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Abstract

Almost perfect obstruction theories were introduced in an earlier paper by the authors as the appropriate notion in

order to define virtual structure sheaves and K-theoretic invariants for many moduli stacks of interest, including

K-theoretic Donaldson-Thomas invariants of sheaves and complexes on Calabi-Yau threefolds. The construction of

virtual structure sheaves is based on the K-theory and Gysin maps of sheaf stacks.

In this paper, we generalize the virtual torus localization and cosection localization formulas and their combi-

nation to the setting of almost perfect obstruction theory. To this end, we further investigate the K-theory of sheaf

stacks and its functoriality properties. As applications of the localization formulas, we establish a K-theoretic wall-

crossing formula for simple C∗-wall crossings and define K-theoretic invariants refining the Jiang-Thomas virtual

signed Euler characteristics.
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1. Introduction

Enumerative geometry is the study of counts of geometric objects subject to a set of given conditions.

More often than not, the moduli stacks parameterizing the objects of interest are highly singular, have

many components of dimension different from the expected dimension and do not behave well under

deformation.

To address these issues, Li-Tian [20] and Behrend-Fantechi [4] developed the theory of virtual fun-

damental cycles, which have been instrumental in defining and investigating several algebro-geometric

enumerative invariants of great importance, such as Gromov-Witten [2], Donaldson-Thomas [29] and

Pandharipande-Thomas [25] invariants, and are still one of the major components in modern enumera-

tive geometry.

Any Deligne-Mumford stack - is equipped with its intrinsic normal cone C- , which locally for an

étale map * → - and a closed embedding * ↩→ + into a smooth scheme + is the quotient stack

[�*/+ /)+ |* ] (see also [4]). A perfect obstruction theory q : � → L- gives an embedding of C- into

the vector bundle stack E- = ℎ1/ℎ0 (�∨), and the virtual fundamental cycle is defined as the intersection

of the zero section 0E-
with C-

[-]vir := 0!
E-
[C- ] ∈ �v.dim. (-).

Recently, a lot of interest has been generated toward refinements of enumerative invariants that go

beyond numbers or the intersection theory of cycles. Motivated by theoretical physics and geometric

representation theory, it is in particular desirable to obtain such a refinement in  -theory (see also, for

example, [23, 24]).

When the moduli stack - admits a perfect obstruction theory with a global presentation � = [�−1 →

�0], where �−1, �0 are locally free sheaves on - , one can define the virtual structure sheaf as

[~vir
- ] := 0!

�1
[~�1
] ∈  0(-)

where �1 = (�−1)∨ and �1 = C- ×E-
�1.

However, there are many moduli stacks of interest that do not admit perfect obstruction theories,

including moduli of simple complexes [9, 21] and desingularizations of stacks of semistable sheaves

and perfect complexes on Calabi-Yau threefolds [15, 28].

To resolve this, in our previous paper [16], we introduced a relaxed version of perfect obstruction

theories, called almost perfect obstruction theories, which arise in the above moduli stacks. An almost

perfect obstruction theory has an obstruction sheaf O1- , which is the analogue of the sheaf ℎ1 (�∨),

and induces an embedding of the coarse moduli sheaf c- of C- into O1- , enabling us to define the

virtual structure sheaf of - as

[~vir
- ] := 0!

O1-
[~c- ] ∈  0(-). (1.1)

Several techniques have been developed to handle virtual fundamental cycles and virtual structure

sheaves arising from perfect obstruction theories on Deligne-Mumford stacks, such as the virtual torus

localization of Graber-Pandharipande [7, 26], the cosection localization of Kiem-Li [12, 14], virtual
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pullback [22, 26] and wall-crossing formulas [13]. Often, combining these (see also, for example, [5])

can be quite effective.

The aim of the present paper is to generalize the virtual torus localization and cosection localization

formulas of virtual structure sheaves and their combination to the setting of almost perfect obstruction

theory.

Roughly speaking, an almost perfect obstruction theory q on a Deligne-Mumford stack - consists

of perfect obstruction theories

qU : �U −→ L*U

on an étale cover {*U → -} of - satisfying appropriate combatibility conditions (see also Defini-

tion 2.10), which ensure that we have an obstruction sheaf F = O1- and an embedding of the coarse

intrinsic normal cone c- into F, so that the virtual structure sheaf [~vir
-
] can be defined as in (1.1) above.

