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CONVOLUTION OF RIEMANNIAN MANIFOLDS
AND ITS APPLICATIONS

BANG-YEN CHEN

It is well-known that warped products play some important roles in differential ge-
ometry as well as in physics. In this article we extend the notion of warped product
to the notion of convolution of Riemannian manifolds. We study the basic properties
of convolutions of Riemannian manifolds. We also apply the notion of convolution to
establish and characterise the Euclidean version of Segre embedding.

1. CONVOLUTION OF RIEMANNIAN MANIFOLDS

Let (Nugi) and (N2,g2) be two Riemannian manifolds and / be a positive differen-
tiable function on Nv. The well-known notion of warped product Ny Xj iV2 is the product
manifold Nx x N2 equipped with the warped product metric g\ + f2g2. It is well-known
that the notion of warped products plays some important roles in differential geometry
as well as in physics (see [7]).

The following notion of convolution of Riemannian manifolds extends the notion of
warped products in a natural way. Let (Ni, 51) and (N2,52) be two Riemannian manifolds
and let / and h be two positive differentiate functions on Nt and N2, respectively.
Consider the symmetric tensor field /,9i */ g2 of type (0,2) on Ni x N2 defined by

(1.1) h9i*fg2 = h2gl + f2

The symmetric tensor field hgi */ g2 is called the convolution of g\ and g2 via h and
/ . The product manifold iV*i x N2 together with hg\ *fg2, denoted by hNiir fN2, is called
a convolution manifold. When / , h are irrelevant, h^iif fN2 and hgi *j 92 are simply
denoted by Nt-k N2 and gx * g2, respectively.

When /,<?i*/<72 is a positive-definite symmetric tensor, it defines a Riemannian metric
on N\ x N2. In this case, h9i */ 92 is called a convolution metric and the convolution
manifold hNiicfN2 is called a convolution Riemannian manifold.

In the first part of this article we show that the notion of convolution of Riemannian
manifolds arises naturally. In the second part, we apply the notion of convolution to
provide a fundamental study of the differential geometry of the tensor product Ch®Ep. In
particular, we apply the notion of convolution to establish and characterise the Euclidean
version of Segre embedding.
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178 B.-Y. Chen [2]

2. PRELIMINARIES

Let N be a Riemannian manifold equipped with a Riemannian metric g. The gra-
dient V<p of a function <p on N is denned by (Vcp, X) = X<p for vector fields X tangent
to N. If TV is a submanifold of a Riemannian manifold M, the formulas of Gauss and
Weingarten are given respectively by

(2.1) VXY = VXY + CJ(X,Y),

(2.2) VXZ = -A(X + DXZ

for vector fields X, Y for vector fields X, Y tangent to N and f normal to N, where V
denotes the Riemannian connection on M, a the second fundamental form, D the normal
connection, and A the shape operator of N in M. The second fundamental form and the
shape operator are related by (A^X,Y) = (p{X, Y),Q, where ( , ) denotes the inner
product on M as well as on M. A submanifold in a Riemannian manifold is called totally
geodesic if its second fundamental form vanishes identically.

The equation of Gauss of N in M is given by

(2.3) R{X, Y; Z, W) = R(X, Y; Z, W) + (a{X, Z), a(Y, W)) - (a(X, W), a(Y, Z)),

for X, Y, Z, W tangent to M, where R and R denote the curvature tensors of N and M,

respectively.

The covariant derivative V'a of a with respect to the connection on TM © TXM is
defined by

(2.4) (Vxa)(Y,Z) = Dx(a(Y,Z)) - a(VxY,Z) - a(Y,VxZ).

The equation of Codazzi is

(2.5) (R(X, Y)Z)X = (Vxa)(Y, Z) - (VYa)(X, Z),

where (R(X, Y)Z) denotes the normal component of R(X, Y)Z.

Let C m <g> En denote the tensor product of C m and En. Then C m <g> E" is holomor-
phically isometric to C m n . The inner product on C m ® E" is given by

(2.6) (a®p,>y®6) = (a,>y)(P,6),

where (a, 7) is the inner product of a, 7 € Cm and (/?, 6} the inner product of /?, 6 € E".

A vector subspace L of complex Euclidean m-space C m is called totally real if
J(L) ± L, where J denotes the complex structure on C m . A submanifold M in C m is
called totally real if each tangent space of M is totally real.

