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Abstract The set of non-constant holomorphic mappings between two given compact Riemann surfaces
of genus greater than 1 is always finite. This classical statement was made by de Franchis. Furthermore,
bounds on the cardinality of the set depending only on the genera of the surfaces have been obtained by
a number of mathematicians. The analysis is carried over in this paper to the case of Riemann surfaces
of finite analytic type (i.e. compact Riemann surfaces minus a finite set of points) so that the finiteness
result, together with a crude but explicit bound depending only on the topological data, may be extended
for the number of holomorphic mappings between such surfaces.
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1. Introduction

A classical theorem of de Franchis [1] implies that the set of non-constant holomorphic
mappings between two given compact Riemann surfaces of genus greater than 1 is finite.
Having seen that the set is finite, we naturally want to obtain a bound on its cardinality.
It is known that there exist bounds that depend only on the genera of the surfaces. A
number of papers treating related questions exist (see [8] for some historical accounts).

What if we worked with non-compact surfaces obtained by removing a finite set of
points from compact Riemann surfaces? We intend to give an answer to this slightly gen-
eralized question. The case of Riemann surfaces of low signature will also be considered.

There is probably little chance of surprise regarding the problem, even if one works with
Riemann surfaces of finite analytic type, since any holomorphic mapping between two
such hyperbolic Riemann surfaces (i.e. each surface must have negative Euler–Poincaré
characteristic) extends to a holomorphic mapping between their uniquely defined com-
pactifications (see § 2). In fact, we have chosen to restrict to the compact case for clarity
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in Ito and Yamamoto [8]. Thus, it is clear that in parts of this paper we will be re-proving
results that are well known to the experts. We hope that our exposition of these topics
includes material not previously formulated and that the leisurely approach that we have
taken will be of benefit to the reader.

We first fix the notation that will be used throughout the paper. Let M be a compact
Riemann surface of genus gM � 0 and let PM = {PM

1 , . . . , PM
m } be a finite set of m

distinct points on it. We say that Ṁ is a Riemann surface of finite analytic type (gM , m)
if Ṁ is (biholomorphically equivalent to) M \ PM . The ‘distinct points’ above are called
punctures of Ṁ and the case when the set of its punctures is empty is of course included
in the case of finite analytic type; that is, Ṁ = M if PM = ∅. For a type (gM , m), the
quantity

χ(Ṁ) = 2 − 2gM − m (1.1)

will be referred to as the Euler–Poincaré characteristic of Ṁ .
When χ(Ṁ) < 0 (the only exceptions are the sphere, the once-punctured sphere, the

twice-punctured sphere and the torus), the universal covering space of Ṁ can be regarded
as the Poincaré disc, with covering transformations given by isometries of the Poincaré
(hyperbolic) metric. Let Γ be a torsion-free Fuchsian group that uniformizes smoothly
a Riemann surface Ṁ with one or more punctures. Then there is an obvious one-to-one
correspondence between the punctures of Ṁ = U/Γ and the conjugacy classes of maximal
parabolic subgroups of Γ and there is a natural way of topologizing the union of Ṁ and
the set of its punctures {PM

1 , . . . , PM
m }, and of making this union into a compact Riemann

surface with all punctures filled in (see [9, pp. 198–203] for details).
Let Hol(Ṁ, Ṅ) denote the set of non-constant holomorphic mappings from a source

Riemann surface Ṁ of type (gM , m) to a target Riemann surface Ṅ of type (gN , n).
Assume that the Euler–Poincaré characteristic χ(Ṅ) of the target surface Ṅ is negative.
In this case we obtain an explicit upper bound on # Hol(Ṁ, Ṅ) depending only on the
topological data. (Here and in what follows, # denotes the cardinality of a set.)

Theorem 1.1. Let Ṁ and Ṅ be Riemann surfaces of finite analytic types (gM , m)
and (gN , n), respectively, with χ(Ṅ) < 0. Then there exist bounds on the cardinality of
Hol(Ṁ, Ṅ) which depend only on the signatures of the surfaces. When gM � gN and
m � n, we have the following.

(i) If gN � 2, then

# Hol(Ṁ, Ṅ) �
[
2

√
gN

[
χ(Ṁ)
χ(Ṅ)

]
+ 1

]4gN gM

. (1.2)

(ii) If gN = 1 and (thus) n � 1, then

# Hol(Ṁ, Ṅ) � m

[
2

√[
χ(Ṁ)
χ(Ṅ)

]
+ 1

]4gM

. (1.3)
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(iii) If gN = 0 and (thus) n � 3, then

# Hol(Ṁ, Ṅ) � (m − 2)
(

2
[
χ(Ṁ)
χ(Ṅ)

]
+ 1

)m

. (1.4)

Here, [x] is the greatest integer less than or equal to x.

Remark 1.2.

(i) Verification of the finiteness of non-constant holomorphic mappings f : Ṁ → Ṅ

is not difficult when χ(Ṁ) � 0 and χ(Ṅ) < 0. Indeed, a holomorphic mapping
between such surfaces is (trivially observed to be) constant and hence Hol(Ṁ, Ṅ)
is empty (see § 5).

(ii) We therefore present arguments bounding the number of non-constant holomorphic
mappings under the condition on Euler–Poincaré characteristics which amounts to
the existence of the Poincaré metric, i.e. χ(Ṁ) < 0 and χ(Ṅ) < 0 unless otherwise
specified.

