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Introduction. The following result is found quite widely. Suppose/(z) is a non-constant
entire function such that | / (z) | = 1 along \z\ = 1. Then,/(z) has form czm, \c\ = 1, m ^ 1.
See Ahlfors [1, p. 172, exercise 3], Dienes [4, p. 172, exercise 23], Hille [6, p. 317, exercise 2].
It is natural to inquire about a generalization of this result.

In particular, let/(z) and g(z) be non-constant entire functions. Suppose that C is a path
in the finite plane along which | / (z) | = \g(z)\ = 1. What then is the relation between/(z)
and#(z)?

Several results in this area are known. We thus have the following three theorems.

THEOREM 1. (Valiron [12], Cartwright [2,3].) Let C be a simple closed curve in the
finite plane and let f(z) and g(z) be non-constant entire functions such that \f(z) | = | g(z) | = 1
along C. Then either there is some a > 0 such that |/(z) | = | g(z) |a or else there exists an entire
function a{z) and some y with 0 < | y | < 1, such that both \f(z) | and | g(z) | have the form

\a(z)\"
a(z)-y

l -ya(z)

where m and n are non-negative integers.

THEOREM 2. (Cartwright [3].) Letf{z) andg(z) be non-constant entire functions and let D
be a simply-connected domain in the finite plane such that | / (z) | > 1, \g{z)\ > 1 (zeZ)), and
|/(z) | = | g(z) | = 1 (z 6 dD). Finally, suppose that f(z) and g(z) have finite order. Then there
exists a > 0 such that

\f{z)\ = \g{z)\'.

THEOREM 3. (Cartwright [3].) Let D be a domain in the finite plane such that dD is a
simple path extending to oo in both directions. Letf{z) andg{z) be non-constant entire functions
such that \g(z)\ > 1, \f(z)\ < 1 (zeD), \f(z)\ = \g(z)\ = 1 (zedD), and such that g(z) does not
omit 0. Finally, suppose thatf(z) has finite order. Then there exist positive integers D and N,
an entire function a(z), and some y with | y | > 1, such that

a(z)-y

l-ya(z) ' ' " v " ' v "

In this paper we will present a further development of Theorems 1, 2, and 3.

Preliminaries. For our development certain special preliminary results are necessary.
For the sake of completeness and easy reference we list these explicitly at this point.

Result 1. Suppose that w(z) is non-constant and harmonic over | z | < JR. Let «(0) = o.
Then there exists some 5,0 < 5 < R, such that for I z I < 5 the locus u(z) = c can be completely
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described as {z\z = rew, —5<r<d, 6 = 0,(r),. . .,0m(r)}, where m is a suitable positive
integer, where Oj(r) is holomorphic over | r\ < 8 for eachy, and where, for each r, all the Qj(r)
are distinct. We may assume that 0J + 1(O) —0,(0) = njm for 1 ̂ j£m—l. Thus, the tangents
to the paths 9 = 9j(r) at the origin are equally spaced.

Proof. We refer to Osgood [10, pp. 224-225] and use the implicit function theorem for
analytic functions of several complex variables.

Remark. Let/(z) be non-constant and entire. Application of Picard's theorem to / (z )
and of Result 1 (trivially modified) to w(z) = In |/(z) | shows that the locus |/(z) | = 1 is non-
empty and is locally analytic (to say the least).

Result 2 (Factorization). Take /(z) ^ 0 to be holomorphic and uniformly bounded over
Si = {z | Re(z) > 0}. Let {an} be the zeros of/(z) in Si, listed by multiplicity. Then

and/(z) = E(z)B(z), where

n r — n . n. — 7 Oij t r r k ** ^ ™k

and

where c = constant, and a(t) is monotonic increasing on (— oo, + oo). Both B(z) and E(z) are
holomorphic and uniformly bounded on Si. B(z) is called a Blaschke product.

Proof. The result is stated in Hille [6, pp. 457-458]. A proof can be given by transforming
the proof in Hayman [5, p. 179, Theorem 6.13] over from the unit disk to the right half-plane.
See also R. Nevanlinna [9, p. 201] or Hoffman [7, pp. 132-133].

Result 3 (Blaschke products). Let {«„} be any sequence of points in 3$. Let

Then the products

converge uniformly and absolutely on any compact subset of the finite plane which lies at a
positive distance from the set { — an}. Finally, if

n £z^ and n ?m ^
II — ctiiu I I —

Z + fl a + Z ak

n ^z£--'
then B{z) is holomorphic over 0t, | B(z) | < 1 over Si, and, for almost all y, lim | B(x+iy) | = 1.

x->0 +
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Proof (partial).

and
ak-z ak = l 2zRe(gt)
ak + z ak \ak\

2 + zak'

along with the usual methods for infinite products yield the first part. For the second part
we can refer to Hille [6, p. 457], or transforming from the unit disk to the right half-plane,
R. Nevanlinna [9, p. 207] or Hayman [5, p. 182].