A submanifold M in C m is called a CR-submanifold if there exists on M a differen-
t i a t e holomorphic distribution "H whose orthogonal complementary distribution HL is
a totally real distribution, that is JHX C TXM (see [1, 2, 3, 4, 5]).
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3. S O M E NATURAL EXAMPLES OF CONVOLUTION MANIFOLDS

Let C? and E™ denote C " - { 0 } and E m - { 0 } , respectively. Let (zu...,zn) denote
a complex Euclidean coordinate system of C" and ( x i , . . . ,a;m) a Euclidean coordinate
system of E m .

The following result shows that the notion of convolution of Riemannian manifolds
arises naturally.

PROPOSITION 3 . 1 . For each holomorphic isometric immersion z : (Ni,g{)
-¥ C" and each isometric immersion x : {N2,g2) -* E™, the map

(3.1) i>: Nx x JV2 -> C n ® E m = C n m ; (u, v) H-> z{u) ® x(v), u € Nu v e N2,

gives rise to a convolution manifold Nil* N2 equipped with

(3.2) ^ *A g2 = n2gi + \2g2 + 2Xfj,d\ <S> dfi,

where X - \z\ = ^ U ^ i and n = \x\ =

P R O O F : For vector fields X, Y tangent to Ni and Z, W tangent to A 2̂, we have

(3.3) dip{X) = Xtp = X®x, dtp(Z) = Zip = z®Z.

Also, it follows from the definition of the gradient of fi — \x\ that

(3.4)

where e\ is a unit vector parallel to gradient of /x. Similarly, we have

(3.5) . AdA(VA) = (VA, z).

From (2.6), (3.3), (3.4) and (3.5), we obtain Proposition 3.1. D

Proposition 3.1 provides many examples of convolution manifolds.

REMARK 3.1. If x(N2) is contained in the unit hypersphere of C m centred at the origin,
then the convolution <7i * g2 on the convolution manifold Ni ir N2 given in Proposition
3.1 is nothing but the warped product metric <?i + \z\2g2.

4. GEOMETRY OF C? © E?

In this section we study the geometry of the tensor product Ch ® W by applying
the notion of convolution.

Assume that z : C^ —> Ch and x : EJ -> W are the inclusion maps. Let ipZtX =
be the map from Ch, x E? into Chp defined by

(4.1) 1pZtz = Z ® X = ( Z i X i , ..., ZyXp, ..., Z h X U ..., ZhXp)
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for z = (zu ..., zh) e Cj and x — {xu ..., xv) e EJ.

If we put Zj = Uj + ivj, i = y/^I, and — = (1/2) (- i—) for j = 1, . . . , h,
ozj \ auj avj I

then we obtain from (4.1) that

(4.2)
h g h g

Notice that J2 zj~^— a n d 23 xa~£t— a r e n°thing but the position vectors of Cj and
j=\ OZJ Q=1 axa

in Ch and W, respectively. Equation (4.2) implies that the gradient of \z\ = \/J2h=i zj^j

and of \x\ = */2Zo+ixa a r e mapped to the same vector field under t/>2|1.

From (4.1) and (4.2) it follow that #Z | X has constant rank 2/i + p — 1. Hence
ipz,x(c* x EJ) Sives r i s e to a (2ft + p - l)-manifold, denoted by C^ © EJ, which is
equipped with a Riemannian metric induced from the canonical metric on Ch ® W via
•0ZiI. From (4.1) we can verify that Cj© W, is isometric to the warped product Cj x Sp~l

with the warped product metric g — gi + pigo, where px is the length of the position
function of Cj and g0 the metric of the unit hypersphere S*'1.

If we denote the vector field of (4.2) by V, then V is a tangent vector field of Cj© EJ
with length \x\\z\.

Let

(4.3) 7T : C£ x EJ -> Cj © EJ

denote the projection: 7r(u,i;) = ipz,x(u, v) — {u} © {*;} £ Cj © EJ. It is easy to see
that, for each u e C j and v € E^, Cj © {«} =: ^ ,x(Cj x {t;}) is a complex submanifold
of complex dimension /i and {u} © EJ =: ^Z|I({u} x EJ) is a totally real submanifold of
dimension p in Chp.

