THE COMPACT RANGE PROPERTY AND C_0

by NEIL E. GRETSKY and JOSEPH M. OSTROY

(Received 6 June, 1985)

The purpose of this short note is to make an observation about Dunford-Pettis operators from $L^1[0,1]$ to C_0 . Recall that an operator $T: E \to F$ (where E and F are Banach spaces) is called Dunford-Pettis if T takes weakly convergent sequences of E into norm convergent sequences of E. A Banach space E has the E compact E Range E Property (CRP) if every operator E is Dunford-Pettis. Talagrand shows in his book [2] that E does not have the CRP. It is of interest (especially in mathematical economics [3]) to note that every positive operator from E is Dunford-Pettis.

For a Banach lattice Y, call a Schauder basis order-compatible if the natural projections are positive operators. Certainly in this case, the basis elements themselves are positive.

THEOREM 1. Let Y be a Banach lattice with order compatible Schauder basis. Then every positive linear operator $T: L^1[0,1] \to Y$ is a Dunford-Pettis operator.

Proof. By a theorem of Bourgain given in [1], it suffices to show that $T \circ i$: $L^{\infty}[0, 1] \to Y$ is a compact operator, where $i: L^{\infty}[0, 1] \to L^{1}[0, 1]$ is the natural injection. To fix notation, let y_1, y_2, y_3, \ldots be the basis of Y and let P_n and Q_n be the associated projections defined by

 $P_n\left(\sum_{i=1}^{\infty} a_i x_i\right) = \sum_{i=1}^{n} a_i x_i$

 $Q_n = I - P_n \quad (n = 1, 2, 3, \ldots).$

By hypothesis, each of these projection operators is positive. Now let f be in the unit ball of $L^{\infty}[0, 1]$. We compute

 $(T \circ i)f = (P_n \circ T \circ i)f + (Q_n \circ T \circ i)f$ $= T_n f + R_n f$

so that

and

$$||(T \circ i)f - T_n f|| = ||R_n f||$$

 $\leq ||R_n \chi_{[0,1]}||,$

since $|f| \le \chi_{[0,1]}$ and Y is a Banach lattice. Given $\varepsilon > 0$, there is N such that $||R_n \chi_{[0,1]}|| < \varepsilon$ for $n \ge N$. So for any f in the unit ball of L^{∞} , and $n \ge N$, we have

$$||(T \circ i)f - T_n f|| < \varepsilon.$$

Consequently, $||(T \circ i) - T_n|| < \varepsilon$. Since each T_n has finite dimensional range, $T \circ i$ is a compact operator. Thus T is Dunford-Pettis.

A consequence of this theorem is that every regular operator from $L^1[0, 1]$ to Y is Dunford-Pettis. (Recall that an operator between two Banach lattices E and F is called

Glasgow Math. J. 28 (1986) 113-114.

regular if it is the difference of two positive operators.) In general, the regular operators are a proper subset of the bounded linear operators; in two special cases, however, it is well known that equality holds: one case is when F is an order complete C(K) with K compact; the other is when E is $L^1(\mu)$ and F is the range of a positive, continuous projection in its bidual.

Examples of Banach lattices which fit into the framework of the theorem are C_0 and l_1 . In the case of l_1 , every operator from $L^1[0,1]$ to l_1 is regular (second case above) and thus is Dunford-Pettis. (Of course, it is already obvious that this must be so because l_1 has the RNP and hence the CRP.) The space C_0 does not fit either of the two cases and, in fact as mentioned above, C_0 does not have the CRP. One final note: $L^1[0,1]$ itself fits the second case and every operator from $L^1[0,1] \rightarrow L^1[0,1]$ is regular but not necessarily Dunford-Pettis, as the identity operator shows.

COROLLARY 2. $L^1[0,1]$ cannot have an order compatible Schauder basis.

REFERENCES

- 1. J. Bourgain, Dunford-Pettis operator on L^1 and the Radon-Nikodyn property, *Israel J. Math.* 37 (1980), 34-27.
 - 2. M. Talagrand, The Pettis integral, Mem. Amer. Math. Soc. No. 307, (Rhode Island, 1984).
- 3. N. E. Gretsky and J. M. Ostroy, Thick and thin market non-atomic exchange economies, in *Advances in Equilibrium Theory*, Lecture Notes in Economics and Mathematical Systems No. 244 (1985), 107-130.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA RIVERSIDE CALIFORNIA 92521 DEPARTMENT OF ECONOMICS UNIVERSITY OF CALIFORNIA LOS ANGELES CALIFORNIA 90024