(iii) Also note that even when χ(Ṁ) < 0 and χ(Ṅ) < 0, a necessary condition for the
existence of a non-constant holomorphic mapping from Ṁ to Ṅ is that gM � gN

and m � n (see § 2).

Theorem 1.1 gives rough estimates on the number of holomorphic mappings between
two (not necessarily compact) Riemann surfaces of finite analytic type. Our bounds are
of the same nature as those obtained by Martens [10,11] and Tanabe [13] for the case
of compact Riemann surfaces. In particular, the estimate of part (i) of Theorem 1.1 in
the compact case, i.e. m = n = 0, is part of Tanabe’s Theorem 2. We hope that we have
properly attributed credit to their work.

We note that the results of Ito and Yamamoto [8] and Tanabe [14] will yield a signifi-
cantly lower bound and that the bound we derive could be lowered accordingly. However,
we do not intend to include these discussions (of the sharpness of the estimates obtained)
since the topics fall outside the scope of the paper.∗

A plan of the proof of the theorem is as follows. Part (i) of Theorem 1.1 is established
in § 4, while parts (ii) and (iii) are proven in § 5. In § 5 we shall also mention the excluded
cases in which the target surface belongs to the short list of ‘exceptional’ types (including
several examples). In §§ 2 and 3 we have collected all the preliminary details, which will
play a direct role in the proof of the theorem.

2. Estimates for degrees of mappings

We now wish to ‘generalize’ the well-known Hurwitz combinatorial formula relating
various topological indices connected with a holomorphic mapping between compact
Riemann surfaces. For this purpose, we assume throughout the section (as previously

∗ I. A. Mednykh (personal communication, 2009) has stated that the sharp bound for the number of
holomorphic mappings from S3 to S2 has been obtained, where S3 and S2 are compact Riemann surfaces
of genera 3 and 2, respectively, as a consequence of his work [12]. This development seems to be based
essentially on the concept of hyperellipticity.

https://doi.org/10.1017/S0013091509000637 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509000637


714 Y. Imayoshi, M. Ito and H. Yamamoto

f

P1
M

P2
M

P3
M

P4
M

P1
N

P5
M

P6
M

P7
M

M

N

.

.

Figure 1. Removable punctures. P M
5 , P M

6 and P M
7 are not

the inverse images of the punctures of Ṅ under f̄ .

explained) that the source and target Riemann surfaces both have negative Euler–
Poincaré characteristics.

Since a non-constant holomorphic mapping f from Ṁ to Ṅ extends holomorphically
to their compact closures (see below), we simply define the degree, df , of f as that of the
holomorphic extension f̄ . Also, we define the total branching number, Bf , of f by

Bf =
∑

P∈Ṁ

bf (P ),

where bf (P ) is the branch number of f at P .
The degree and the total branching number are well defined, because every non-

constant holomorphic mapping between compact Riemann surfaces is a finite-sheeted
covering map that is branched possibly at isolated points.

One pitfall to avoid is that of thinking that df is the number (counted with multiplicity)
of inverse images of any point of Ṅ . Indeed, more explicitly, the punctures of Ṅ may not
contain the image of the punctures of Ṁ under the extended mapping f̄ , although the
inverse image of the punctures of Ṅ are contained in the punctures of Ṁ (see Figure 1).
The exceptional punctures of Ṁ are considered to be such only due to lack of information.
Punctures with this character will be referred to as removable punctures with respect to f .

Proposition 2.1. Let Ṁ and Ṅ be Riemann surfaces of finite analytic types (gM , m)
and (gN , n), respectively, with χ(Ṁ) < 0 and χ(Ṅ) < 0. Then, for a possible holomorphic
mapping f ∈ Hol(Ṁ, Ṅ),

χ(Ṁ) + #PM
f = dfχ(Ṅ) −

(
Bf +

∑
P∈PM

f

bf̄ (P )
)

, (2.1)

where PM
f = PM \ f̄−1(PN ) is the set of removable punctures of Ṁ with respect to f .
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A consequence of the above blanket assumption is, as remarked before, that the relevant
universal covering space can be regarded as the Poincaré upper half-plane U . Before
proceeding further, we verify the following.

Assertion 2.2. Every non-constant holomorphic mapping from Ṁ to Ṅ extends as a
holomorphic mapping of M onto N . In particular, if either gM < gN or m < n, the set
Hol(Ṁ, Ṅ) is empty.

Remark 2.3. The above assertion (and probably Proposition 2.1 as well) are very
well known. We have included them here for the convenience of the reader.

Proof of Assertion 2.2. We shall show that a holomorphic mapping f ∈ Hol(Ṁ, Ṅ)
extends as a holomorphic mapping f̄ ∈ Hol(M, N).

We lift f to a holomorphic mapping f̃ from U to itself which is uniquely specified by
prescribing the action at a single point consistent with the f action. Let Γ (respectively,
G) be a torsion-free Fuchsian group uniformizing Ṁ (respectively, Ṅ). We can then define
a homomorphism θ : Γ → G that satisfies

f̃ ◦ γ = θ(γ) ◦ f̃ for every γ ∈ Γ. (2.2)

Let us choose any puncture PM
i of Ṁ . There exists a parabolic transformation T ∈ Γ

that determines the puncture PM
i . We assume that T is normalized, that is, that the

transformation is given by
T : z �→ z + 1. (2.3)

Clearly, the rather specialized assumption above is not essential, but should be looked
upon as the result of a normalization.