On Cj x EJ, if we put

(4.4) V = T(Ch,), Vx = {Z

: ATA = 0 } , A = \z\,

then P , V-1, T and J7-1 can be regarded as distributions on Cj x EJ in a natural way.
Moreover, if we put

(4.5) V = dir(V), f>L = dn{Vx), T = dir{T),

we have the following orthogonal decompositions of the tangent bundle of C^ © EJ:

(4.6) T{Ch.® L
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[5] Convolution of Riemannian manifolds 181

Since the Riemannian metric on C j © EJ is induced from the convolution:

(4.7) hgl*fg2 = fJ.2gi + X2g2 + 2Xlj,dX®d^, X=\z\, n=\x\,

the distributions V and Vs- can be regarded as the tangent and normal bundles of Cj ©
{v},v € EJ, in C j © W,, respectively. Similarly, the distributions T and Tx can be
regarded as the tangent and normal bundles of {u}© EJ, u € C j , in Cj© EJ, respectively.

We give the following two lemmas for later use.

LEMMA 4 . 1 . Let V denote t i e Riemannian connection of C(? © EJ. Then, for
any vector fields X in TL and Z in V1, we have

(a) VXZ = VZX = O,

(b) VVZ = VZV = Z, and

(c) VVX = VXV = X,

where V is the vector field given by (4.2).

P R O O F : For each vector field X in Tv and Z in V1, there exist vector fields X in
TL and Z in VL such that dn{X) = X and dn(Z) = Z. From (4.1), we have

(4.8) XZxl>z,x = X®Z.

Since XX = Z\i = 0, X = \z\, \i = | i | , the vector field X ® Z is perpendicular to

f - ) . • • • . <^2,z (a^") ' ^ ^ (a^~) ' • • • ' d^z'x \ d ~ ) • T h u S ) for a n y v e c t o r fields

X in TL and Z in P x , we have (a).

Let V = z = X) ^ d / d z j € T(Ch) and let Z be any vector in VL. Then (4.1) implies
I

(4.9) ZVipZtX = V®Z.

Since z®Z -V ®Z is tangent to C j © EJ, (4.9) implies

(4.10) VVZ = V®Z.

On the other hand, we also have Z = dipZtX(Z) = Zip2<x = V ® Z from (4.1). By
comparing this with (4.10), we obtain (b).

_ p
Similarly, let V — x — £} xad/dxa and let X be any vector field in F*-, we have

Q = l

(4.11) XVipz<x = X ® x.

On the other hand, we also have X — dipZtX(X) = Xipz<x — X ®x. Comparing this

with (4.11) gives (c). D
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LEMMA 4 . 2 . For each « e C j and each v € W,, {u} © W, and Ch. ® {v} are
totally geodesic submanifolds of C j ® Wt.

PROOF: First, we recall that the tangent and normal bundles of Cj® {v} in C^® EJ
are given respectively by T> and X>x. Since the distribution T> is spanned by T1- and V,
statements (a) and (b) of Lemma 4.1 and the formula of Weingarten imply that Cj ® {v}
is totally geodesic in C* ® EJ.

Similarly, from statements (b) and (c) of Lemma 4.1 and the formula of Weingarten,
we conclude that each {u} ® E£ is a totally geodesic submanifold of C» © EJ. D

5. CLASSIFICATION OF NATURAL CR-IMMERSIONS OF C j ® E^

Since there is a canonical holomorphic distribution V on Cj® EJ, we call an isometric
immersion tp : U —> Cm of an open portion U of Cj ® EJ into C m a natural CR-
immersion if ip carries V into a holomorphic distribution in C" and carries the orthogonal
complementary distribution T>L of T> into a totally real distribution. Clearly, (4.1) defines
a natural CR-immersion of C j ® E£ into Chp.

THEOREM 5 . 1 . Let <f> : U —> Cm be a naturai CR-immersion from an open
portion U of C j © E£ into C m . Then, up to rigid motions of Cm, (j> = <j> o n is given by

(5.1) <}>{z,x)

where A1,..., Ah are mutually orthogonal vector functions of length \x\ which span a
totally real subspace of C m at each point x = (x\,..., xp) with n(z, x) £ U. Moreover,
Al,...,Ah satisfy

(5-2) (At,Ak
Xa) = x

for j , k = 1 . . . , h\ a, /3 — 1,...,p, where A{a — dAj/dxa.

Conversely, if A1,... ,Ah are h mutually orthogonal Em-vaiued functions of length

\x\ satisfying (5.2), then (5.1) deBnes a natural CR-immersion of C j © Wt into Cm.