Result 4. Let u(z) be non-negative and harmonic on Si. Let u(z) be continuous on
{z | Re (z) ;> 0} with u(iy) = 0(y real). Then u(z) = c Re (z) for some c ^ 0.

Proof. See Tsuji [11, pp. 149-151] or Hoffman [7, p. 134, exercise 6]. B. Ja. Levin
[8, p. 230] has an elementary proof.

Notation. In what follows we write X for the finite plane, X* for the extended plane,
U for the unit disk and Si for the right half-plane.

Development of the Theorems.

DEFINITION. D e r f if and only if {i)D is a domain in X; (ii) the image of 3D on the Riemann
sphere is a simple closed curve passing through the north pole.

THEOREM 4. Let f{z), g(z) be non-constant and entire. Let \f{z) | > 1, | g(z) \ > 1, for
zeD,Desf, and let |/(z) | = | g(z) | = 1 for z e 3D n X. Then, for some real c> 0,

Proof. Let t, = ^(z) be a one-to-one conformal mapping of D onto Si, which extends
continuously to a one-to-one mapping of D onto Si [closures in X*] in such a way that
£, = oo corresponds to z = oo. (An auxiliary map of D onto U may be useful.) Let the inverse
map be z = /*(<!;). Consider In | /[/i(0] | and In | g \p(O] | for E, 6 Si. These are positive harmonic
functions with continuous boundary value 0 along the imaginary axis. Therefore, by
Result 4,

In | / | / i (0] | = C / R e ( 0 and In \g[fi(O] \ = cgRe(O,

where £ e $ , cf > 0, cg> 0. By harmonic continuation and with c = cjcf we get our result.

Remark, c need not be rational in Theorem 4. For instance, f(z) = ez and g(z) = e",
c> 0. However, if g(z) = 0 at least once, comparing orders of zeros of/(z) and g{z) shows c
to be rational.

DEFINITION. Let h{z) be a non-constant entire function. Ifh{z) # Ofor zeX, set (j)(h) = 0.
Otherwise, let {zn} be the countable set of distinct zeros of h(z), and let z = zn have multiplicity
mn. Set (p(h) = g.c.d. {mum2,...}.
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THEOREM 5. Let D e sf. Let f(z), g(z) be non-constant and entire. Let \ f(z) | < 1 for
zeD, and \f{z)\ = 1 for zedDnX. Let \g(z)\ > 1 for zeD, and \g(z)\ = \for zedDnX.
Finally let <f>(g) = 1. Then, for a suitable positive integer N and for a suitable y with \ y | > 1,

for zeX.

Proof. Suppose first of all that/(z) ^ 0 in D. Then, l//(z) is holomorphic on D. Also,
11 //(z) | > 1, | g(z) | > 1 for z e D. As in the proof of Theorem 4, we have £ = \J/(z), z = n{£).
Looking at positive harmonic functions — In f[]i(£)] \ and In | g [K£)] | for ^ e 01, as in the proof
of Theorem 4, shows at once that |/(z) | = g(z) \c, where c < 0 for z e X. <j>(g) = 1 yields an
immediate contradiction. Hence,/(z) has at least one zero in D.

Now with £ = i]/(z), z — n(£) as above, form /[/i(£)l a nd 0[/*(£)]• Apply Result 4 to
In #|>t(£)]|. Thus, let ln|g|/i(^)]| s cRe(£), where c> 0 for ^e^?. Now, ^ = i/̂ (z) implies
In g(z)| = cRei^(z) for zeD. Select a single-valued branch of logg(z) for zeD—call it
Logg(z). Hence, Logg(z) = cij/(z) + id (d real, zeD). Certainly al/(z) + id has the same
mapping properties as does ^ = ij/(z). Without loss of generality, therefore, we can take
Logg(z) = \p(z) for zeD. Next, !/[/*(£)] I < '> ^G^- Apply Result 2. We obtain

Each set {<!; 11 £ | < r} n ^ contains only finitely many zeros o
without loss of generality that B(£) has the form

. so that we may assume

Now, E(£) will be bounded on 91. In fact, |£(^)| ^ 1 for £s02. For, consider boundary
values along the imaginary axis. |/[M<!D] | = 1 for £ purely imaginary. | B(£) | = 1 almost
everywhere for purely imaginary f. This implies that | E{£) \ = 1 almost everywhere for
purely imaginary £. By means of Poisson integral representations (for the half-plane) [cf.
Result 2 and Hille [6, p. 445]] we get | £(£) | ^ 1 for £e£2.