We claim that θ(T ) must be either parabolic or the identity. Indeed, if θ(T ) is hyper-
bolic, it involves no loss of generality to assume that θ(T ) is of the form

θ(T ) : z �→ kz, positive k �= 1 (2.4)

(by conjugation). An easy application of the Schwartz–Pick distance-decreasing principle
demonstrates that

d(z, T (z)) � d(f(z), f(T (z))) = d(f(z), θ(T )(f(z))), (2.5)

where d is the Poincaré (hyperbolic) distance on U ; that is, if d(z, T (z)) is small, then
d(f(z), θ(T )(f(z))) is correspondingly small. But direct calculations yield

cosh d(z, T (z)) = 1 +
1

2(Im z)2
(2.6)

and

cosh d(f(z), θ(T )(f(z))) = 1 +
(k − 1)2|f(z)|2
2k(Im f(z))2

� 1 +
(k − 1)2

2k
, (2.7)

where cosh is the hyperbolic cosine function and Im denotes the imaginary part of the
complex number. This is an obvious contradiction.

There are now two possibilities to consider.

https://doi.org/10.1017/S0013091509000637 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509000637


716 Y. Imayoshi, M. Ito and H. Yamamoto

Case 1. θ(T ) is a parabolic transformation belonging to a puncture PN
j . We may

assume that θ(T ) = T by conjugation. Thus, f̃ induces a holomorphic mapping w from
∆∗ to itself so that the following diagram commutes

U
f̃ ��

p

��

U

p

��
∆∗

w
�� ∆∗

(2.8)

where p(z) = e2πiz, z ∈ U , and ∆∗ is the punctured disc {0 < |z| < 1}. Again, from the
Schwartz–Pick Lemma we obtain (using the same notation as above)

1 +
1

2(Im z)2
= cosh d(z, T (z)) � cosh d(f̃(z), T (f̃(z))) = 1 +

1
2(Im f(z))2

. (2.9)

Hence, w is extendable with w(0) = 0, and consequently f has a holomorphic extension
from Ṁ ∪ {PM

i } to Ṅ ∪ {PN
j }.

Case 2 (θ(T ) is the identity). Here it is more convenient to assume that f̃ is a
mapping from U to ∆, the unit disc. Obviously, f̃ induces a holomorphic mapping (also
denoted by w) from ∆∗ to ∆ so that the diagram

U
f̃

���
��

��
��

�
p

��
∆∗

w
�� ∆

(2.10)

commutes. With the aid of the Riemann Removable Singularity Theorem, w can be
extended to ∆, since |w| is bounded. (w thus turns out to be a mapping from ∆ to ∆.)
Hence f has a removable puncture at PM

i .
We have shown that a holomorphic mapping f ∈ Hol(Ṁ, Ṅ) extends as a holomorphic

mapping f̄ ∈ Hol(M, N).
The last part of the assertion follows readily when we apply the standard Riemann–

Hurwitz formula to the extended mapping, which will conclude the proof. (See also the
digression in § 5, for example.) �

Proof of Proposition 2.1. We now extend the Riemann–Hurwitz formula from com-
pact surfaces to surfaces with punctures, under the above condition on Euler character-
istics. Noting that f could possibly have removable punctures, we first observe that

#f̄−1(PN ) = m − #PM
f (2.11)

and that ∑
P∈M\f̄−1(PN )

bf̄ (P ) = Bf +
∑

P∈PM
f

bf̄ (P ). (2.12)
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From the relevant definitions, it is immediate that

df̄ =
∑

P∈f̄−1(P N
j )

bf̄ (P ) + #f̄−1(PN
j ), 1 � j � n.

Summing the above expressions over j and using the fact that the degree of f is defined
by that of f̄ , we see that

ndf =
∑

P∈f̄−1(PN )

bf̄ (P ) + #f̄−1(PN )

=
(

Bf̄ −
∑

P∈M\f̄−1(PN )

bf̄ (P )
)

+ #f̄−1(PN ). (2.13)

In what follows, we will use the standard Riemann–Hurwitz relation with respect to the
extended mapping in the form

Bf̄ = dfχ(N) − χ(M).

We return to (2.13) and continue with our calculation. Then we conclude that (using
(2.11), (2.12) and the Riemann–Hurwitz relation)

ndf = (dfχ(N) − χ(M)) −
(

Bf +
∑

P∈PM
f

bf̄ (P )
)

+ (m − #PM
f )

or

(χ(M) − m) + #PM
f = df (χ(N) − n) −

(
Bf +

∑
P∈PM

f

bf̄ (P )
)

,

from which (2.1) follows. �

We stress that Proposition 2.1 can also give upper estimates on the degree of a holomor-
phic mapping for some low signatures. Consideration of the standard special example for
the case of (gN , n) = (0, 3) will convince the reader of the usefulness of this proposition.
We note the following explicit corollary for later use.

Corollary 2.4. Under the hypothesis of Proposition 2.1,

df �
[
χ(Ṁ)
χ(Ṅ)

]
, (2.14)

where, as usual, [x] denotes the greatest integer in x.

Remark 2.5. Since it is immediate that, by the very definition of degree,

df �
[
χ(M)
χ(N)

]
, (2.15)

we could use the estimate

df � min
{[

χ(Ṁ)
χ(Ṅ)

]
,

[
χ(M)
χ(N)

]}
(2.16)

instead of (2.14), when an inequality [χ(M)/χ(N)] < [χ(Ṁ)/χ(Ṅ)] may hold.
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3. Martens’s Rigidity Theorem

The exposition here is due to Martens. The proof is along the lines of [10,11]. (Of course,
there are many good references for the background material. The reader can consult [2–5]
for more details on the concepts discussed in this section.)