PROOF: Suppose that <j>: U —¥ C m is a natural Cii-immersion from an open portion
of C£ © E? into C m . For each v e E J , Lemma 4.2 implies that Cj ® {v} is a totally
geodesic submanifold of C^ © E^.

Because the restriction of <p to U n (Cj © {v}) is a holomorphically isometric
immersion of U D (C^ © {v}) into C m and C j © {v} is a flat Kaehler manifold, the
equation of Gauss implies that the restriction of <j> to U D (Cj® {u}) is a totally geodesic
holomorphic immersion. Thus, <f> immerses U D (Cj © {v}) into a complex /i-plane in
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[7] Convolution of Riemannian manifolds 183

C m . Consequently, <p immerses ir~l(U) n ( C j x {v}) into a complex /i-plane in C m .

Hence, we have

Solving (5.3) yields

h

(5.4) <f>(z, x) = ^ Aj(xi,..., xp)zj + B(xi,..., xp)
3=1

for some Cm-valued functions A1,.. .,Ah and B. From (5.4) we find

_ h

(5.5) 4>Xa = V ^ AJ
Xa Zj + B X a , a — l , . . . , p .

Thus, by (3.15) and (5.5), we obtain

h h

(5.6) ~
j i fc=i >

Condition (5.6) implies BXl = • • • = BXp = 0. Hence, B is a constant vector in Cm.
Without loss of generality, we may choose B = 0 by applying a suitable translation on
Cm if necessary. Hence, (5.4) reduces to

h

(5.7) *{z,x) = '52Ai{x1,...txp)zj.
3=1

From (5.7), we obtain

_
(5.8) ^ = A \ <!>Vj=iA\ ^Xa=

3=1

for j = 1 , . . . , h\ a = 1 , . . . ,p, where Zj = Uj + ivj. Prom (3.15) and (5.8), we find

(5.9) \x\26jk = $„, ,&,,) = <^,A*>, (A',iAk) = (k,,K) = 0,

~ ~ / *
(5.10) Ujxa = <^UJ,0So> = (A},J2Ak

X
* /t=i

(5.11) W>zQ = ( ^ - , 0 0 = ( ^ . ^

(5.12) |z|2(5o, = <^o,^> = (i2Aizv
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for j , k = 1, . . . , / i ; a,P=l,...,p.

The first equation of (5.9) implies that A1,... ,Ah are h mutually orthogonal vector
functions of length \x\. From equations (5.9), (5.10) and (5.11) we have

(5.13) (A*,iAk) = 0, (A3,Ak
xJ = xa5jk, (A3,iAk

a) = 0

for j , * = l,...,h;a,P=l,...,p.

By comparing the coefficients oiujUk from (5.12), we find

(5-14) « , A k
x g ) + (A{g, AXJ = 26jkSa0

for j , k = 1 , . . . ,h;a, P = 1 , . . . ,p. If j = k, (5.14) implies

(5-15) . « ,4 f l ) = <W-

If j ^ k, then, by taking partial derivative of (A3, Ak
Xa) — 0 with respect to xp, we obtain

(5.16) « , < ) = - < ^ U U > = ( < , < ) , J # * .

Combining this with (5.14) yields (AXa,A
k) = 0 for j ^ A;. Hence, we have the second

equation of (5.2). By comparing the coefficients of UjVk from (5.12), we also find

(5-17) (Aia,iA
k
Xg) + (iAXa,Ai0) = O

for 1 ̂  j / k ^ h and 1 ̂  a, P < p.

On the other hand, by applying (4>Xo, J<t>xg) = 0 and (5.8), we find

(5-18)

Comparing the coefficients of UjUk from (5.18) yields

(5-19) «,*<> +«,*4,)=0

for j , k = 1 , . . . , /i; a, p = 1 , . . . , p.

If j = &, (5.19) implies (AXa,iAxg) = 0. If j ^ fc, then, by combining (5.17) and
(5.19), we obtain {A{.a,iA

k
Xff) = 0. Therefore, we have (A3

Xa,iA*e) = 0 for j , k = 1 , . . . ,/i;
a,P = 1,.. • ,p. Consequently, we have (5.2). From (5.2) we know that A1,..., Ah span
a totally real subspace of C m at each point x = (xi,...,xp) with TT(Z,X) € U.

