+ Jin(x, t), (A.2)

where Jin(x, t) is given by

Jin(x, t)=
∫
Rn

λ(x′, t)ω(x− x′|x′, t)p(x′, t) dx′. (A.3)

The integral term gives the probability that the process jumps from state a x′ to the state x in an infinites-
imal interval of time; in the notation Jin(x, t), the subscript indicates that the term relates to the influx of
probability.

It is usual that the coefficients of (A.2) do not explicitly depend on time; that is, we have Ai(x, t)=
Ai(x) for the drift, ω(x− x′|x′, t)=ω(x− x′|x′) for the burst kernel and λ(x, t)= λ(x) for the burst fre-
quency. The jump kernel may also not be conditioned by the outgoing state x′, in which case we have
ω(x− x′|x′, t)=ω(x− x′).

In the main section, the formulated equation is used in an applied problem, in which restriction is
imposed on permissible values of the vector x(t). Therefore, let us further assume that the dynamical
system (A.1) maintains non-negativity of trajectories x(t):

∀t≥ 0, ∀x= (x1, . . . , xn) ∈Rn
+, ∀i ∈ 1, . . . n : xi = 0⇒ Ai(x, t)≥ 0,

where R
n
+ is the non-negative orthant of R

n. We also assume that jumps are non-negative, that is,
ω(b|x′, t)= 0, ∀x ∈Rn

+; then the influx in (A.2) becomes a definite integral:

Jin(x, t)=
∫

R(x)

λ(x′, t)ω(x− x′|x′, t)p(x′, t) dx′, (A.4)
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where the integration domain R(x), where x= (x1, . . . , xn) is n-dimensional rectangle given as Cartesian
product:

R(x)=
n∏

i=1

[0, xi]⊂R
n.

In this situation, equation (A.2) holds for x ∈R+n , whereas p(x, t)= 0 for x ∈R+n .
It is sometimes useful to use the jump size b instead of outgoing state x′ = x− b as the integration

variable; performing this substitution in (A.4) gives an alternative expression of the influx term

Jin(x, t)=
∫

R(x)

λ(x− b, t)ω(b|x− b, t)p(x− b, t) db. (A.5)

We made use of it in a following way: first, we set the dimension of the process n= 1 and obtained the
master equation (2.1) for the protein distribution in the NFB model. Shortly afterwards, we set n= 2 to
derive the master equation (3.2) for the feed forward model.

B. Model expanded to the natural degradation of mRNA

In the main text, we assume that mRNA is stable and thus does not degrade. In this section, we study a
more general case, where mRNA is unstable and degrades at a constant rate.

The reaction set corresponding to the new model (compared to the one in Figure 2b) is as follows:

R1 : ∅ λ−→ B× (X + Y), R3 : Y
1−→∅,

R2 : X + Y
δ−→ Y , R4 : X

γ−→∅,
and the sample trajectories of this model are shown in Figure B1 (left panel).

Adding degradation of mRNA will change only the deterministic dynamics of mRNA level and will
not affect miRNA:

ẋ=−δxy− γ x, ẏ=−y,

where γ is the natural degradation rate of mRNA. The evolution of the probability density function
p(x, y, t) is given by the following equation:

∂p(x, y, t)

∂t
= ∂

∂x
((δxy+ γ x)p(x, y, t))+ ∂

∂y
(yp(x, y, t))− λ(x, y, t)p(x, y, t)+ Jin(x, y, t), (B.1)

where Jin is identical to (3.4) since stochastic dynamics are not influenced by the γ . The subsequent
approach remains the same to one in sections 3 and 5. It allows us to convert (B.1) into ODE with
respect to the function f (ψ) (defined in (5.5)) with the property f (0)=−E(X):

(ψ − δ)f ′(ψ)+ f (ψ)
(λβ + γβ)ψ + γ

βψ + 1
=− λβ

(βψ + 1)λ+2
= 0. (B.2)

Since for any non-homogeneous linear ODE

f ′(ψ)+ f (ψ)f0(ψ)= g(ψ)

a general solution is given by

f (ψ)= e−F(ψ)

(∫ ψ

0

eF(x)g(x)dx+C

)
, F(ψ)=

∫
f0(ψ)dψ , (B.3)

we obtain the homogeneous solution of (B.2), which has a similar form as one in (5.7):

fH(ψ)=C (βψ + 1)−q
(ψ − δ)−γ−δβq .
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(  ) (   = 0)mRNA: miRNA:

Figure B1. (Left) Sample trajectories of naturally degrading mRNA as γ = δ/2 (violet line) compared
to the stable mRNA as γ = 0 (red line); miRNA concentration is not affected by and its dynamics remains
the same (blue line). (Right) Violet line is (B.5), and red dashed line correspond to (5.10). Green dots are
values obtained by simulation, which is constructed and tuned according to Appendix D. The parameters
are the following: δ= 0.4, λ= 0.1, β = 0.5.