We start with a compact Riemann surface X of positive genus g = gX � 1, and a
canonical homology basis

{γ1, γ2, . . . , γ2g} = {γX
1 , γX

2 , . . . , γX
2gX

}

on X. (Whenever there can be no confusion, the surface X will be dropped from the
symbols.) Recall that the statement ‘{γ1, . . . , γ2g} is a canonical homology basis’ means
that the intersection matrix for this basis is

Jg =

(
0g Ig

−Ig 0g

)
, (3.1)

where 0g is the g × g zero matrix and Ig is the g × g identity matrix.
Let us briefly review the basic facts (to fix notation). There exists a unique basis

{ω1, . . . , ωg} = {ωX
1 , . . . , ωX

gX
}

for the vector space A(X) of holomorphic abelian differentials on X with the property∫
γj

ωi = δij( = Kronecker delta), i, j = 1, 2, . . . , g. (3.2)

With these choices of bases, the matrix

Z = ZX = (πij), πij =
∫

γg+j

ωi, i, j = 1, 2, . . . , g, (3.3)

is symmetric with positive definite imaginary part, and we call the period matrix of X

the following g × 2g complex matrix:

Π = ΠX = (Ig, Z). (3.4)

Let us denote by L = L(Π) the lattice (over Z) generated by the columns of the g×2g

matrix Π. These columns form 2g vectors in Cg which are linearly independent over the
reals. We define the Jacobian variety of X as the compact complex torus of complex
dimension g by

J(X) = Cg/L. (3.5)

Given any two points P1 and P2 on X, we can associate with them the vector

( ∫ P2

P1

ω1, . . . ,

∫ P2

P1

ωg

)T

∈ Cg, (3.6)
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where the integrations are along some path joining P1 to P2. If we consider the vec-
tor (3.6) modulo L, then the choice of path becomes immaterial. We can thus map X

holomorphically into J(X) in an obvious fashion; define

κ : X → J(X)

by choosing a base point P0 ∈ X and setting

κ(P ) =
( ∫ P

P0

ω1, . . . ,

∫ P

P0

ωg

)T

(mod L).

The mapping κ is known as the Abel–Jacobi embedding of X. This mapping depends on
the choice of the base point P0. Hence, it is denoted by κP0 when its dependence on the
base point is to be emphasized.

The following technical proposition will be needed later.

Proposition 3.1. Let X be a compact Riemann surface of genus g � 2. Then
κP0(X) = κP ′

0
(X) if and only if P0 = P ′

0.

Proof. Let P0, P
′
0 ∈ X, P0 �= P ′

0. If κP0(X) = κP ′
0
(X), then, for any P ∈ X, we can

find P ′ ∈ X such that ∫ P

P0

ω =
∫ P ′

P ′
0

ω for every ω ∈ A(X),

and thus P ′P0/P ′
0P is a principal divisor by Abel’s Theorem. (Here we write divisors

multiplicatively rather than additively.) This contradiction establishes the proposition.
See also the analysis below. �

Remark 3.2. We let div(X) denote the group of divisors on X. For D ∈ div(X), we
set

L(D) = {f ; f is a meromorphic function with (f) � D}

and

Ω(D) = {ω; ω is an abelian differential with (ω) � D}

by using obvious notation. Let P1 ∈ X be arbitrary. The Riemann–Roch Theorem implies
that

dim Ω(P1) = dimL(1/P1) − deg P1 + g − 1 = g − 1 > 0

since C = L(1/P1), because a surface of positive genus does not admit a meromorphic
function with a single pole. Let us choose a non-trivial abelian differential ω ∈ Ω(P1).
We take P2 ∈ X to be a point such that ω does not vanish at P2 (ω has 2g − 2 zeros,
counting multiplicity). Since P2 was chosen so that ω ∈ Ω(P1) \ Ω(P1P2), it follows that
dim Ω(P1P2) � g − 2. Thus, again by Riemann–Roch, we conclude that

dim L(1/P1P2) = 1.
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(The statement dim L(1/P1P2) = 1 is an immediate consequence of the inequality
dim L(1/P1P2) � 1, which we showed in the discussion, in view of the obvious inequality
dim L(1/P1P2) � 1.) We have already seen that a divisor greater than or equal to 1/P1P2

cannot be principal.

Let M and N be any two compact Riemann surfaces with gM � gN � 1. (Note that
if gM < gN , then there does not exist a non-constant holomorphic mapping from M to
N .) We shall assume that every such Riemann surface M (respectively, N) has on it a
fixed canonical homology basis {γM

1 , . . . , γM
2gM

} (respectively, {γN
1 , . . . , γN

2gN
}).

For f ∈ Hol(M, N), let us denote by Hf the 2gN × 2gM matrix with integer entries
mij representing the induced homology map

f∗ : H1(M ; Z) → H1(N ; Z)

with respect to the canonical homology bases; that is,

f∗γ
M
j =

2gN∑
i=1

mijγ
N
i , j = 1, . . . , 2gM . (3.7)

We will see that our approach to the finiteness problem is based on Martens’s idea that
a holomorphic mapping between compact Riemann surfaces is determined by the way
it operates on the homology of the surface, and that this brings the problem down to
counting homology actions.

Finally, let z be a local coordinate on M and let ζ be a local coordinate on N and
suppose that, in terms of these local coordinates, we have

ζ = f(z).

If ω is a holomorphic abelian differential on N , then locally

ω = h(ζ) dζ.