Statement (b) can be proved by straightforward computation. D

EXAMPLE 5 . 1 . Let D be an open portion of Euclidean p-space W which does

not contain the origin ofEP. If A : D —¥ Em is an isometric immersion of the Bat space
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[9] Convolution of Riemannian manifolds 185

D into E m satisfying \A\ = \x\ at x = (x\,... ,xp) € D, then (5.2) holds automatically.
Hence, by Theorem 5.1, we know that

(5.20) t(z,x)=A(xu...,xp)z

defines a natural CR-immersion from Cj © D into Cm. In particular, if ^(s)

— (7i(s)> • • • 17m-p+i(s)) IS a unit speed curve satisfying

(5.21) | 7 ( S ) | 2 =
3=1

then A = (71 ( x i ) , . . . , 7m_p +i(xi), X2, • • •, xp) defines an isometric immersion of an open
portion D of EJ into E m satisfying \A\ = \x\. Thus,

(5.22) <j>(z,x) = A(xu...,xp)z, A = {ii{xx),... ,im_p+l{xx),x2,... ,xp)

defines a natural CR-immersion from C\® D into C m .

REMARK 5.1. When m + p - 1 = 2, then 71 — as, 72 = 6s, a2 +b2 = 1, are the only
functions satisfying (5.21). However, if m + p — 1 ^ 3, then there are many unit speed
curves 7, other than lines, which satisfy (5.21).

EXAMPLE 5 . 2 . Suppose that D is an open portion of Euclidean p-space which
does not contain the origin. Let A* : D -> E m j , j = 1 , . . . , h, be isometric immersions of
the flat space D into Em* satisfying \A1\ = --- = \Ah\ = \x\ on D, then

(5.23) tp{z,x) = [A\xu .. .,xp)z1:..., Ah{xu.. .,xp)zh)

defines a natural CR-immersion from C^ © D into C m , m = mi + • • • + m/,.

6. TWO GEOMETRIC CHARACTERISATIONS OF 1pZiX

The following result provides a simple geometric characterisation of ip2>x — z ® x.

THEOREM 6 . 1 . If(j>:U-t C m is a natural CR-immersion of an open portion U
of Ch,®Wt into Cm, then we have:

(1) The squared norm of the second fundamental form o of <j> satisfies

2

IMI >
(2) The equality sign of (6.1) holds identically if and only if, up to rigid motions

of C m , the composition <j> = <j> o IT is given by

(6.2) 4>{z,x) = {zixu...,ZiXp,...,zhXi,...,zhxp,0,...,0),
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where IT : Cj x EJ —> Cj © E? is the projection and z = (zi , . . . , zft) and

x = (xi,..., xp) are natural coordinate systems of Cj and EJ, respectively.

We need some lemmas.

LEMMA 6 . 1 . If'</>: U —> Cm is a natural CR-immersion from an open portion of
C* © Wt into Cm, then, for any vector fields X in V with (X, V) = {X, JV) = 0 and for
Z, W in VL, we have

(6.3) (a(X,Z),JW)=0,

(6.4) {o{JV,Z),JW) = {Z,W),

(6.5) (a(V,Z),JW)=0.

PROOF: Suppose Z, W are vector fields in VL. Then we have

(6.6) JVZW + Ja(Z, W) = -AJWZ + DZJW.

If X is a vector field in V with (X, V) = (X, JV) = 0, then both X and JX belong
to TL. Thus, by (6.6), we have

(6.7) {a{JX, Z), JW) = (AJWZ, JX) - -(VZW,X) = (VZX, W) = 0

for X in V and Z, W on V-1. This proves (6.3).

From (6.6) and statement (b) of Lemma 4.1, we find, for Z, W in V1, that

(6.8) (a{JV, Z), JW) = (AJWZ, JV) = -(VZW, V) = (W, VZV) = (W, Z),

which proves (6.4).

