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Abstract

Coarse spatial resolution in gridded precipitation datasets, reanalysis, and climate model outputs restricts their ability to
characterize the localized extreme rain events and limits the use of the coarse resolution information for local to regional
scale climatemanagement strategies. Deep learningmodels have recently been developed to rapidly downscale the coarse
resolution precipitation to the high local scale resolution at a much lower cost than dynamic downscaling. However, these
existing super-resolution deep learningmodeling studies have not rigorously evaluated themodel’s skill in producing fine-
scale spatial variability, particularly over topographic features. These current deep-learning models also have difficulty
predicting the complex spatial structure of extreme events. Here, we develop a model based on super-resolution
deconvolution neural network (SRDN) to downscale the hourly precipitation and evaluate the predictions. We apply
three versions of the SRDN model: (a) SRDN (no orography), (b) SRDN-O (orography only at final resolution
enhancement), and (c) SRDN-SO (orography at each step of resolution enhancement). We assess the ability of SRDN-
based models to reproduce the fine-scale spatial variability and compare it with the previously used deep learning model
(DeepSD).All themodels are trained and tested using theConformal CubicAtmosphericModel (CCAM) data to perform
a 100 to 12.5 km of hourly precipitation downscaling over the Australian region. We found that SRDN-based models,
including orography, deliver better fine-scale spatial structures of both climatology and extremes, and significantly
improved the deep-learning downscaling. The SRDN-SO model performs well both qualitatively and quantitatively in
reconstructing the fine-scale spatial variability of climatology and rainfall extremes over complex orographic regions.

Impact Statement

Extreme rainfall events significantly impact society, ecosystems, and the economy. Developing reliable, locally-
relevant information about extremes is critical for building actionable adaptation and mitigation strategies.
Statistical downscaling using machine learning algorithms has attracted the attention of researchers for its ability
to provide downscaled high-resolution precipitation data at a much lower computational cost than dynamical
downscaling. The present study applies a set of deep learning models to rapidly perform 8× downscaling of
hourly precipitation data. Our best model outperforms existing deep learningmodels in reproducing the localised
spatial variability ofmean and extreme precipitation. Ourmodel can rapidly producemultiple ensemblemembers
of high-resolution precipitation data with reasonable accuracy and with less computational cost, allowing us to
better characterise precipitation extremes.
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1. Introduction

Spatially downscaling precipitation from coarse resolution datasets and model outputs (~100’s of kms) to
local scale resolution (~10’s of kms or less) allows for a more accurate representation of the spatial
variability at fine scales. For climate projections, this will be useful for developing region-specific climate
adaptation strategies. For these purposes, recent deep learning methods, especially, the super-resolution
approaches, are being widely used for empirical precipitation downscaling (Vandal et al., 2017; Harilal
et al., 2021; Kumar et al., 2021; Chandra et al., 2022; Wang et al., 2023). In precipitation downscaling,
super-resolution models are trained to learn the relationship between the coarse-scale precipitation data
and the fine-scale precipitation data, and then apply this relationship to generate high-resolution
precipitation maps. These super-resolution deep learning models are computationally efficient and
relatively fast compared to traditional dynamical downscaling.

Previous studies have developed super-resolution-based deep learning models for precipitation
downscaling using a convolutional neural network (CNN) (Vandal et al., 2017; Chandra et al., 2022;
Wang et al., 2023). For example, Vandal et al. (2017) used the super-resolution CNN (SRCNN) model
architecture (Dong et al., 2014) and applied it to the precipitation downscaling by introducing orography
as an auxiliary input to the model and named it DeepSD. They showed that DeepSD outperformed the
commonly used empirical downscaling techniques like bias correction spatial disaggregation (BCSD) for
precipitation downscaling (for a downscale factor of 8) across the United States for grid point-based
metrics such asmean bias, root mean square error, and correlation coefficient.WorkwithDeepSD showed
that providing orography as an additional input enhances the accuracy ofmodel output based on grid point
metrics (Vandal et al., 2017; Kumar et al., 2021). However, it is not clearly shown that adding orography
improves the fine-scale spatial variability of downscaled precipitation products from coarse to a fine grid.
Recently, Wang et al. (2023) developed super-resolution deep residual network models with customised
loss functions to downscale the hourly precipitation data (for a downscale factor of 12) over the northern
region of the Gulf of Mexico and showed their model performs better than the quantile mapping based
empirical downscaling technique. In these previous studies, super-resolution deep learning models are
mostly based on CNNs. CNNs are mainly used for feature extraction and in these CNN-based models,
upscaling is performed using interpolation techniques (with fixed parameters). Unlike CNNs, deconvo-
lution (or transposed convolution) neural networks (DNs) are used for reconstruction purposes and
upscaling is done with learnable parameters. In this study, we develop DN-based model architecture for
the downscaling of hourly precipitation data over the Australian region. Further, we provided the
orographic information at various steps (2, 4, and 8×) of resolution improvement in the DN model to
systematically assess the influence of the additional orographic information on the precipitation down-
scaling. We compare our DN models with the baseline DeepSD model and evaluate the ability of deep
learning models to reconstruct the fine spatial scale structure of hourly precipitation from its coarse
resolution product.