The pullback of ω via f , f∗ω, is the holomorphic abelian differential defined in terms of
the local coordinate z by

f∗ω = h(f(z))f ′(z) dz.

Thus f naturally induces a complex linear map

f∗ : A(N) → A(M).

Associated to f∗ is a gN × gM matrix Af with complex entries cij ; that is,

f∗ωN
i =

gM∑
j=1

cijω
M
j , i = 1, . . . , gN , (3.8)

where {ωM
1 , . . . , ωM

gM
} and {ωN

1 , . . . , ωN
gN

} are the respective dual bases with respect to
the canonical homology bases.
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We move on to the actual description of Martens’s Rigidity Theorem. Let ΠM and ΠN

denote the respective period matrices with respect to the canonical homology bases and
the dual bases for their holomorphic abelian differentials. We must establish the Hurwitz
relation

AfΠM = ΠNHf , (3.9)

which is another way of saying that there is a commutative diagram

R2gM
ΠM ��

Hf

��

CgM

Af

��
R2gN

ΠN

�� CgN

(3.10)

But it is easy to verify that∫
f∗γM

i

ωN
j =

∫
γM

i

f∗ωN
j , 1 � i � 2gM , 1 � j � gN , (3.11)

which is equivalent to (3.10). Hence Hf (and thus f) induces a holomorphic mapping F

from J(M) to J(N). The following diagram commutes:

R2gM
ΠM ��

Hf

��

CgM ��

Af

��

J(M)

F

��

M�
�κP0��

f

��
R2gN

ΠN

�� CgN �� J(N) N�
�

κf(P0)
��

(3.12)

where unmarked horizontal arrows denote canonical projections.
It is now easy to deduce the following.

Proposition 3.3 (Martens’s Rigidity Theorem). Let M and N be compact Rie-
mann surfaces of genera gM and gN , respectively, with gM � gN � 1. Suppose that
Hf = Hg for f , g ∈ Hol(M, N). Then

(i) if gN = 1, then there exists a unique translation τ of N such that f = τ ◦ g,

(ii) if gN � 2, then f = g.

Proof. Say P0 ∈ M is the fixed base point of the Abel–Jacobi embedding κP0 : M →
J(M). As before, F and G are holomorphic mappings from J(M) to J(N) induced by f

and g, respectively. Then the following diagrams commute:

R2gM ��

Hf

��

J(M)

F

��

M�
�κP0��

f

��
R2gN �� J(N) N�

�
κf(P0)

��

R2gM ��

Hg

��

J(M)

G

��

M�
�κP0��

g

��
R2gN �� J(N) N�

�
κg(P0)

��
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where unmarked horizontal arrows again denote natural projections (which do not
depend on the base points). Therefore, we have F = G. In particular, we see that
κf(P0)(N) = κg(P0)(N). Thus, if gN � 2, we conclude that f(P0) = g(P0) by Proposi-
tion 3.1. This completes the proof of part (ii).

We are left with the case where gN = 1, which can be dealt with as follows. Every
torus has C as its universal covering space. We may thus write N as C modulo a fixed-
point free subgroup of Aut C. It follows immediately that dζ, since it is invariant even
under Aut C, can be regarded as the only holomorphic differential on the torus, up to
multiplication by constants (the holomorphic fixed-point free self-mappings on C are of
the form z �→ z + b, with b ∈ C). Let τ be a translation of N which takes g(P0) to f(P0).
Since τ∗dζ = dζ, it is quite easy to conclude that f = τ ◦ g. �

4. Finiteness theorem for the case of gN � 2

As mentioned before, we will complete the proof of Theorem 1.1 (i) in this section; the
development given here is based very significantly on the work of Tanabe [13]. We also
remark that Proposition 4.2 is established under the assumption that gN � 1.

We formalize some notions needed for the remainder of this paper. In the preceding sec-
tion, we saw that if gN � 2, then a holomorphic mapping from M to N can be recovered
from the induced homology map. Thus, there is a natural map

µ0 : Hol(Ṁ, Ṅ) → M(2gN , 2gM ; Z) (4.1)

given by f �→ Hf̄ , which is injective when gN � 2, where M(2gN , 2gM ; Z) denotes the
set of 2gN × 2gM matrices with integer entries (recall that f̄ denotes the holomorphic
extension of f).

We wish to study the images under µ0 of holomorphic mappings from Ṁ to Ṅ . What
are the conditions on a 2gN × 2gM matrix H so that H represents some induced homology
map? First of all, H must be an integral matrix. Next, as we have already observed, it
is also necessary that H satisfies the Hurwitz relation between ΠM and ΠN ; that is, H

satisfies the equation AΠM = ΠNH for some gN ×gM complex matrix A (which depends
on H). The remarks we have made lead us to the following definition.

Definition 4.1. Let M and N be compact Riemann surfaces of genera gM and gN ,
respectively, with gM � gN � 1. The set of 2gN × 2gM matrices H with rational entries
which satisfy

AΠM = ΠNH for some gN × gM matrix A with complex entries (4.2)

is called the Hurwitz Q-vector space of ΠM and ΠN and is denoted by S(ΠM , ΠN ).