The definition of [~vir
-
] is based crucially on the development of a  -theory group  0(F) of

coherent sheaves on the sheaf stack F, so that [~c- ] ∈ Coh(F), and the construction of the Gysin map

0!
F

:  0(F) →  0(-) in [16].

In this paper, we investigate the  -theory of sheaf stacks in more detail and establish an appropriate

version of descent theory for the category Coh(F) of coherent sheaves on F and several functorial

behaviors for Coh(F) and  0(F) and their properties. These include:

1. Pullback functors for surjective homomorphisms G→ F

2. Pullback and pushforward functors for injective homomorphisms G → F with locally free quotient

! = F/G

3. Pullback and pushforward functors for morphisms g : . → - of the base

With these well developed, after appropriate modifications, the standard arguments proving the virtual

torus localization formula, cosection localization formula and their combination work in our setting.

Thus, when - admits a ) = C∗-action, and the cover {*U → -} and obstruction theories qU are

)-equivariant, we prove that (Theorem 5.15)

[~vir
- ] = ]∗

[~vir
�
]

4(#vir)
∈  )0 (-) ⊗Q[C ,C−1 ] Q(C)

where ] : � → - is the inclusion of the)-fixed locus, which admits an induced almost perfect obstruction

theory, and we assume that the virtual normal bundle #vir of � has a global resolution [#0 → #1] by

locally free sheaves.

Moreover, if there is a cosectionf : O1- → ~- with vanishing locus - (f), we prove (Definition 4.5,

Proposition 4.6) that the virtual structure sheaf [~vir
-
] localizes canonically to an element [~vir

-,loc
] ∈

 0(- (f)).

In the presence of a )-action such that the almost perfect obstruction theory is )-equivariant and

a )-invariant cosection f, we show that the virtual torus localization formula holds for the cosection

localized virtual structure sheaves of - and � (Theorem 6.1).

An immediate application of the virtual torus localization formula is a  -theoretic wall-crossing

formula for simple C∗-wall crossings (Theorem 7.2).

Another application is a  -theoretic refinement of the Jiang-Thomas theory of virtual signed Euler

characteristics [10]. If - is a Deligne-Mumford stack with a perfect obstruction theory with obstruction

sheaf F = O1- , then we show (Theorem 7.4) that the dual obstruction cone # = Spec- (SymF)

admits a (symmetric) almost perfect obstruction theory with obstruction sheaf O1# = Ω# . This is

)-equivariant for the natural )-action with fixed locus ] : - → # . Additionally, there is a cosection

https://doi.org/10.1017/fms.2020.59 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.59


4 Y.-H. Kiem and M. Savvas

f : O1# → ~# . When - is proper, we obtain (Theorem 7.6) the  -theoretic invariants

j
(
[~vir
# ,loc]

)
∈ Q, jC

(
[~vir
-
]

4(�∨)

)
∈ Q(C)

refining the Jiang-Thomas virtual signed Euler characteristics.

Layout of the paper

Section 2 collects necessary background on the  -theory of sheaf stacks, almost perfect obstruction

theories and virtual structure sheaves that we need from [16]. In Section 3, we study the descent theory

and functoriality properties of coherent sheaves on sheaf stacks, which are then used throughout the

rest of the paper. Section 4 treats the cosection localization formula, Section 5 treats the virtual torus

localization formula and Section 6 their combination. In Section 7, we apply these formulas to prove the

 -theoretic wall-crossing formula for simple C∗-wall crossings and construct a  -theoretic refinement

of the Jiang-Thomas theory of virtual signed Euler characteristics. Finally, in the Appendix, we give the

proof of the deformation invariance of the cosection localized virtual structure sheaf.

Notation and conventions

Everything in this paper is over the field C of complex numbers. All stacks are of finite type, and

Deligne-Mumford stacks are separated.

If � is a locally free sheaf on a Deligne-Mumford stack - , we will use the term vector bundle to refer

to its total space. If F is a coherent sheaf on a Deligne-Mumford stack - , we will use the same letter to

refer to the associated sheaf stack.

For a morphism 5 : . → - of stacks and a coherent sheaf F on - , its pullback 5 ∗F is sometimes

denoted by F|. when the map 5 is clear from the context. The bounded derived category of coherent

sheaves on a stack - is denoted by � (-), and L-/( = !≥−1
-/(

denotes the truncated cotangent complex

for a morphism - → (. ) typically denotes the torus C∗.

