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SIMULTANEOUS DIOPHANTINE APPROXIMATIONS
AND HERMITE'S METHOD

ALain DurRAND

In this paper we generalize a result of Mahler on rational
approximations of the exponential function at rational points by

proving the following theorem: let »n € N* and Ops vnes an be

distinct non-zero rational numbers; there exists a constant

e = c(n, o .y an) > 0 such that

l’
Q. o3
n+(c/loglogq) 1 n
q q4 + q,¢ + ..+ qne =1
for every non-zero integer point (qo, ql, ey qn] and

q = max{lq, [, ..., lg,l, 3} .

1.

In 1873, Hermite gave his famous proof of the transcendence of e
Since then many improvements were introduced into Hermite's method which led
to the deep results of Siegel. (For this development we refer to the
survey paper by Fel'dman and Shidlovskii [5] and to the appendix of
Mahler's book [10].) This method enabled Mahler [§] (see also [4]) to

obtain a measure of irrationality of e . In fact, Mahler dealt with the

problem of finding an effective lower bound for Iea—Bl with a and B
rational numbers and thus determining explicitly the constants which

appeared in the earlier results of Mahler [6], [7] and Popken [11]. In
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this paper, we apply the same method to the more géneral problem of

a o
determining an effective lower bound for BO + Ble 1 + ...+ Bne "l where

BO’ Bl’ ey Qn a.r;d"’q",_".':.f.‘, a'n.;are ‘ra‘tiv.qna.»l,inumbers. More precisely,
we obtain

THEOREM. Let n € N* and o« a be distinet non-zero rational

10 e
numbers. There exists a constant (easily computable)
e = c(n, Ors oo an] > 0 such that

o o
qn.+(c(/log}qu) qy *+ qp© e o q,e e

for every non-zero integer pqint (qo, 9y cies qn) and
q = max{lq [, ..., lq,l, 3} -

By means of a transference principle’ (see for example Cassels [3]), it
is easy to derive from this theorem the following result:

COROLLARY . Le';t n'€N* and a o, be distinet non-zero

1° -"-9
rational numbers. ¢ There exists a constant . e, =e (n, Oy soes an) >0
such that
o -(1/n)-(e, /10g10gq)
J > 1
max |[ige Y|l = q s
15‘7.571

for any integer q = 3 . (Here ||| " denotes the distance from a real

number x to thé nearest integer.)

'REMARK. This result is to be compared with the following theorem of
Baker ([1] and [2], Theorem 10.1):  let 0“0’. dl’ ey O be distinct non-

zero rational numbers; , there. exist two constants

e = c[n,-ao, ey an) >0 and § = &(n, Ays +oes an) > 0 such that for,
any non-zero integer point (qo, ql, eees qn] with

q= max (|q.])ze

-t 0sisn J

one has
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a Q. o %
0 1 n 1-(8/(10gl0gq) ?)
X% B3
qoql e qn qoe + qle + ...+ qne Zq
where q; = max(l, [qj[) , J=0,1, ..., n.

Baker dealt with Siegel's method. (This method was likewise used by
Mahler [9] for determining explicitly the constants ¢ and & .) This

enabled him to obtain a lower bound which depends on the size of all the
_L
coefficients of the linear form, but with the exponent (log log q) ° in

place of {(log log q)_l . It remains to find a method which succeeds in

combining the two results.

2. Proof of the theorem

1. Denote by v 21 an integer such that vaj = u; €Z for

Jg=1, ..., n and put uO =0 . Let qo, ql, . qn be integers, not
all zero, and g = max{lqll, ey ‘qn!, 3} . It will be shown that
u./v u, /v u /v
n+(c/loglogq) 0 1 n
q qoe + qle + ...+ qne Z1,

where ¢ > 0 denotes a constant that does not depend on g .

Put
% uj/v
0 = q.e
g=o 7
Let N € N* . We define polynomials fﬁ(x, z) (0=4=mn), Pij(z)
(024, i=<n, 1 #J) and Qj(z) (0=4=n) vy
1-N n
_ v N-1 IRY:
fb(x, z) = TW:ETT'(vx'ujz) T:I (v ukz) ,
P. (z) = (n+§%N-1 m! m=-N+1
id el (m=1)1
N-1-v. n N-v
N-1 N -
. y [v )(ui'uj) I T7T {v )(ui—uk) k| (n+1)H-m-1 ,
V 4. 40 =m b k=0 k
] n ..
k#1,g

(vi=N)
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(n+1)N-1
_ m! m-N+1.
Qj(z) = m=1v_l (N—lj! v

N N-v.
N k
. [ o [v )(“j‘“k) 2
vo+...+vn=m k=0 ‘k

(vjzﬂ-l] k#j

Furthermore put

7;4(2) = (l'aij)Pij(z) +6,4:(3) , 04,430,

h 6..=0 £ T ¢4 nd §..=121.
where ¥ or J a 5z

n+l )m-N-1

The coefficients of ij are rational integers and ij is of degree

exactly »nVN -1 if < #  and of degree exactly »nN if € =j .