The matrices of the form under consideration form a ‘discrete’ subset of S(ΠM , ΠN ).
Now we start a more detailed investigation of the images under µ0 of holomorphic
mappings from Ṁ to Ṅ . We define the Castelnuovo–Severi inner product of H1, H2 ∈
S(ΠM , ΠN ) by

〈H1, H2〉 = tr(JgM
HT

1 J−1
gN

H2). (4.3)
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Here JgM
and JgN

are the intersection matrices with respect to the relevant canonical
homology bases. (We are using the notation and conventions introduced in the discussion
near the beginning of § 3.) Positive definiteness of the bilinear form is the only issue, but
the proof is omitted; see the proof of the lemma in [11] (cf. [7]). Using obvious notational
conventions, we also define the norm of H ∈ S(ΠM , ΠN ) by

‖H‖ = 〈H, H〉1/2. (4.4)

Proposition 4.2. Let Ṁ and Ṅ be Riemann surfaces of finite analytic types (gM , m)
and (gN , n), respectively, with χ(Ṁ) < 0 and χ(Ṅ) < 0, and let gM � gN � 1. Then, for
a possible holomorphic mapping f ∈ Hol(Ṁ, Ṅ),

‖Hf̄‖2 = 2gNdf . (4.5)

Proof. For f ∈ Hol(M, N), we have ‖Hf‖2 = 2gNdf because

HfJgM
HT

f = dfJgN
(4.6)

(Martens [11] mentioned the above condition, and it seems he credited Hopf’s paper [6]
with the treatment of the last equality.) Then the verification of (4.5) is straightforward.

To check (4.6), let {αM
1 , . . . , αM

2gM
} (respectively, {αN

1 , . . . , αN
2gN

}) be the basis of
the real-valued harmonic differentials on M (respectively, N) that is dual to the given
canonical homology bases. Since f∗αN

i ∧ f∗αN
j = f∗(αN

i ∧ αN
j ), we immediately see from

related definitions that∫∫
M

f∗αN
i ∧ f∗αN

j = df

∫∫
N

αN
i ∧ αN

j , i, j = 1, 2, . . . , 2gN . (4.7)

Now we write any harmonic differential αN on N as

αN =
2gN∑
k=1

akαN
k (4.8)

with a = (a1, . . . , a2gN
)T ∈ R2gN . Then we can rewrite (4.7) as

(HT
f a)TJgM

(HT
f a) = dfaTJgN

a for all a ∈ R2gN , (4.9)

because the matrix representing f∗ with respect to {αM
1 , . . . , αM

2gM
} and {αN

1 , . . . , αN
2gN

}
is HT

f . This last statement is equivalent to (4.6). �

As a direct consequence of Proposition 4.2 and Corollary 2.4, we obtain the following.

Corollary 4.3. Under the hypothesis of Proposition 4.2,

‖Hf̄‖2 � 2gN

[
χ(Ṁ)
χ(Ṅ)

]
, (4.10)

where [x] is the greatest integer � x.
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Remark 4.4. This corollary is a (minor) extension of [13, Lemma 2]. The inequality
of Tanabe’s Lemma follows easily if we make use of (4.10); indeed,

2gN

[
χ(Ṁ)
χ(Ṅ)

]
� gN

2(gN − 1)
4(gM − 1) � 4(gM − 1),

when gM � gN � 2 and m = n = 0.

On the basis of the above development, we can strengthen the result that a holomorphic
mapping is determined by the way it operates on the homology of the surface.

Let us denote by M(2gN , 2gM ; Z/Zl) the set of 2gN × 2gM matrices with coefficients
in the integers mod l. Then, when gN � 2, the map

µl : Hol(Ṁ, Ṅ) → M(2gN , 2gM ; Z/Zl) (4.11)

given by f �→ [Hf̄ ]l is already injective for sufficiently large l (we denote the equivalence
class of matrices corresponding to H by [H]l). This fact, which will be verified in the
next lemma, plays a crucial role in the proof of Theorem 1.1 (i).

Lemma 4.5 (see also Tanabe [13]). Let gM � gN � 2 and m � n. Then there is a
natural map

µl : Hol(Ṁ, Ṅ) → M(2gN , 2gM ; Z/Zl).

For l > 2
√

gN [χ(Ṁ)/χ(Ṅ)], the map µl is precisely one-to-one.

Proof. The map µl has already been described in the remarks preceding the statement
of the lemma. We shall therefore assume that

l > 2
√

gN [χ(Ṁ)/χ(Ṅ)].

Suppose now that µl(f) = µl(g) for f , g ∈ Hol(Ṁ, Ṅ) and let D = Hf̄ − Hḡ. If we
write

D =

(
D1 D2

D3 D4

)
(4.12)

in gN × gM blocks, then

JgM
DTJ−1

gN
D =

(
−DT

2 D3 + DT
4 D1 ∗

∗ DT
1 D4 − DT

3 D2

)
. (4.13)

Hence, in particular, 2l2 divides ‖D‖2 since D ≡ 0 (mod l). Recall, however (see Corol-
lary 4.3), that

‖D‖2 � 2(‖Hf̄‖2 + ‖Hḡ‖2) � 8gN

[
χ(Ṁ)
χ(Ṅ)

]
; (4.14)

so that it necessarily is the case that

D = 0 or Hf̄ = Hḡ.

We have shown (Proposition 3.3 (ii)) that holomorphic mappings from M to N are in a
one-to-one correspondence with the induced homology maps under the assumption that
gN � 2. Hence, we conclude that f = g. �

https://doi.org/10.1017/S0013091509000637 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509000637


On holomorphic mappings between Riemann surfaces 725

It is then easily seen that, for l > 2
√

gN [χ(Ṁ)/χ(Ṅ)],

# Hol(Ṁ, Ṅ) � #M(2gN , 2gM ; Z/Zl) = l4gN gM .

Choosing the integer l as small as possible, part (i) of the theorem follows.