2.  -theory on sheaf stacks, almost perfect obstruction theory and the virtual structure sheaf

In [16], we introduced the notion of coherent sheaves on a sheaf stack F, defined the  -theory of

F and constructed a Gysin map 0!
F

of F, which enabled us to construct the virtual structure sheaf

[~vir
-
] ∈  0(-) for a Deligne-Mumford stack - equipped with an almost perfect obstruction theory.

In this preliminary section, we collect necessary ingredients from [16].

2.1. Sheaf stacks, local charts and common roofs

In what follows, - will denote a Deligne-Mumford stack and F a coherent sheaf on - .

Definition 2.1. (Sheaf stack) The sheaf stack associated with F is the stack that to every morphism

d : , → - from a scheme, associates the set Γ(,, d∗F).

By abuse of notation, we denote by F the sheaf stack associated with a coherent sheaf F on - . A

sheaf stack is not algebraic in general, and we need an appropriate notion of local charts for geometric

constructions.

Definition 2.2. (Local chart) A local chart & = (*, d, �, A� ) for the sheaf stack F consists of

1. An étale morphism d : * → - from a scheme*, and

2. A surjective homomorphism A� : � → d∗F = F|* of coherent sheaves on * from a locally free

sheaf � on*.
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We will call* the base of the chart&. If* is affine and � is free, then the local chart& = (*, d, �, A� )

is called affine.

Definition 2.3. (Morphism between local charts) Let & = (*, d, �, A� ) and & ′ = (* ′, d′, � ′, A�′) be

two local charts for F. A morphism W : & → & ′ is the pair (dW , AW) of an étale morphism dW : * → * ′

and a surjection AW : � → d∗W�
′ of locally free sheaves, such that the diagrams

*
dW //

d
  ❆

❆
❆
❆
❆
❆
❆
❆

* ′

d′

��
-

�
AW //

A�
!!❇

❇
❇
❇
❇
❇
❇
❇
❇

d∗W�
′

d∗WA�′

��
F|*

are commutative.

We say that& is a restriction of& ′ and write& = & ′ |* if � = d∗W�
′ and AW is the identity morphism.

The notion of a common roof enables us compare two local charts onFwith the same base d : * → - .

Definition 2.4. (Common roof) Let A : G→ F and A ′ : G′ → F be two surjective homomorphisms of

coherent sheaves on a scheme*. Their fiber product is defined by

G ×F G′ := ker

(
G ⊕ G′

(A ,−A ′)
−−−−−→ F ⊕ F

+
−→ F

)
(2.1)

and we have a commutative diagram

G ×F G′ //

��

G

��
G′ // F

of surjective homomorphisms, which is universal among such diagrams of surjective homomorphisms

in the obvious sense.

Given two charts & = (*, d, �, A� ) and & ′ = (*, d, � ′, A�′) with the same quasi-projective base*,

we can pick a surjective homomorphism

, −→ � ×F |* � ′

from a locally free sheaf, . Denoting the induced surjection, → F|* by A, , we obtain a local chart

(*, d,,, A, ), which we call a common roof of & and & ′.

More generally, given two charts & = (*, d, �, A� ) and & ′ = (* ′, d′, � ′, A�′) of the sheaf stack F,

we let + = * ×- *
′ and have two local charts & |+ and & ′ |+ with the same base. A common roof of

& |+ and & ′ |+ is called a common roof of & and & ′.

2.2. Coherent sheaves on a sheaf stack F

A coherent sheaf A on F is an assignment to every local chart & = (*, d, �, A� ) of a coherent sheaf

A& on the scheme � (in the étale topology) such that for every morphism W : & → & ′ between local

charts there exists an isomorphism

A∗W

(
d∗WA&′

)
−→ A& (2.2)

that satisfies the usual compatibilities for composition of morphisms. Note that we abusively write

d∗WA&′ for the pullback of A&′ to d∗W�
′ via the morphism of bundles d∗W�

′ → � ′ induced by dW . A

quasicoherent sheaf on a sheaf stack is defined likewise.

https://doi.org/10.1017/fms.2020.59 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.59


6 Y.-H. Kiem and M. Savvas

A homomorphism 5 : A → B of (quasi)coherent sheaves on F is the data of a homomorphism

5& : A& → B& of (quasi)coherent sheaves on � for each local chart & = (*, d, �, A� ) such that for

every morphism W : & → & ′ of local charts, the diagram

A∗W

(
d∗WA&′

)
//

5&′

��

A&

5&

��
A∗W

(
d∗WB&′

)
// B&

is commutative where the horizontal arrows are (2.2). We say that a homomorphism 5 : A → B is an

isomorphism if 5& is an isomorphism for each local chart &.