We apply Result 4 to — ln|.E(£)|. Result 3 and the remark about {£, \ \ £, \ <r}
above show | B{£) | to be continuous o n f n l , whence -In | E{£) \ is continuous on 3t
Hence, for a ^ 0,

\n\E(0\=-aRQ(0 for
And

It follows that for zeZ)

(*)

We must now study continuations of (*) outside of Z>. Note that we use Result 3 for
analytic continuation of the Blaschke product. First choose any zo$D, g(zo) = 0. Select
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zteD so that g(z) ^ 0 along zlz0 except for z = z0. This is possible since the zeros of g(z)
are countable. Continue Log#(z) along Z^Q. Let Log* g(z) thus be defined. Continue both sides
of (*) along z7z0. It is apparent that unless |/(z)| = oo somewhere along z^z0, Log* g(z) # — \k

along z7z0. But then, as z-+z0 along ZjZo, |-8[Log*#(z)]| ^ 1 and|#(z)|~a-> oo unless a = 0.
Thus a > 0 implies |/(z0) | = oo, which is a contradiction. Hence a = 0 and | £(£) | = 1.

for ze£». (**)

LEMMA I. For g{z) with (j)(g) = 1, the general analytic function \ogg(z) is monogenic.

Proof (informal). The terminology is that of Osgood [10, pp. 174-175]. We must show
that if w' = \ogg{z') and w" = \ogg{z"), then there exists a path F in the finite plane going
from z' to z" such that w = \ogg(z) can be continued along F from (z', w') to (z", w").
1 = g.c.d. {m1,m2,...}. Hence, for some large s, 1 = g.c.d. {m,,m2,...,m,}. By the usual
algebraic considerations, there are integers el!...,es such that 1 = e1ml + ... + esms. Let ntj
correspond to the zero Zj ofg(z). Draw any path Fo in A'from z' to z" passing very near to
each Zj (1 ^j ^ m), and along which g(z) # 0. Deform Fo slightly so that the new path F
circulates around each z = Zj, 1 ^j^m, kej times counterclockwise, where k=a. suitable
integer. It is now easily verified that (z", w") is accessible from (z', w') along F (for suitable
choice of k).

Now choose any zoeZ>. Choose any path F in ^ starting at z = z0 along which g(z) # 0.
Of course, (**) holds for zeD so that

We can certainly continue the left-side of (* *) along F. Hence the same holds for the right-hand
side. Since |/(z)| < oo for zeX, the continuation of Log#(z) must always avoid the values
{ — ! 4 } . But log#(z) is monogenic. Varying F suitably shows easily that #(z) ^ e"'ik for all k.
Thus, the monogeneity of log#(z) implies that

{***)

for ze X and any branch of log#(z). The usual techniques inform us that

Looking at the zeros of B(£) tells us that B(£k+2hni) = 0, where h is integral for any £k. We
apply Picard's theorem to g(z) ^ e~*k; g(z) can omit at most one finite value. From these
considerations, it follows at once that we can take £k = £0 + 2kni (—co<k< oo), where
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is suitably chosen, each with multiplicity N. Therefore zeD implies that

15 £0 + 2kni-Logg(z) Z0-2kni

LEMMA 2. Let £k = A + 2kni ( - oo < fc < oo, Ae3%). Then

99

l-eAez

Proof. Let/(z) = e1 + e ~ ̂  and

n for zeX.

f(z)-eA

l-e*f(zY

It is easily seen that f(z),g(z) are non-constant and entire with |/(z)| < 1 if and only if
|gf(z)| > 1. A simple calculation shows that |/(z)| = 1 divides X into two disjoint simply-
connected class s/ regions. Repeat the above proof on/(z) and g(z), D = {z\ \g(z)\ < 1}.
We find easily that

+ COn
for zeD. But Log/(z) is an open mapping on D, so that

>-eA

n
k=-a

for z e l .

Returning to the proof of the theorem, we deduce from Lemma 2 that

for zsJ, • = *leio so that y > 1.

THEOREM 6. Le? Destf. Let /(z) andg(z) be non-constant and entire. Let\f(z) | < 1 /or
zeD am/ |/(z)| = 1 for zedDnX. Let \g(z)\ > 1 for zeD and \g(z)\ = 1 for zzdDnX.
Let 4>(g) = £> ^ 1. JAen, /or a suitable positive integer N and some y with \ y | > 1,

-y (zeX)

for a suitable single-valued (entire) branch of§(z)ilD.

Proof. 4>(g) = D implies that we can find an entire function h(z) with h(z)D = g(z),
<j>(h) = 1. (Monodromy theorem.) Apply Theorem 5 to f(z) and h(z).

We now come to a number of important counterexamples. It is convenient to make the
following definition.
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DEFINITION. Let A(z), B(z) be non-constant and entire. A(z) and B{z) are said to be
algebraically related if and only if there exists some non-trivial complex polynomial P(z, w) in
(z, w) such that P[A(z), B(z)] = 0forzeX.