5. Finiteness theorem for the case where gN � 1

Next we extend the considerations of the previous section to the remaining cases. We
adopt the notation and conventions introduced so far.

First, we examine once-punctured tori. Note that almost all the arguments above work
also for the cases gN = 1; indeed we proved Proposition 4.2 under the assumption that
gN � 1. This time, however, a holomorphic mapping from Ṁ to Ṅ is not recovered from
the induced homology map.

Lemma 5.1. Let gM � gN = 1 and m � n � 1. For l > 2
√

[χ(Ṁ)/χ(Ṅ)], the map

µl : Hol(Ṁ, Ṅ) → M(2gN , 2gM ; Z/Zl)

is at most m-to-one.

Proof. Under the hypothesis, in the light of the proof of Lemma 4.5, Hf̄ can be
recovered from its projection in the set of 2gN ×2gM (= 2×2gM ) matrices with coefficients
in the integers mod l.

So let f0 ∈ Hol(Ṁ, Ṅ) be arbitrary. It suffices to prove the inequality

#{f ∈ Hol(Ṁ, Ṅ); Hf̄ = Hf̄0
} � m. (5.1)

If Hf̄ = Hf̄0
, then part (i) of Proposition 3.3 gives that there exists a translation τf

defined on the compact ambient surface N such that

f̄ = τf ◦ f̄0. (5.2)

Since the point τ−1
f (PN

1 ) must be the image of a puncture of Ṁ under f̄0, we have (5.1).
�

Remark 5.2. One might expect that the quantity on the right-hand side of (5.1)
can be replaced by n. However, a counterexample is provided by taking Ṁ to be a
Riemann surface of genus 2 with two punctures (at ‘PM

1 ’ and ‘PM
2 ’), a two-sheeted

holomorphic branched covering M → N ramified of order 2 at PM
1 and PM

2 over PN
1

and one distinguished point, say QN (not a puncture), of Ṅ , respectively, and letting the
translation defined on N to send QN to PN

1 (see Figure 2 and also Figure 3).
While we have shown in § 2 that a holomorphic mapping f ∈ Hol(Ṁ, Ṅ) extends as a

holomorphic mapping f̄ ∈ Hol(M, N), it is observed that a holomorphic mapping from
M to N may be regarded as an extension of some f ∈ Hol(Ṁ, Ṅ) if and only if its inverse
image of the punctures of Ṅ is contained in the punctures of Ṁ .
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f

P1
M P2

M

P1
N

M

N

.

.

QN ∈ N
.

Figure 2. Possible restriction of a mapping between compact ambient surfaces to punctured
surfaces. Since the inverse image of QN under f̄ is a puncture P M

2 , one can, following f̄ by a
translation of N which takes QN to P N

1 , exhibit a holomorphic mapping from Ṁ to Ṅ as a
restriction of the composition; however, such a translation is not an extension of a self-mapping
on Ṅ itself.

We use the map of the lemma to complete the proof of Theorem 1.1 (ii);

# Hol(Ṁ, Ṅ) � m · #M(2gN , 2gM ; Z/Zl) = ml4gM for l > 2
√

[χ(Ṁ)/χ(Ṅ)].

So far we have considered Riemann surfaces with negative Euler–Poincaré characteris-
tics. Can we find a bound on the cardinality of Hol(Ṁ, Ṅ) even when either χ(Ṁ) � 0 or
χ(Ṅ) � 0? To change the pace slightly, we digress a little to investigate the infiniteness
of Hol(Ṁ, Ṅ) for ‘exceptional’ cases.

Let f be a holomorphic mapping from Ṁ to Ṅ and let f̃ be its lift to the universal
covering space. Then f̃ is a holomorphic mapping between simply connected Riemann
surfaces. Recall that any simply connected Riemann surface is biholomorphically equiv-
alent to exactly one of

(1) the sphere Ĉ,

(2) the plane C and

(3) the upper half-plane U .

We now apply a classical result that goes by the name of Liouville’s Theorem to f̃ and
conclude that if the universal covering Riemann surface of Ṁ is either Ĉ or C, and
that of Ṅ is U , then f̃ must reduce to a constant; that is, if χ(Ṁ) � 0 and χ(Ṅ) < 0,
there does not exist a non-constant holomorphic mapping from Ṁ to Ṅ . Thus, we require
that, in this digression, the target surface has non-negative Euler–Poincaré characteristic,
i.e. χ(Ṅ) � 0.

Theorem 1.1 (ii) was established under the assumption that gM � gN = 1 and m �
n � 1. We claim now that if gN = 1 and m > n = 0, then

# Hol(Ṁ, Ṅ) = +∞.
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We represent the target surface Ṅ = N as the complex plane factored by a lattice G.
Clearly, the case when the source surface Ṁ is a once-punctured surface implies all the
other cases; in fact, Hol(Ṁ, Ṅ) in this case can be only at least as small as Hol(Ṁ, Ṅ)
with more punctures on M (obviously). Hence, it is enough to show Hol(Ṁ, Ṅ) with
gN = 1 and 1 = m > n = 0 to be an infinite set. Observe that (by the Weierstrass ‘Gap’
Theorem, for example), for each integer k � 2gM , there exists a meromorphic function fk

on M which is regular except at PM
1 and which has a pole of order k at PM

1 . Following
fk by a natural projection C → C/G, we can construct a non-constant holomorphic
mapping (also denoted by fk) from Ṁ to N . Since the sequence {fk} is distinct, we are
done.