Exact sequences and the  -group  0(F) were defined in [16] as follows.

Definition 2.5. (Short exact sequence) Let A,B, C be coherent sheaves on the sheaf stack F. A sequence

0 −→ A −→ B −→ C −→ 0

of homomorphisms of coherent sheaves on F is exact if for every local chart & = (*, d, �, A� ) on F

the sequence

0 −→ A& −→ B& −→ C& −→ 0

is an exact sequence of coherent sheaves on the scheme � .

Note that the morphism

�
AW
−→ d∗W�

′
= * ×* ′ �

′ −→ � ′

is smooth and hence flat. We can likewise define the kernel and cokernel of a homomorphisms 5 : A→ B

of coherent sheaves on the sheaf stack F. Thus coherent and quasicoherent sheaves on F form abelian

categories

Coh(F) ⊂ QCoh(F).

Definition 2.6. The  -group of coherent sheaves on F is the group generated by the isomorphism

classes [A] of coherent sheaves A on F, with relations generated by [B] = [A] + [C] for every short

exact sequence

0 −→ A −→ B −→ C −→ 0.

In other words,  0(F) is the Grothendieck group of the abelian category Coh(F).

If F = � is locally free, so that F is an algebraic stack, then the above definitions recover the standard

notions of short exact sequences and  0(F) for the vector bundle � .

2.3.  -theoretic Gysin and pullback maps

Let& = (*, d, �, A� ) be a local chart for the sheaf stack F, and denote the vector bundle projection map

� → * by c� . The tautological section of the pullback c∗
�
� induces an associated Koszul complex

K(�) := ∧•c∗��
∨

that resolves the structure sheaf ~* of the zero section of c� .
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Definition 2.7. For any local chart & = (*, d, �, A� ) and a coherent sheaf A on F, the 8th Koszul

homology sheaf

H8
& (A) ∈ Coh(*)

of A with respect to & is defined as the homology of the complex

K(�) ⊗~�
A& = ∧•c∗��

∨ ⊗~�
A&

in degree −8.

Using common roofs and the standard descent theory for coherent sheaves on algebraic stacks, the

following is proven in [16].

Theorem-Definition 2.8. Let A be a coherent sheaf on a sheaf stack F over a Deligne-Mumford stack

- . The coherent sheaves H8
& (A) ∈ Coh(*) glue canonically to a coherent sheaf H8

K
(A) ∈ Coh(-) on

- , which is defined to be the 8th Koszul homology sheaf of A.

The Koszul homology sheaves of A were then used to define a  -theoretic Gysin map 0!
F

:  0(F) →

 0(-).

Definition 2.9. ( -theoretic Gysin map) The  -theoretic Gysin map is defined by the formula

0!
F

:  0(F) −→  0(-), 0!
F
[A] =

∑

8≥0

(−1)8 [H8
K (A)] ∈  0(-), (2.3)

where A is a coherent sheaf on F.

2.4. Almost perfect obstruction theory and virtual structure sheaf

A perfect obstruction theory on a morphism - → (, where - is a scheme and ( a smooth Artin stack,

is a morphism

q : � −→ L-/(

in � (-), where � is a perfect complex of amplitude [−1, 0], satisfying that ℎ−1 (q) is surjective and

ℎ0 (q) is an isomorphism.

We refer to the sheaf O1- := ℎ1 (�∨) as the obstruction sheaf associated with the perfect obstruction

theory q. Then q induces a Cartesian diagram

C-/( //

��

N-/( := ℎ1/ℎ0 (L∨
-/(
)

ℎ1/ℎ0 (q∨) //

��

E := ℎ1/ℎ0 (�∨)

��
c-/(

// n-/( = ℎ1 (L∨
-/(
)

ℎ1 (q∨)

// O1- = ℎ1 (�∨)

(2.4)

where C-/( and N-/( are the intrinsic normal cone and intrinsic normal sheaf of - over (, respectively,

while c-/( and n-/( are their coarse moduli sheaves. All the horizontal arrows are closed embeddings.

Some interesting moduli spaces in algebraic geometry, such as the moduli space of derived category

objects, do not admit a perfect obstruction theory. In [16], we introduced a weaker notion with which

moduli stacks for generalized Donaldson-Thomas invariants are equipped.