It follows from the definition of Z%j that

o™ .
”go yfj((ui/v]z, Z) = Tij(Z) s 0=1, Jsn.

- Then, by Hermite's identity, we obtain for 2z € R and 0= ¢, j

uiz/v
(1) e TOj(Z) - Tij(Z)

‘

u.z ,
2 /v u./v

u.zfv 1
z(n+l)Ne i I
0

= e

u.z/v
1 J e_tfk(t, z)dt =

0

~

where f3 is the polynomial defined by

- 1-N 4 1
7;(6) = gy ()™ T (wt-u) ¥
Kt

Therefore, the determinant

6(z) = " det (T..(2)
ci,j<n ¥ )

=n,

-2t
e fﬁ(t)dt

is a polynomial in 2z of the exact degree n(n+l)N which has at z = 0O

a zero of order n(n+l)¥N . Then A(z) # 0 if 2z # 0 and thus

A1) # 0.
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Now, we easily obtain from (1),

n
6T (1) - T, .(1
OJ( ) igo q; 7«7( )

u./v
!

B n ui/v
= Z q;¢
1=0 0
Since A(1) # 0 , at least one of the integers

n
Z q-T--(l), j=0,.-.,7l,
i=0 %

is distinct from zero. It follows that

(2) oling, @1+ |3 a0 [ 0
2 1= |e]]7,. (L)) 4+ q.e J e f, (t, 1)dt
g i=0 ¢ 0 I0

for a suitable jo € {0,1, ..., n}

2. Let u = max {|uj|} . For 4 # O we have

e'tfj(t, 1)t , § =0, 1,

()

467

i

1<j<n
(n+1)N-1
|Toj(l)| <. ,,,Z:N (zv’fi)! [r;tnl\l_-n})vm-lvu(nﬂ)lv-l-m < [(n+N1!)1v]! ()™
and, for 4 =0,
(n+1)¥-1
|T00(1)| = m=;lz:-1 (N_rfl')_' [m:l1$v+l)vm-N+lu(n+l)N-m_l < M:v—l'm—]' (uW)nN :

Next, for § =0, 1, ..., n ,

|xT;£/v Ifﬁ(x,'l)| < r%é%?T (2u)(n+l)N-1 < igz%%g;;%f:i
Then, by (2), we can write
(3) 1= 8] Liﬂaﬁlgli (u+v)nN + gne® Lg!%;;;;;f:i .
3. Denote by ms the smallest integer which satisfies
(n+l)@no+1]
(L) gne (2u) =m,!

0

https://doi.org/10.1017/50004972700006274 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006274

468 Alain Durand

From the definition of mo , it follows that

(n+1)
(5) Gno-l)! < qne*(2u) "o

Since
(Mp)! = NNp(p!)N for p=21 and N=21,
we have by (4), (5) and (3), with W = my+ 1,

(n+l) \m +l) n(m +1
2]8|(n+1) ( 0 [On0+1)!]n(u+v) ( 0 )

iy
A

(n+1) (m_+1) n{n+l)m n(m +1
0 [G"o+l)mo n,qnnnenu(2u> O'(u+v) ( 0 )

1A

2]6](n+1)

Hence

n mO
(6) 1= |e]q ey

with some constant cl > 0 which does not depend on ¢ and my -

We now require an upper estimate for mo . By (5) we have

m +52’ ~m (n+l)m
n® e Oc<my< qne”(2u) On
0 0 0
and thus
"o . ™o
Mo =
with
+ +
e, = ne l(Qu)n 2.

From this it follows that

m.o<c. —2089
0 2 loglogq

provided log log g > 0 ; that is, g = 3.
Finally we obtain, by (6),

1< Ie'qn+(c/loglogq)
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with ¢ =c¢_, log C

2 1

REMARK, The estimates occurring in the above proof are mostly quite

trivial and it is clear that the constant ¢ can be greatly improved.
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