What happens if, in addition to our assumption that the target surface Ṅ is a compact
torus, Ṁ = M , i.e. the source surface is also compact without punctures? As an easy
consequence of the Riemann–Hurwitz formula, we see that, for gM = 0, gN = 1 and
m = n = 0, there does not exist a non-constant holomorphic mapping from M to N .
Furthermore, we find that, for gM = gN = 1 and m = n = 0,

# Hol(Ṁ, Ṅ) =

{
+∞ if M can be represented as an unbranched covering of N,

0 otherwise,

since the Riemann–Hurwitz relation also shows that a holomorphic mapping between
compact tori cannot be a branched covering. (In the former case, via standard topology,
the set of equivalence classes of unbranched coverings of N is in a natural one-to-one
correspondence with the set of the subgroups of the fundamental group of N .) We are
left with the case gM � 2. The cardinality of Hol(Ṁ, Ṅ) is again either 0 or +∞, since
AutN is an infinite group. The latter possibility occurs; for example, given a torus with
two distinguished points there is a unique Riemann surface of genus 2 formed by taking
two copies of the torus and ramifying the sheets above the two distinguished points
(see Figure 3). In the same spirit, one can consider the case gM � 3. (What is an explicit
example of the former possibility for which the set of non-constant holomorphic mappings
is demonstrably empty?)

While it is possible to consider the cases gN = 0 and 0 � n � 2 at this point, we
shall delay the argument until after we have established part (iii) of the theorem. We
will continue with this problem in the remark at the end of the section.

We now return to the proof of Theorem 1.1 (iii). To study the cases where gN = 0 and
n � 3, we represent Ṅ as a submanifold of Ĉ. We say the surface Ṅ is normalized if

PN
1 = ∞, PN

2 = 0 and PN
3 = 1.

Henceforth, Ṅ will be assumed to be normalized unless the contrary is stated explicitly.
Again, the finiteness must be proved, but this time we have little analytic (or geometric)

information at our disposal, and we are forced to use a more algebraic method.
Now the extension f̄ can clearly be viewed as a meromorphic function on M , with the

property that the points in the divisor (f̄) are punctures of Ṁ ; so if f ∈ Hol(Ṁ, Ṅ), then
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180°

Figure 3. Involution on a surface of genus 2. A torus is associated to a Riemann surface of
genus 2. The ‘involution’ is the rotation by π radians through the axis shown. We can quotient
the surface of genus 2 by using the involution to give the original torus.

f determines a divisor (f̄) ∈ div(M) by

(f̄) =
∑

P∈PM

vP (f̄)P, (5.3)

where vP (f̄) is the valuation of f̄ at P and all valuations are of the form

vP (f̄) = ordP (f̄),

where, in the last equation ordP (f̄) = ν (or −ν) if f̄ has a zero (or pole) of order ν at
P . Thus, we have established a map

λ : Hol(Ṁ, Ṅ) → div(M) (5.4)

from the set of holomorphic mappings to the group of divisors on M which is defined by
f �→ (f̄).

Lemma 5.3. Let gM � gN = 0 and m � n � 3. Assume that Ṅ is normalized. Then
there is a natural map

λ : Hol(Ṁ, Ṅ) → div(M).

The map λ is at most (m − 2)-to-one.

Proof. We let f , g ∈ Hol(Ṁ, Ṅ). Note that if λ(f) = λ(g), then f̄ and ḡ have the same
zeros and poles and the same multiplicative behaviour. Hence g is a constant multiple
of f .

We therefore conclude that the number of inverse images of any point of div(M) under
the map λ is at most m−2 (see the proof of Lemma 5.1 for an analogous argument). �
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It is now a simple matter to complete the proof of part (iii) of the theorem. Without
loss of generality, we may of course assume that Ṅ is normalized. We merely note that

−
[
χ(Ṁ)
χ(Ṅ)

]
� vP M

i
(f̄) �

[
χ(Ṁ)
χ(Ṅ)

]
for all PM

i ∈ PM . (5.5)

But this is an immediate consequence of Corollary 2.4 (and the remarks preceding the
statement of the lemma). Since we have (5.5), it is clear that the image in div(M) of
Hol(Ṁ, Ṅ) under the map λ consists of at most

(
2
[
χ(Ṁ)
χ(Ṅ)

]
+ 1

)m

points. It, together with the fact that λ is at most (m − 2)-to-one, yields the desired
inequality (1.4).

Our main theorem is now fully established.

Remark 5.4. We end the paper with a few more trivial remarks about the cases
gN = 0 and 0 � n � 2, for the sake of completeness. We may assume that Ṅ is either
the sphere Ĉ, the plane C or the punctured plane C∗ = C \ {0}.

By Riemann–Roch, the set of non-constant meromorphic functions is ample for every
genus g � 0 Riemann surface. This statement implies that if gN = 0 and n = 0, then

# Hol(Ṁ, Ṅ) = +∞.

What if the target Riemann surface has one or two punctures? We claim that, for gN = 0
and 1 � n � 2,

# Hol(Ṁ, Ṅ) =

{
0 if m = 0,

+∞ if m � 1.

The only aspect needing some comment is the equality for m � 1. This is almost estab-
lished by a previous argument. Recall that we have observed, in the digression above, that
every non-compact Riemann surface with punctures carries infinitely many non-constant
holomorphic functions. Hence, we conclude that the statement is true for n = 1. It is also
true for n = 2 in view of the fact that C∗ has C as its holomorphic universal covering
space (the covering map π : C → C∗ is given by π(z) = exp(2πiz) for all z ∈ C).
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