Definition 2.10. (Almost perfect obstruction theory) Let - → ( be a morphism, where - is a Deligne-

Mumford stack of finite presentation and ( is a smooth Artin stack of pure dimension. An almost perfect

obstruction theory q consists of an étale covering {-U → -}U∈� of - and perfect obstruction theories

qU : �U → L-U/( of -U over ( such that the following hold:
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1. For each pair of indices U, V, there exists an isomorphism

kUV : O1-U
|-UV
−→ O1-V

|-UV

so that the collection {O1-U
= ℎ1(�∨U), kUV} gives descent data of a sheaf O1- , called the obstruc-

tion sheaf, on - .

2. For each pair of indices U, V, there exists an étale covering {+_ → -UV}_∈Γ of -UV = -U ×- -V
such that for any _, the perfect obstruction theories �U |+_ and �V |+_ are isomorphic and compatible

with kUV . This means there exists an isomorphism

[UV_ : �U |+_ −→ �V |+_

in � (+_) fitting in a commutative diagram

�U |+_

qU |+_

��

[UV_ // �V |+_

qV |+_
��

L-U/( |+_
//

�

%%❑❑
❑❑

❑❑
❑❑

❑❑
L-V/( |+_

�

��
L+_/(

(2.5)

which moreover satisfies ℎ1 ([∨
UV_
) = k−1

UV
|+_ .

Suppose that the morphism - → ( admits an almost perfect obstruction theory. Then the definition

implies that the closed embeddings given in diagram (2.4)

ℎ1 (q∨U) : n*U/( −→ O1-U

glue to a global closed embedding

9q : n-/( −→ O1-

of sheaf stacks over - . Therefore, the coarse intrinsic normal cone stack c-/( embeds as a closed

substack into the sheaf stack O1- .

Definition 2.11. [16] (Virtual structure sheaf) Let - → ( be as above, together with an almost perfect

obstruction theory q : - → (. The virtual structure sheaf of - associated with q is defined as

[~vir
- ] := 0!

O1-
[~c-/(

] ∈  0(-).

It is straightforward to generalize Definition 2.10 to the relative setting of a morphism - → . of

Deligne-Mumford stacks, by considering an étale cover {.U → . } and relative perfect obstruction

theories on the morphisms -U = - ×. .U → .U. We leave the detail to the reader.

In the subsequent sections, we will generalize the torus localization theorem [7, 26], the cosection

localization theorem [12, 14] and the wall-crossing formula [5] to the virtual structure sheaves associated

with almost perfect obstruction theories.

3. Functorial behavior of coherent sheaves on sheaf stacks

In this section, we investigate the functorial behavior of coherent sheaves on the sheaf stack F. These

functoriality properties will be our fundamental tools in generalizing the localization theorems to almost

perfect obstruction theories in the subsequent sections.
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We will first establish a descent theory for coherent sheaves on F. Using this, we will prove that there

are pullbacks of a coherent sheaf A on F by a morphism g : . → - of the base and by a surjective

homomorphism 5 : G → F of the sheaves as well as by an injective homomorphism 5 : G → F with

locally free quotient ! = F/G.

Moreover, we will see that there are (higher) pushforwards of a coherent sheaf A on g∗F to coherent

sheaves '8g∗A on F for any proper morphism g : . → - . When G→ F is an injective homomorphism

of coherent sheaves on - with locally free quotient, we will define the pushforward of a coherent sheaf

on G to F. These pushforwards and pullbacks satisfy the expected adjunction properties.

3.1. Coherent descent theory

Let 5 : G → F be a surjective homomorphism of coherent sheaves on a Deligne-Mumford stack - .

Then any local chart

& = (d : * → -, A� : � ։ G)

of G induces the local chart

5∗& = (d : * → -, 5∗A� : � ։ G։ F)

of F. Thus a coherent sheaf A ∈ Coh(F) gives a coherent sheaf A 5∗& ∈ Coh(�) for every local chart

& of G. It is easy to see that this assignment is a coherent sheaf on G, denoted by 5 ∗A or A|G. In this

way, we obtain a functor

5 ∗ : Coh(F) −→ Coh(G) (3.1)

and a homomorphism

5 ∗ :  0(F) −→  0(G) (3.2)

since 5 ∗ preserves exact sequences. From the construction, it is straightforward that if 6 : G′ → G is

another surjective homomorphism, then we have the equality

( 5 ◦ 6)∗ = 6∗ ◦ 5 ∗. (3.3)

Using the above pullback functor, we can develop a descent formalism for sheaves on sheaf stacks.

To begin with, it is convenient to extend the notion of local charts.