The significant difference appears in the particular solution fp(ψ), which is given by the integral:

fp(ψ)= (βψ + 1)−P−λ−2(ψ − δ)−Q−1

∫ ψ

0

(βx+ 1)P(x− δ)Qdx

= (βψ + 1)−P−λ−2(ψ − δ)−Q−1I(ψ),

where P=− λβδ

δβ+1
− 2 and Q= λβδ

δβ+1
+ γ − 1.

The hypergeometric function 2F1 has the following representation as an integral with variable upper
bound [19]:

2F1(ν,μ,μ+ 1;− bu)= μ

uμ

∫ u

0

xμ−1

(bx+ 1)ν
dx, Re{μ}> 0, | arg (bu+ 1)|<π . (B.4)

We use substitution y= x− δ to bring the integral I(ψ) to the required form. It leads to μ=Q+ 1 and
bu+ 1= βψ+1

δβ+1
, which satisfy conditions in (B.4). Then we evaluate the integral:

I(ψ)= (1+ δβ)P (ψ − δ)Q+1

Q+ 1
2F1

(
−P, Q+ 1, Q+ 2;

β(δ −ψ)

δβ + 1

)
+C1,

where appearance of a constant C1 is caused by the substitution y= x− δ, which changed the interval of
integration to (−δ,ψ − δ). Then I(ψ) was split into two integrals with middle boundary equal to zero:
the first one was rewritten as the hypergeometric function as per (B.4); the second one is independent
of ψ and denoted by C1, and afterwards C1 is absorbed by the arbitrary constant C in (B.3). We obtain

fp(ψ)=− λβ(βψ + 1)−(λ+1)

γ + βδ(λ+ γ )

(
βψ + 1

δβ + 1

)ξ+1

× 2F1

(
ξ + γ , ξ + 2, ξ + γ + 1;

β(δ −ψ)

βδ + 1

)
, ξ = λβδ

1+ βδ .

After using an argument transformation [1]:

(1− u)a+b−c
2F1(a, b, c; u)= 2F1(c− a, c− b, c; u),

the particular solution takes form:

fp(ψ)=−λβ(βψ + 1)−(λ+1)

γ + βδ(λ+ γ )
2F1

(
γ − 1, 1, ξ + γ + 1;

β(δ −ψ)

βδ + 1

)
.
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Finally, we set ψ = 0 and use (5.3) to obtain the mean protein concentration:

E(X)= λβ

γ + βδ(λ+ γ )
2F1

(
1, γ − 1, ξ + γ + 1;

ξ

λ

)
. (B.5)

In particular, if γ = 1, that is, if miRNA and mRNA have the same degradation rate, then the
hypergeometric function is equal to one and mean concentration of mRNA is

E(X)= λβ

1+ βδ(λ+ 1)
.

Under the assumption about stable mRNA (γ = 0), the hypergeometric function becomes a polynomial:

2F1

(
1,−1, ξ + 1;

ξ

λ

)
= λβδ + 1

λβδ
,

and (B.5) reduces to (5.10).

C. Time-dependent solution of the mean-field system

Let us solve the system (4.3), provided that the initial conditions are given by

x(0)= x0, y(0)= y0,

where x0 and y0 are positive constants. The solution for y(t) is derived directly from the second equation
in (4.3) and the initial condition above:

y(t)= λβ
((

y0

λβ
− 1

)
e−t + 1

)
.

We substitute it into the first equation in (4.3), then define new parameters as ρ = λβδ and K = y0
λβ
− 1.

We obtain a following ODE with respect to x(t):

ẋ+ ρx(Ke−t + 1)= ρ
δ

. (C.1)

Now we can find an integration factor μ(t); in this equation, it is given by

μ(t)= e
∫
ρ(Ke−t+1)dt = eρt−ρKe−t

.

After multiplication of equation (C.1) by μ(t) and collapsing the left-hand side by the product rule, we
find

(xμ)′ = ρ
δ
μ,

that is,

x(t)= ρ
δ

1

μ(t)

(∫ t

0

μ(τ )dτ +C

)
, (C.2)

where C is an arbitrary constant. Proceeding with the integral term in (C.2), we integrate it by parts and
perform a substitution u(τ )= ρKe−τ , obtaining∫ t

0

μ(τ )dτ = 1

ρ

(
eρ(t−Ke−t) − e−ρK

)
+ (ρK)ρ

ρ

∫ u(t)

u(0)

u−ρe−udu.

In case that K > 0 (i.e. the initial level of Y is greater then the production rate λβ), the concentration
of X evolves in time as follows:

x(t)= 1

δ

(
1− e−ρ(t+K−Ke−t)

)
+ (ρK)ρ

δ

γ (1− ρ, ρKe−t)− γ (1− ρ, ρK)

eρ(t−Ke−t)
+C, (C.3)
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where the arbitrary constant is

C= x0e−ρ(t+K−Ke−t).

By γ (·, ·) is denoted the incomplete gamma function, which is a special function given by the integral
γ (s, x)= ∫ x

0
ts−1e−tdt. The solution (C.3) is valid for ρ ∈ (0, 1) due to the requirement for positivity of the

parameter s. However, by performing �ρ� times integration by parts in (C.2) and subsequent following
the approach above, the solution x(t) can be expressed in terms of the special functions for any ρ ∈
(k, k+ 1], k ∈N.

