Among patients with coinfection, the 30-day mortality rate was 45% (9 of 20). Diagnoses of BSI (OR, 6.35; 95% CI, 1.41–26.30) and bacterial pneumonia (OR, 9.34; 95% CI, 2.01–46.34) were associated with increased mortality. Of the data available, 12 (63%) of 19 patients with coinfection had elevated procalcitonin levels (ie, >0.50). At the time of COVID-19 diagnosis, the median absolute lymphocyte count in patients who died was 0.7 K/mm3 (95% CI, 0.6–1.12) in comparison to 1 K/mm3 (95% CI, 0.7–1.4) in patients who survived at 30 days. Conclusions: Our analysis of hospitalized COVID-19 patients with advanced age and underlying comorbid conditions demonstrated that coinfections were infrequent but that they were independently associated with increased mortality. This finding highlights the need for better tools to diagnose the presence or absence of bacterial and fungal coinfection in COVID-19 patients. Our findings also emphasize the need for judicious use of antimicrobials while discerning which patients are at risk of critical illness and mortality. Funding: None
Disclosures: None

Presentation Type:
Poster Presentation - Top Poster Award

Subject Category: COVID-19
Characteristics of healthcare personnel who reported concerns related to PPE use during care of COVID-19 patients
Nora Chea; Stephanie Tavitian; Cedric Brown; Taniece Eure; Rebecca Alkis; Gregory Blazek; Austin Penna; Joelle Nadle; Linda Frank; Christopher Czaja; Helen Johnston; Devra Barter; Kathleen Angell; Kristen Marshall; James Meek; Monica Brackney; Stepy Carswell; Stepy Thomas; Scott Fridkin; Lucy Wilson; Ashley Fell; Sara Lovett; Sarah Lim; Ruth Lynfield; Ruth Sarah Shrum; Erin C. Phipps; Marla Sievers; Ginwina Dumbay; Cate Concannon; Kathryn McCullough; Woods; Sandhya Seshadri; Christopher Myers; Rebecca Pierce; Valerie Ocampo; Judith Guzman-Cotrill; Gabriela Escutia; Monika Samper; Sandra Pena; Cullen Adre; Tiffany Markus; Kathryn Billings; Matthew Groenewold; Ronda Sinkowitz-Cochran; Shelley Magill; Cheri Grigg and Betsy Miller

Background: Healthcare facilities have experienced many challenges during the COVID-19 pandemic, including limited personal protective equipment (PPE) supplies. Healthcare personnel (HCP) rely on PPE, vaccines, and other infection control measures to prevent SARS-CoV-2 infections. We describe PPE concerns reported by HCP who had close contact with COVID-19 patients in the workplace and tested positive for SARS-CoV-2. Method: The CDC collaborated with Emerging Infections Program (EIP) sites in 10 states to conduct surveillance for SARS-CoV-2 infections in HCP. EIP staff interviewed HCP with positive SARS-CoV-2 viral tests (ie, cases) to collect data on demographics, healthcare roles, exposures, PPE use, and concerns about their PPE use during COVID-19 patient care in the 14 days before the HCP’s SARS-CoV-2 positive test. PPE concerns were qualitatively coded as being related to supply (eg, low quality, shortages); use (eg, extended use, reuse, lack of fit test); or facility policy (eg, lack of guidance). We calculated and compared the percentages of cases reporting each concern type during the initial phase of the pandemic (April–May 2020), during the first US peak of daily COVID-19 cases (June–August 2020), and during the second US peak (September 2020–January 2021). We compared percentages using mid-P or Fisher exact tests ($\alpha = 0.05$). Results: Among 1,998 HCP cases occurring during April 2020–January 2021 who had close contact with COVID-19 patients, 613 (30.7%) reported ≥1 PPE concern (Table 1). The percentage of cases reporting supply or use concerns was higher during the first peak period than the second peak period (supply concerns: 12.5% vs 7.5%; use concerns: 25.5% vs 18.2%; p < 0.05).
Background: Understanding SARS-CoV-2 persistence on surfaces can inform transmission risk from surfaces in healthcare and community settings. A sensitive viral infectivity assay is crucial for the detection of infective virus in environmental investigations. The conventional cell culture-based infectivity assay is limited by the time dependence, subjectivity, and insensitivity of cytopathic effect (CPE) scoring. We validated an integrated cell-culture and reverse-transcription quantitative RT-PCR method (cc-RT-qPCR) to improve SARS-CoV-2 detection and reduce detection time. We compared cc-RT-qPCR with CPE-scored cell culture to evaluate assay sensitivity of recovered virus from stainless-steel coupons simulating hospital surfaces, eg, coughing and sneezing.

Methods: When cells were inoculated with OC43 at titer range 10^5 TCID50/mL, OC43 replication was already detected at 3 days after incubation via RT-PCR. Upon virus titration, cc-RT-qPCR demonstrated greater sensitivity, detecting up to 1 log10 higher of infectious OC43 than cell culture alone at 0 and 6 hours (P ≤ .05) in saliva. Conclusions: Our data demonstrated greater sensitivity and shorter times to detect viral replication by cc-RT-qPCR, minimizing potential for false-negative results with cell culture alone. This sensitive assay may provide investigators with quicker results for informing infection control practices to reduce risk of transmission from deposited bodily fluids on surfaces, eg, coughing and sneezing.

Presentation Type: Poster Presentation - Top Poster Award

Subject Category: COVID-19

Work system factors affecting COVID-19 PPE use: A human factors approach to analysis of video recordings of emergency department clinical work

Esosa Nosakhare; Shawa Perry; Susan Peterson; Frankie Catalifumo; Kelly Osei, Kelly Williams; Maia Bradley; Marium Sultan; Oluseyi Daodu; Nivedha Prabhu and Ayse Gurses

Background: The effectiveness of PPE in preventing self-contamination of healthcare workers (HCWs) and transmission of pathogens (airborne and contact) in the emergency department (ED) is highly dependent on consistent, appropriate use of and other interactions (eg, storing, cleaning, etc) with the PPE. Pre-COVID-19 studies focused primarily on individual HCW contributions to incorrect or suboptimal PPE use. We conducted an analysis of ED video recordings using a human-factors engineering framework (ie, The Systems Engineering Initiative for Patient Safety, SEIPS), to identify work-system–level contributions to inappropriate PPE usage by HCWs while they provide care in their actual clinical care environment. Methods: In total, 47 video sessions (each ~15 minute) were recorded between June 2020 and May 2021 using a GoPro camera in an 8-bed pod area, designated for persons under investigation (PUI) and confirmed COVID-19–positive patients, in an ED of a large, tertiary-care, academic medical center. These recordings captured a ‘landscape view’: 2 video cameras were set up to capture the entire ED pod area and HCWs as they provided care. A team with hemorrhagic fever expertise, infection prevention and control expertise, and ED expertise reviewed each video together and extracted data using a semistructured form. Results: Guided by the 5 components of the SEIPS work system model, (ie, task, physical environment, person, organization, tools and technology), multiple work system failure points influencing HCWs appropriate use of PPE were identified. For example, under the task component, HCWs were observed not doffing and donning in recommended sequence. Also, inconsistencies with COVID-19 status signage on a patient’s door and ambiguous labelling of work areas designated as clean (doffing) and dirty (doffing) sites acted as a barrier to appropriate PPE use under the physical