Definition 3.1. (Coherent chart) Let F be a coherent sheaf on a Deligne-Mumford stack - . A coherent

chart on the sheaf stack F is the datum of a quadruple

P = (*, d,G, AG)

where* is a scheme, d : * → - is an étale morphism and AG : G→ d∗F is a surjective homomorphism

of coherent sheaves on*.

Of course, when G is locally free, a coherent chart is the same as a local chart.

Morphisms between coherent charts are defined in the same way as morphisms between local charts.

The main advantage of coherent charts is that one has a natural fiber product.

Definition 3.2. (Fiber product of coherent charts) Let P = (*, d,G, AG) and P′ = (* ′, d′,G′, AG′) be

two coherent charts for F. Let + = * ×- *
′ and d+ : + → - the natural map to - . Using (2.1), we

have the fiber product

G ×F G′ := G|+ ×F |+ G′ |+ .
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Denote the induced surjectionG×FG
′→ F|+ by AG×FAG′ . The coherent chart (+, d+ ,G×F�

′, AG×FAG′)

is called the fiber product of the coherent charts P and P′ and denoted by P ×F P′. There are natural

morphisms of coherent charts P ×F P′→ P and P ×F P′→ P′.

Remark 3.3. If P and P′ are local charts, then it is easy to see that a common roof of P and P′ by

Definition 2.4 is a local chart for the fiber product P ×F P′.

Definition 3.4. (Atlas on F) An atlas on a sheaf stack F is a collection

{PU = (*U, dU, GU, AU)}U∈Γ

of coherent charts on F such that the morphisms {dU : *U → -} give an étale cover of - . We write

*UV = *U ×- *V and PUV = (*UV , dUV ,GUV , AUV) for the fiber product PU ×F PV . We use similar

notation*UVW and PUVW for triples of indices.

If A is a coherent sheaf on F and {PU} is an atlas on F, then we have the pullbacks

AU ∈ Coh(GU)

of A to GU by the surjections AU : GU → F|*U
. Moreover, the pullbacks AU and AV to GUV are

isomorphic to A|GUV
. By (3.3), we have the isomorphisms

6UV : AU |GUV

=
−→A|GUV

=
←−AV |GUV

, (3.4)

which satisfy the equality

6WU |GUVW
◦ 6VW |GUVW

◦ 6UV |GUVW
= id. (3.5)

Definition 3.5. (Descent datum) A descent datum on a sheaf stack F consists of

(a) An atlas {PU = (*U, dU,GU, AU)}U∈� on F

(b) A coherent sheaf AU on the sheaf stack GU for every index U

(c) An isomorphism

6UV : AU |GUV
−→ AV |GUV

of coherent sheaves on the sheaf stack GUV for every pair U, V,

such that the cocycle condition (3.5) holds for every triple U, V, W of indices

We say that a descent datum is effective if there exists a coherent sheaf A on F such that we have

AU = A|GU
for all U and the 6UV are the naturally induced isomorphisms (3.4) on fiber products. We

then say that the datum descends or glues to the sheaf A.

For example, let 5 : G → F be a surjective homomorphism of coherent sheaves on a Deligne-

Mumford stack - . The single chart (id : - → -, 5 : G→ F) is then an atlas for F. The fiber product

G ×F G fits into the commutative diagram

G ×F G
? //

@

��

G

5

��
G

5
// F

. (3.6)

A descent datum for this atlas consists of a coherent sheaf B on G and an isomorphism 6 : ?∗B→ @∗B.

For a local chart (d : * → -, A� : � → d∗F) with affine base*, we pick a surjection, → �×F |* G|*
from a locally free sheaf, on* so that we have surjections

A, : , −→ � ×F |* G|* −→ G|* , , ×� , −→ G ×F G|*
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and a fiber diagram

, ×� ,
?, //

@,

��

,

��
, // �

(3.7)

lying over (3.6). As B ∈ Coh(G), we have a coherent sheaf B, on , and an isomorphism ?∗
,
B, �

@∗
,
B, . Since, → � is a surjective homomorphism of vector bundles, the coherent sheafB, descends

to a coherent sheaf B� on � . It is easy to see that B� is independent of the choice of, and we have a

coherent sheaf B� for any local chart of F by considering an affine cover of the base scheme *. In this

way, we obtain a coherent sheaf on F.

By the same argument, we deduce the following.

Proposition 3.6. (Descent for sheaves on F) Any descent datum on a sheaf stack F is effective and

descends to a coherent sheaf on F, which is uniquely determined (up to canonical isomorphism).