Example 1. Let A(z) = ez+1. Let B(z) = exp {(A(z) + l)l(A(z)-l)}. Clearly B(z) is
entire. A simple calculation shows that {z\ \A(z)\ < 1} consists of infinitely many simply-
connected class si components. Choose one of them—call it D. Clearly | B(z) | = 1 if and only
if | A{z) | = 1 (A(z) # 1), and | A(z) | < 1 if and only if | B{z) \ < 1. Let C(z) = \jB{z). C(z) is
entire. Here | A(z) | < 1 if and only if | C(z) | > 1, etc. Note that neither A and B nor A and C
are algebraically related, because of the exponential factor, [exp {(z+l)/(z—1)} is not an
algebraic function.]

THEOREM 7. In Theorem 6, if(f>(g) = 0, then f and g need not even be algebraically related.

Proof. Take/(z) = A(z), g(z) = C(z), and D as above.

THEOREM 8. Let Desf. Let f(z), g(z) be non-constant and entire. Let | / (z) | < 1 and
\g(z)\ < 1 for zeD, and \f(z)\ = \g(z)\ — 1 for zedDnX. Then/(z) and g(z) need not be
algebraically related.

Proof. Take/(z) = A{z), g(z) = B(z), D as above.

Remark. A bit more work shows that, for example, there is no non-constant entire
function w(z) such that both | A(z) | and | B(z) \ have the form

where \y \ # 0 , 1 , (<x,/Q# (0,0).

Example 2. Take f(z) = e2 cosh z, g(z) = ee\

Then | /(z) | = 1 <*>Re{2coshz} = 0 o Re[ez+e~z] = 0 <* excosy+e~xcosy = 0 o
cosy = 0 o y = (2A:+ l)jt/2 (k integral). Next, \g(z) \ = 1 o Re {ez} = 0 o excosy = 0 o
cosy=±0 o y = (2k+ l)n/2. Clearly, | /(z) | < 1 o \g(z)\ < 1, and similarly for > 1. It is
readily checked that/(z) and g(z) are not algebraically related. Thus, it is in general necessary
for dD to be a simple closed curve on the sphere in order for our theorems to hold.

Example 3. Take/(z) = ee' , g{z) = ee'° .

Then |/(z) | = I o Re {eeZ} = 0 <=> Re {tr*™ *+"*•**>} = o o eeXcos>'cos(exsmy) = 0 <*
exsin^ = (2Jk+l)7r/2. \g(z)\ = 1 o Re{e"eS} = 0 o He{e-'"'in>-u'tla'} = 0 o exsiny
= (2k + 1)TT/2 as above. And here we see that/(z) and g{z) are not algebraically related, and
how complicated the locus |/(z) | = \g(z) | = 1 can be.

THEOREM 9. Let C be a closed path in the finite plane continuously differentiable with
respect to arc length. Let S be an open subarc of C. Let/(z), g(z) be non-constant and entire
such that | /(z) | = 1 for zeC, and \g(z)\ = I, for zeS. Then, the conclusion of Theorem 1
holds.
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Proof. Select z0 eS so that/ '(z0) and g'(zo) a r e nonzero. By hypothesis, and by Result 1,
we can choose z = z(s) continuously differentiable relative to arc length s such that

(i) C={z\z = z(s),0£s£L};

(ii)z(0) = z(L) = z0;

(iii) As s increases, z = z(s) never retraces itself.

Near s = 0 and 5 = L it is readily verified that |#|>(.s)] | = 1. Let

Suppose that A is non-empty. Let n = 'miA. Clearly, 0 < n < L. Application of Result 1
and the continuity of the tangent vector z'(s) yields an immediate contradiction to the choice
of the infimum. Hence A is empty, whence | g[z(s)] | = 1 (0 S s ^ L). Now apply Theorem 1
to some simple closed component oval of C.

COROLLARY. Let f{z) be a non-constant polynomial. Let g(z) be non-constant and entire.
Let \g{z)\ = 1 along an open subarc of | / (z ) | = 1. Then g(z) is a polynomial and there exist
positive integers m and n such that

Proof Let C be the component of |/(z) | = 1 containing the given open subarc. Use
Result 1 here and apply Picard's theorem to the result of Theorem 1.

Two counterexamples related to Theorem 9 merit attention here.

Example 4. The choice

/ (z ) = e\ g(z) = e*>

shows that a straightforward generalization of Theorem 9 to the " unbounded " case is not
possible.

Example 5. The choice

(with an easy calculation) shows that in Theorem 9 it is essential that (in terms of arc length)
••^ C be continuously differentiable. Note that in this example {z| |/(z) | = 1} is a proper subset
E of{z| |g(z)| = l}.

r
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