For Z, W in P x , we also find from (6.6) and Lemma 4.1 that

(6.9) (<r(V, Z), JW) = (AJWZ, V) = (VZW, JV) = (W, VZJV) = 0,

since JV € Tx. This proves (6.5). D

LEMMA 6 . 2 . If cj> : U —t Cm is a natural CR-immersion of an open portion of
C? © E? into Cm, then, for X e T with (X, V) = (X, JV) = 0 and Z € VL, the second
fundamental form o~ of <j> satisfies

(6.10) \o(X,Z)\§§

PROOF: For X e V with (X, V) = (X, JV) = 0 and Z e 23-1, the equation of

Codazzi implies

(6.11) <D,xa(X, Z) - o(yJXX, Z) - a(X, VJXZ), JZ)

= (Dxa(JX, Z) - a{VxJX, Z) - a(JX, V*Z), JZ).
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[11] Convolution of Riemannian manifolds 187

Since C^ © {v} is a totally geodesic submanifold of Cj © W, according to Lemma 4.2,
VxJX and VjxX belong to V. From Lemma 4.1, we also know that VxZ and VJXZ

belong to 2?x. Hence, by (6.11), Lemma 4.1, and Lemma 6.1, we get

(6.12) (a(X, Z), DJXJZ) + (a(VJXX, Z), JZ)

= (a(JX, Z), DXJZ) + (a(Vx JX, Z), JZ).

From formulas of Gauss and Weingarten, we have

(6.13) JVXZ + JCT(X,Z) = -AJZX + DXJZ.

Since VxZ lies in Vx, (6.13), Lemma 4.1, and Lemma 6.1 imply

(6.14) (<T(JX, Z), DXJZ) = (a(JX, Z), JVXZ) + (a(JX, Z), Ja(X, Z))

= (a(JX,Z),Ja(X,Z)).

Let v denote the orthogonal complement of JVL in the normal bundle of C j © EJ
in Cm. Then u is invariant under the action of the complex structure J of C m . We
denote by av the i/-component of the second fundamental form a.

Let V be the Riemannian connection of Cm. For each £ e v, Y e V, and each
tangent vector U of Cj| © EJ, we have

(MJY)>U) = (a(JY,UU) = (JVuY.Q = -(a{Y,U),JS) = -(AJ(Y,U).

Hence, we get

(6.15) AHY = -Ai{JY), YeV, £ € v.

By applying (6.15), we find

(6.16) (a(JX, Z), Ja{X, Z)) = (a(JX, Z), Jav{X, Z)).

= (AJa,{x,z)JX,Z) = (AaAX,Z)X, Z)

Combining (6.14) and (6.16), we obtain

(6.17) (a(JX, Z), DXJZ) = \av{X, Z)\2.

Replacing X in (6.17) by JX and applying (6.15) yield

(6.18) (a(X,Z),DJXJZ) = -\av(X,Z)\2.

On the other hand, by Lemma 4.1 and Lemma 6.1, we have

(6.19) (o(S7JXX, Z), JZ) = < V gj*; jTV, Z)
_ {JX,VJXV) _ |X|

\AM2'
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Replacing X in (6.19) by JX yields

(6.20) -{a{yxJX,Z ^ ^

Combining (6.12) and (6.17)-(6.20) gives

(6-21) |a,,(x,z)| =

for Z €VL &n&X £V with (X, V) = (X, J\/) = 0.

On the other hand, from (6.3) of Lemma 6.1, we have a(X,Z) — ov(X,Z). Hence,
we obtain (6.10) from (6.21). This proves Lemma 6.3.

Now, we return to the proof of Theorem 6.1. First, by applying (6.4) of Lemma 6.1,
we have

(6.22) \o{JV,Z)\>(Z,Z),

with equality holding if and only if cr(JV, Z) — JZ.

Since \JV\ = \x\\z\, we obtain inequality (6.1) from (6.21) and (6.22).

Suppose that the equality sign of (6.1) holds. Then, by Lemma 6.2, we have

(6.23) a(V, V) = 0, o{F, 7) = 0

for Z eVL &ndX eV with (X, V) = (X, JV) = 0.

Since <j>: U —> C m is a natural CR-immersion from an open portion of C^ © EJ into
C m , Theorem 5.1 implies that, up to rigid motions of Cm, the composition </> — <f> o TT is
given by

h

(6.24) £(*,*)

where A1(xi,... ,xp),... ,Ah{x\,... ,xp) are orthogonal vector functions of length | i | . On
the other hand, from Lemma 4.2 and the second equation of (6.23), we know that, for
each u € C j , <f> immerses U Pi ({u} © EJ) into a totally real p-plane in Cm. Hence, 4>
carries ir~l{U) D ({u} x W,) into a totally real p-plane. Therefore, by applying formula
of Gauss, we obtain

(6.25) 4xax,=0, 0,0 = 1 , . . . , p.