Proof. This is a standard descent argument using smooth descent for sheaves on schemes repeating the

reasoning we saw above on an atlas for F and keeping track of all the indices involved. We leave the

details to the reader. �

3.2. Pullbacks of coherent sheaves on sheaf stacks

In this subsection, we will see more ways to pull back coherent sheaves or  -theory classes, other than

(3.1) and (3.2).

Let F be a coherent sheaf on a Deligne-Mumford stack - . Then all local charts of the sheaf stack F

form an atlas in the obvious way. Suppose we have a short exact sequence

0 −→ G
5
−→F −→ ! −→ 0

of coherent sheaves on - with ! locally free. Then any local chart & = (*, d, �, A� ) of F gives rise to

the commutative diagram of exact sequences

0 // � ′
5̃ //

A�′

��

� //

A�

��

! |* // 0

0 // G|*
5

// F|* // ! |* // 0

(3.8)

whose vertical arrows are all surjective. Note that � ′ is locally free, and it is straightforward to see that

the local charts & ′ = (*, d, � ′, A�′) form an atlas on the sheaf stack G.

Given a coherent sheaf A& on � , we can pull it back to � ′ to get a coherent sheaf A′&′ = 5̃ ∗A&.

If A ∈ Coh(F), we then obtain a descent datum {A′&′ ∈ Coh(� ′)} with the atlas {& ′} on G. By

Proposition 3.6, we thus obtain a sheaf A′ on G, which we denote by 5 ∗A ∈ Coh(G). Likewise, we can

pull back homomorphisms in Coh(F) to Coh(G). We thus obtain the pullback functor

5 ∗ : Coh(F) −→ Coh(G) (3.9)

for an injective homomorphism 5 : G→ F of coherent sheaves on - whose cokernel ! = F/G is locally

free.

Unfortunately, this functor 5 ∗ is not exact and hence does not induce a homomorphism on  -groups.

To get an exact functor, we should use the left derived pullback: letting c� : � → * denote the bundle

projection, we have a tautological section B of c∗
�
! whose vanishing locus is � ′.
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We then have the Koszul complex K(!), and the homology sheaves of the complex K(!) ⊗ A& for

each local chart & of F give us descent data with respect to the atlas {& ′} on G. By Proposition 3.6, we

get coherent sheaves

!0 5
∗A = 5 ∗A, !1 5

∗A, !2 5
∗A, · · ·

on G (with degrees up to the rank of !), where each !8 5
∗A is the descent of the homology sheaves in

degree −8 of the complexes K(!) ⊗A& for local charts &. We thus obtain the pullback homomorphism

5 ∗ :  0(F) −→  0(G), [A] ↦→
∑

8≥0

(−1)8 [!8 5
∗A] . (3.10)

It is straightforward to check that (3.10) is well defined.

The pullback (3.10) is compatible with the Gysin map 0!
F

as follows.

Lemma 3.7. Let 5 : G → F be an injective homomorphism of coherent sheaves on - whose cokernel

! = F/G is locally free. Then we have the identity

0!
G
◦ 5 ∗ = 0!

F
.

Proof. For any affine local chart & = (*, d, �, A� ), we can split � as the direct sum � ′ ⊕ !, and we

have an induced isomorphism K(�) � K(� ′) ⊗ K(!) of Koszul complexes. Given a coherent sheaf A

on F, we then obtain an isomorphism

K(�) ⊗ A& � K(� ′) ⊗ (K(!) ⊗ A&)

The spectral sequence for the double complex on the right-hand side gives an equality in  -theory for

any ℓ ≥ 0

[Hℓ
& (A)] =

∑

8+ 9=ℓ

(−1) 9 [H8
&′ (! 9 5

∗A)] ∈  0(*).

Since the spectral sequence maps are functorial with respect to morphisms between local charts and

independent of the choice of splitting of � , the above equality is true globally for Koszul homology

sheaves using descent, and the lemma follows. �

We can also pull back coherent sheaves on a sheaf stack by a morphism of the underlying Deligne-

Mumford stack. Let g : . → - be a morphism of Deligne-Mumford stacks and F be a coherent sheaf

on - . As we saw above, local charts & = (*, d, �, A� ) of the sheaf stack F form an atlas on F. The

pullbacks

& ′ = (d′ : * ′ = . ×- * → ., A�′ = g
∗A� : � ′ = g∗� → g∗F) (3.11)

form an atlas of the sheaf stack g∗F on . . By the induced morphism g̃ : � ′ = g∗� → � , we can

pull back coherent sheaves on � to � ′. If A ∈ Coh(F) is a coherent sheaf on F, the coherent sheaves

{g̃∗A& ∈ Coh(� ′)} form a descent datum and hence glue to a coherent sheaf g∗A on g∗F. The same

holds for homomorphisms in Coh(F). We thus obtain the pullback functor

g∗ : Coh(F) −→ Coh(g∗F) (3.12)

for a morphism g : . → - of Deligne-Mumford stacks and a sheaf stack F over - .