2. Data

For this study, we use high-quality modern reanalysis output dynamically downscaled to fine resolution
using the Conformal Cubic Atmospheric Model (CCAM) (McGregor and Dix, 2008). This creates a
“model as truth” or “perfectmodel” exercise to rigorously assess the deep learningmodels. Output is high-
resolution (at 12.5 km) hourly precipitation data and static orography data over the Australian region from
1980 to 2020. The ERA5 reanalysis data (Hersbach et al., 2020) drives the CCAM model. These high-
resolution data are conservatively averaged by a scale factor of 8 to 100 km coarse resolution. Deep
learning models are trained using data from 1980 to 2012 (until September 15, 2012) and tested on data
from 2012 (fromSeptember 16, 2012) to 2020. This data split between training and test sets is based on the
commonly used 80–20 split rule and allows us to effectively scale over multiple nodes with proper load
balance.We have normalized precipitation and orography input data using the training period’smaximum
andminimum values. For the SRDNmodels, the normalization is scaled to 100 so that all the values are in
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the range of 0 to 100.We have adopted this normalization scheme becausemost of the hourly precipitation
values are small and normalizing them to 0–1 produces a training dataset of nearly all zero values. For the
DeepSDmodel, precipitation is scaled from 0 to 100 and orography from 0 to 1 because our solutions with
scaling orography from 0 to 100 produce noisy results (not shown).

3. Methods

3.1. DeepSD

DeepSD is built by stacking the three separate SRCNNmodels (SRCNN1, SRCNN2, and SRCNN3) with
orography as an additional input at every step of the resolution enhancement (Vandal et al., 2017). Each
SRCNN model performs 2× resolution enhancement. For example, the SRCNN1 model takes in low-
resolution precipitation input at 100 km, interpolates (bicubic) to 50 km, and uses orography at 50 km as a
secondary input and then performs convolution operations and outputs the precipitation at 50 km. Both
the 100 km input and 50 km target precipitation data for training the SRCNN1 model are produced by
conservatively averaging the 12.5 km precipitation data. SRCNN1 has three convolution layers, layer-1
has 64 9 × 9 filters with a rectified linear unit (ReLU) non-linear activation, layer-2 has 32 1 × 1 filters with
ReLU activation, and the last convolution layer has a 5 × 5 filter that linearly maps the previous layers
32 feature maps to the output.

The model architecture is the same for all three SRCNN models. Only the resolution of the input and
target data differs between the three SRCNNmodels. SRCNN2model is trained with 50 km precipitation
and 25 km orography as inputs to output 25 km precipitation data. Similarly, SRCNN3 model is trained
with 25 km precipitation and 12.5 km orography as inputs and outputs 12.5 km. For training purposes of
SRCNN2 and SRCNN3, both the input and target precipitation data used for each model come from
conservatively averaging the 12.5 km high-resolution CCAM data to the appropriate resolution.

In DeepSD, each SRCNNmodel is trained separately for 100 epochs with mean square error (MSE) as
a loss function using the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 1 × 10�4. The
learning rate is further reduced by a factor of 0.1 to a minimum of 1 × 10�5 when the model stopped
improving for at least 10 epochs. During prediction, all three SRCNN trainedmodels are stacked together,
that is, the SRCNN1 model output precipitation and associated high-resolution orography flow in as an
input for the SRCNN2 and similarly SRCNN2 output with respective high-resolution orography is input
for SRCNN3. We monitored the loss curve of training and testing data to ensure the model is not
overfitting/underfitting the data. The loss curve of these models represents a good fit with no evidence we
are overfitting the data (Figure 1).

3.2. SRDN

Our super-resolution DN (SRDN) model is primarily built on deconvolution layers. It has three main
deconvolution layers; each consists of 64 7 × 7 filters with ReLU non-linear activation and a convolution
layer at the end to linearly map the last deconvolution layer feature maps to the output. Each deconvo-
lution layer does a 2× resolution enhancement. This model does a straight 8× resolution enhancement,
which means it takes 100 km of precipitation as an input and outputs 12.5 km of precipitation. Guided by
studies with DeepSD, we explored including orography as an additional input to the model in
several ways.