Hence, after solving (6.25), we obtain from (6.24) that

(6.26) £(z, x) = ̂  Yl &*zi + E *
ftp ft

*zi + E
i=l a=l
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for some constant vectors cPa and b>, a — 1 , . . . ,p; j = 1 , . . . , h.

Equation (6.26) yields

(6-27) h ^

for j , k = 1 . . . , h; a, ft — 1 , . . . ,p. Hence, by applying (3.15) and (6.27), we find

(6.28) \x\2 = & , ,
Q = l O = l

which implies 61 = • • • = bh - 0. Thus, (6.26) becomes

h

(6.29) 4(z, x)

which gives

(6.30) < - 4.

On the other hand, Theorem 5.1 implies tha t A 1 , ...,Ah satisfy

(6-31) « . <> = Wo* « . <<> = 0

for j , & = 1 . . . , h; a, /3 = 1 , . . . ,p. Combining (6.30) and (6.31) give

(6.32) (cj, c*> = (5Jjt<5 ,̂ <cj, ic*> = 0

for j , /c = 1 . . . , h; a,0 = 1 , . . . , p. Hence {c?a, j — 1 , . . . , h; a — 1 , . . . , p} is an orthonor-
mal set which spans a totally real /ip-subspace of Cm. Without loss of generality, we may
choose the complex coordinates Z\,..., zm on C m such that

(6.33) c} = ( l , 0 , . . . , 0 ) , . . . ,

c\ = (0 , . . . , 0 ,1 ,0 , . . . , 0), (1 appears p-th place),. . . ,

cf = (0 , . . . , 0 ,1 ,0 , . . . , 0), (1 appears {h - l)p + 1-th place), . . . ,

c£ = (0 , . . . , 0 ,1 ,0 , . . . , 0) (1 appears hp-th place).

Combining (6.29) and (6.33) gives (6.2).

Conversely, it is straightforward to verify that (6.2) defines a natural Cfl-immersion
of C» ©E^ into C m whose second fundamental form satisfies the equality case of (6.1). D

The following theorem provides another simple geometric characterisation of TJ)ZIX
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THEOREM 6 . 2 . Let <j> : U —* Cm be a natural CR-immersion from an open
portion U of C j © EJ into Cm. We have

(1) m ^ hp.

(2) Ifm — hp, then, up to rigid motions ofChp, <j> = <p o n is given by

(6.34) 4>{z, x ) = ipz,x(z, x ) = ( z t x i , . . . , z i x p , . . . , z h x u •••, z h x p ) .

P R O O F : Let 4> : U —» C m be a natural Ci?-immersion from an open portion U of
C» © E? into Cm. Then Theorem 5.1 implies that, up to rigid motions of Cm, the
composition <f> = 4> o n is given by

h

(6.35) ' ^(z,x)

where A1(xi,. ..,xp),... ,Ah(xi,.. .,xp) are mutually orthogonal vector functions of
length |x|. Moreover, A1,... ,Ah satisfy

(6.36) {A\Ak) = \x\25jk, (Ai,iAk) = 0,

(6.37) {A\ < ) = xjjk, « ,A%) = 8jk8afS,

(6-38) <^,«O = 0, « > i < ) = 0

for j,A: = 1,...,A; « , / ? = l , . . . , p .
From (6.36), (6.37) and (6.38) we know that {A3

Xa, j = 1 , . . . , h; a - 1 , . . . ,p} is an
orthonormal set which spans a totally real ftp-plane in C m . Therefore, m JJ hp. This
proves statement (1).

If m = hp, then (6.37)-(6.38) implies that, for each j € { 1 , . . . ,h}, A* defines an
isometric immersion from an open domain, say D, of the Euclidean p-space W into a

P
totally real p-subspace of Ch. Moreover, each A' satisfies IA7!2 = J2 xa- Since, up to

Q = l

rigid motions of W, the only isometric immersion from the flat p-space D C W into
~EP is the inclusion map, each A* must be an inclusion map of D into ~EP. Furthermore,
because A1,..., Ah are orthogonal vector functions in Chp which satisfy (6.36)-(6.38), we
may choose the complex Euclidean coordinate system {zi,..., z/J on Chp so that (6.35)
takes the following special form of (6.34). This proves statement (2). D

REMARK 6.1. Theorem 6.2 can be regarded as the Euclidean version of the natural
characterisation of Segre imbeddings obtained in [5].

REMARK 6.2. Further results on convolutions have been obtained in [6].
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