In case that K < 0, we perform integration by a substitution u(τ )=−ρKe−τ , and the solution is

x(t)= 1

δ
(1− e−ρ(t+K−Ke−t))− (−ρK)ρ

δeρ(t−Ke−t)

∫ u(t)

u(0)

u−ρe−udu+C, (C.4)

where the arbitrary constant remains the same.
Both of the solutions above have the same form at K = 0:

x(t)= 1

δ
(1− e−ρt)+ x0e−ρt,

which can be also seen directly from (C.1).

D. Simulation

This section is aimed at verification of theoretical results obtained in section 5. This is done by con-
structing Algorithm 1, which simulates the process and calculates the first two moments of mRNA and
miRNA concentrations.

Referring to section 3, a trajectory of X concentration in time interval [0, T] has a finite number of
discontinuity points, which are due to the random producing process B(t). Between bursts X decays
deterministically as per dynamical system (3.1).

Let us consider the process step by step. We defineti as a waiting time after the i-th burst bi until the
next one; thereby the time of the next burst occurrence is ti+1 = ti +ti. The quantityti is drawn from
the exponential distribution with mean 1/λ; moreover, the size of the burst itself is also drawn from the
exponential distribution with mean β. Then, according to the theorem of average value, the mean value
of the piecewise continuous trajectory x(t) is given by

M1(X)= 1

T

N∑
i=0

X̄i, X̄i =
∫ ti+1

ti

x(t; bi)dt, (D.1)

where N is number of observed bursts and T is the total time of observation and equal to
∑N

i=0 ti. Also,
despite that above we mainly appeal to X, the same is applied to Y.

The functions of deterministic decay x(t) and y(t) are obtained by solving the dynamical system (3.1).
First, we obtain the solution of y(t) from the second equation (since it is separated and does not involve
x(t)); next, we substitute it into the equation of x(t). Due to discontinuities caused by bursts, we denote
by xi(t) and yi(t) the separate solutions on the each interval [ti, ti+1), which are the following:

xi(t)= x̂i exp
{−δŷi(1− e−(t−ti))

}
, x̂i = xi−1(ti)+ bi, (D.2)

yi(t)= ŷi e−(t−ti), ŷi = yi−1(ti)+ bi, (D.3)

where x̂i and ŷi are initial conditions for the solution on each intervalti; clearly, x̂0 and ŷ0 are the pre-set
concentrations at the beginning of observation at time t= 0.

First, let us find X̄i terms by integrating (D.2) on ti:

X̄i = x̂ie
−δŷi

∫ ti+1

ti

eae−t
dt, a= δŷie

ti .
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Algorithm 1
Require: λ, β, δ;x0, y0;N
Ensure: M1(X), M2(X)
1: Draw U from the standard uniform distribution
2: b0← 0 � no burst at the t= 0
3: t0←− ln U/λ
4: Draw vectors U1, U2 of N independent random values from the standard uniform

distribution
5: for i← 1, N do
6: bi←−β ln U1,i

7: ti←− 1
λ

ln U2,i

8: end for
9: for i← 1, N do

10: yi← bi + yi−1e−ti−1

11: xi← bi + xi−1exp{−δyi−1(1− e−ti−1 )}
12: X̄i, Ȳi← as per (D.4) and (D.5)
13: X̄2

i , Ȳ2
i ← as per (D.6)

14: end for
15: M1(X)←∑

X̄i/
∑
ti

16: M2(X)←∑
X̄2

i /
∑
ti

After performing a substitution u(t)= ae−t, the integral takes form of special function Ei(x) [17]. Its
evaluating on the interval (u(ti);u(ti+1)) gives the terms X̄i in (D.1):

X̄i = x̂i exp{−δŷi}
(
Ei(δŷi)− Ei(δŷie

−ti )
)
. (D.4)

Subsequently, integrating (D.3) on each interval ti yields the terms Ȳi of partial sums for M1(Y):

Ȳi = ŷi (1− e−ti ). (D.5)

Analogically, we define the second moments of x(t) and y(t) by

M2(X)= 1

T

N∑
i=0

X̄2
i , X̄2

i =
∫ ti+1

ti

(x(t;bi))
2dt.

After repeating the same approach, we obtain the terms X̄2
i and Ȳ2

i in form

X̄2
i = x̂2

i exp{−2δŷi}
(
Ei(2δŷi)− Ei(2δŷie

−ti )
)
,

Ȳ2
i =

ŷ2
i

2
(1− e−2ti ). (D.6)

Given that we know the piecewise-deterministic behaviour of the trajectories, the last missing ingre-
dient is to find an appropriate method for generation random values of ti and bi. Since they both are
drawn from the exponential distribution, we choose the inverse transform method, which is simple,
precise and computationally efficient [44].

Finally, the first and the second moments of X, obtained by executing the simulation algorithm,
converge to values of corresponding analytical expressions (5.10) and (5.12). As shown in Figure 5,
a satisfactory number of bursts to observe is N ≈ 105, after which the computational time significantly
increases without a notable gain in the accuracy of result.
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