We develop twomodels by providing orography at different stages of themodel architecture. Version
1 adds to the SRDN by concatenating high-resolution (12.5 km) orography as a channel to the SRDN
output high-resolution precipitation (12.5 km) and passing it through a convolution layer of 64 7 × 7
filters with ReLU activation and one other convolution layer at the end to linearly map previous layer
64 feature maps to the output. This model is named SRDN-O. Version two, called SRDN-SO, is built on
the SRDN-O model by providing orography at multiple steps as feature maps (i.e., 50 km resolution
orography is appended to the first deconvolution layer and 25 km resolution orography to the second
deconvolution layer, respectively). All three models are trained with MSE as a loss function for
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30 epochs using theAdamoptimizer with a learning rate of 3 × 10�3. The learning rate is further reduced
by a factor of 0.1 to a minimum of 1 × 10�5 when the model stopped improving for at least 10 epochs.
The loss curve of these models represents a good fit with no evidence of overfitting the data (see
Figure 2).

All the models considered in this study are developed using the TensorFlow (Abadi et al., 2015) and
Keras (Chollet et al., 2015) application programming interfaces and trained in a distributed training
framework using the Horovod package (Sergeev and Del Balso, 2018). These models are trained on
80 Nvidia V100 GPUs with 32 GB memory at the National Computational Infrastructure in Canberra on
the Gadi supercomputer.

4. Results

First, we compare the model’s performance based on standard metrics (peak signal-to-noise ratio [PSNR]
and mean structural similarity index measure [MSSIM]) of image resolution enhancement models in
computer vision applications. The PSNR andMSSIM are calculated for each predicted precipitation map

Figure 1. The DeepSD models’ (SRCNN1, SRCNN2, and SRCNN3) MSE computed from training (solid
line) and test (dashed line) normalized datasets during the model training process over 100 epochs. The
MSE values shown are calculated using the normalized data. To estimate the MSE of DeepSD, we need to
stack the three models together. Hence the errors in panel (a) flow to panel (b), and the errors in panel
(b) flow to panel (c), which leads to model prediction with greater MSE than what is shown in panel (c).
The MSE of DeepSD is summarized in Table 1.
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and are averaged over all test data samples to compute their mean (shown in Table 1). TheMSSIM results
suggest that all the models perform similarly. The mean PSNR suggests that the SRDN-SO model
performs slightly better than the other models in this study in enhancing the resolution of the hourly
precipitation field at a downscale factor of 8 (100 to 12.5 km). However, these standardmetrics are similar
across the models used and are insufficient to identify the best deep-learning model. To quantitatively
assess the ability of the deep learning models to reconstruct the 12.5 km from the 100 km precipitation
data, we used 2D spatial Fourier Transforms analysis. We compute the predicted precipitation map’s
power spectral density (PSD) and compare it with PSD of the target precipitation (Manepalli et al., 2020;
Kashinath et al., 2021). Looking at only PSD may provide misleading conclusions when the predicted

Figure 2. The SRDN models’ MSE error computed from training (solid line) and test (dashed line)
normalized datasets during the model training process over 30 epochs. The MSE values shown are
calculated using the normalized data.

Table 1. Comparison of mean peak signal-to-noise ratio (PSNR), mean structural similarity index
measure (MSSIM), and mean square error (MSE) of predicted precipitation during test period between

different models

Model MSSIM PSNR MSE

DeepSD 0.969 40.924 0.1825
SRDN 0.970 41.031 0.1768
SRDN-O 0.970 41.053 0.1760
SRDN-SO 0.970 41.138 0.1729
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data are noisy. Hence, we also examine the spatial maps qualitatively to gauge how well the model
predictions are representing the precipitation data.

First, the PSD is calculated for each of the predicted precipitation maps and averaged over all
time samples to get the mean PSD. The diagonal of one quadrant (symmetrical across quadrants) of the
mean PSD is shown in Figure 3. All the considered models show less power than the target data at short
wavelengths. The DeepSD model’s PSD drops substantially more at the short wavelength (around 50 km)
than the SRDN models. SRDN-SO model shows slightly more power in both mid-range and short
wavelengths than the other models. The additional use of the orography at each step of resolution
enhancement appears to improve the model representation of the spatial variability. However, the effect
is likely to be evenmore notable overmountain ranges thanminor orographic regions, and this effectmay be
washed out in this domain statistic, so next, we examine spatial maps.

Figure 4 shows the climatology rainfall with zoomed-in plots in two regions with complex orography
(i.e., Papua New Guinea [PNG] and Southeast Australia [SEA]). On average, SRDN-SO captures the
mean well (Figure 4a vs. b). At large scale, all deep learning models are quite effective in representing the
mean rainfall (figure not shown). If we zoom in on the two regions (PNG and SEA), we start to see the
differences between the models and the benefit of orography. It can be visually seen that the SRDN-SO
model performs well in reconstructing the spatial structure over complex orographic regions of PNG
(Figure 4c–g) and SEA (Figure 4h–l) compared to other models. To quantify the subtle spatial differences
between the deep learning models, we show the PSD of climatology rainfall (Figure 4m). The PSDs of
SRDN-O and SRDN-SO models closely match the target PSD at mid-range wavelengths; however, they
slightly overestimated at short wavelength space.

Figure 5 shows the 95th percentile plot and the respective PSD of the models and target data. On a
domain scale, SRDN-SO predicts the 95th percentile well (Figure 5a vs. b). Further, SRDN-SO model
extracts the fine-scale spatial structure andmagnitude of the 95th percentile precipitation fieldmuch better
than other models, particularly over the PNG (Figure 5c–g) and SEA (Figure 5h–l) regions. However, the
SRDN-SO model underestimates the PSD of the 95th percentile precipitation compared to the target data
(Figure 5m). An important note on these results is that all the deep learning models underestimate the
target 99th percentile extreme value (not shown). This may be due to the lower sampling size at the
extremes of the distribution and structural model features of CCAM that cannot be replicated by deep
learning models. We plan to investigate this further.

Figure 3. The diagonal of one of the quadrants (all quadrants are symmetrical) of mean spatial PSD of
the hourly precipitation field versus wavelength (λ) using the target data and the models’ predicted output
during the test period.
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5. Conclusion

In this study, we have developed an SRDN model architecture for rapidly downscaling the hourly
precipitation by a scale factor of 8 (100 to 12.5 km) over the Australian region that successfully
downscales precipitation to accurately reproduces the mean and extreme (95th percentile). We system-
atically evaluated the use of orography to generate the downscaled precipitation. By utilizing orography at
multiple resolution steps, we improved the model’s ability to reconstruct the fine-scale spatial variability
of precipitation of both the mean and extreme (95th percentile). Our SRDN-SO model outperforms a
previously used deep-learning model (DeepSD) with better skill in reproducing the fine-scale spatial
structure of both the climatology and the extremes. This model architecture can be applied to different
regions for downscaling hourly precipitation.

The proposed SRDN-SOmodel has huge potential to rapidly downscale hourly precipitation products
from various global climate models ensemble members dynamically downscaled by a coarse resolution

Figure 4. Hourly precipitation climatology over the study region of target (a) and SRDN-SO model
(b) predictions during the test period. The top panels (c–g) andmiddle panels (h–l) show climatology over
zoomed-in regions of PapuaNewGuinea and southeast Australia, respectively. The bottom panel (m) line
plot shows the PSD (shown only for mid-range and short wavelengths) of the climatology of the whole
domain for different considered models and the target.
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CCAM to high resolutionwith less computational cost than straight dynamical downscaling to the desired
resolution. This can help produce large ensembles of high-resolution precipitation data needed to
characterizing extreme rainfall events. The results here also illustrate the benefits of systematic assess-
ment and evaluation of the results of deep learningmodels, andwe suggest that this should become amore
routine part of analysis using deep learning models for downscaling. However, there are a few limitations
to our proposed SRDN-SO model. The model cannot accurately represent the PSD at short wavelengths
compared to the target data. Several recent studies show models based on Generative Adversarial
Networks (GANs), particularly Enhanced Super-Resolution GAN (ESRGAN;Wang et al., 2019) models
can accurately represent the PSD even at short wavelengths in wind field for downscaling by a factor of
2 and 4 (Singh et al., 2019;Manepalli et al., 2020; Kashinath et al., 2021). However, these previous studies
are based on downscaling winds by a factor of 2 and 4, and not precipitation downscaling by a factor
8. The power spectrum of wind maps is expected to differ from precipitation maps because of the more
sporadic and chaotic nature of the precipitation (particularly, convective precipitation), making precipi-
tation downscaling to finer spatial scales more challenging. Hence, based on the previous studies, we

Figure 5. The 95th percentile hourly precipitation for the target (a) and SRDN-SO model (b) predictions
during the test period. The top panels (c–g) and middle panels (h–l) show Papua New Guinea and
southeast Australia, respectively. The bottom panel (m) line plot shows the corresponding PSD of the
target and the deep-learning models.

e17-8 P. Jyoteeshkumar Reddy et al.

https://doi.org/10.1017/eds.2023.18 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.18


cannot be definite that ESRGAN could accurately represent the PSD for precipitation downscaling of a
downscale factor of 8 (100 to 12.5 km). This needs to be further examined in future work. Following the
RainNet initiative of providing the precipitation dataset for deep learning-based downscaling (Chen et al.,
2022), we will make the data set available as a precipitation downscaling benchmark for the Oceania
region and encourage downscaling practitioners to apply their models to this data. In future precipitation
downscaling we will assess the benefit of additional input variables such as geopotential height, wind
speed, and direction, and explore the inclusion of temporal dependency in the model based on the Chen
et al. (2022) approach.
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