If g is flat, then g̃ : � ′→ � is flat and g̃∗ is exact. Hence we obtain a homomorphism

g∗ :  0(F) →  0(g
∗F) (3.13)

when g : . → - is flat.

The pullback g∗ by a flat morphism is compatible with the Gysin maps.
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Lemma 3.8. Let g : . → - be a flat morphism of Deligne-Mumford stacks and F be a coherent sheaf

on - . Then the pullback (3.13) fits into the commutative diagram

 0(F)
g∗ //

0!
F

��

 0(g
∗F)

0!
g∗F

��
 0(-)

g∗
//  0(. ).

(3.14)

Proof. The lemma follows from the isomorphism g∗K(�) � K(g∗�) of Koszul complexes. �

3.3. Pushforwards of coherent sheaves on sheaf stacks

In this subsection, we will consider pushforwards on sheaf stacks.

Suppose we have a short exact sequence

0 −→ G
5
−→F −→ ! −→ 0

of coherent sheaves on a Deligne-Mumford stack - with ! locally free. For any local chart & =

(*, d, �, A� ), we have a commutative diagram (3.8) of exact sequences, and & ′ = (*, d, � ′, A�′) is a

local chart for G. Given a coherent sheaf B ∈ Coh(G), we have a coherent sheaf B&′ on � ′ and its

pushforward 5̃∗B&′ ∈ Coh(�) by the closed immersion 5̃ . By the base change property, the assignment

& ↦→ 5̃∗B&′ is a coherent sheaf on F, which we denote by 5∗B ∈ Coh(F). Likewise, we can push

forward a homomorphism in Coh(G) to Coh(F) by 5 . We thus obtain a functor

5∗ : Coh(G) −→ Coh(F), (3.15)

which is exact as 5̃ is a closed immersion. So we have a homomorphism

5∗ :  0(G) −→  0(F) (3.16)

for an injective homomorphism 5 : G→ F of coherent sheaves on - with locally free cokernel ! = F/G.

By construction, the natural adjunction homomorphisms

A& −→ 5̃∗ 5̃
∗A&, 5̃ ∗ 5̃∗B&′ −→ B&′

induce the natural homomorphisms

A −→ 5∗ 5
∗A, 5 ∗ 5∗B −→ B (3.17)

in Coh(F) and Coh(G), respectively.

Let g : . → - be a proper morphism of Deligne-Mumford stacks. Let F be a coherent sheaf on - .

A local chart & = (*, d, �, A� ) of F induces a local chart & ′, defined by (3.11), of the sheaf stack g∗F

and a proper morphism

g̃ : � ′ = g∗� → �.

Let B ∈ Coh(g∗F) be a coherent sheaf on g∗F. Then we have the coherent sheaves

g̃∗B&′ , '8 g̃∗B&′ ∈ Coh(�)

by taking the direct and higher direct images. By the base chage property [8, III, Proposition 9.3], the

assignments

& ↦→ g̃∗B&′ , & ↦→ '8 g̃∗B&′
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are coherent sheaves on F, which we denote by g∗B = '0g∗B and '8g∗B, respectively. We thus obtain

functors

g∗ = '
0g∗, '

8g∗ : Coh(g∗F) −→ Coh(F) (3.18)

for 8 > 0, which give us the homomorphism

g∗ :  0(g
∗F) −→  0(F), [B] ↦→

∑

8

(−1)8 ['8g∗B] (3.19)

for a proper morphism g : . → - .

Lemma 3.9. For a proper morphism, the diagram

 0(g
∗F)

0!
g∗F

��

g∗ //  0(F)

0!
F

��
 0(. )

g∗ //  0(-)

commutes.

Proof. The lemma follows from Definition 2.9 and the projection formula [8, III, Exer. 8.3]. �

As above, the usual adjunction homomorphisms give us homomorphisms

A −→ g∗g
∗A, g∗g∗B→ B (3.20)

in Coh(F) and Coh(g∗F), respectively.

4. Cosection localization

Let - → ( be a morphism, where - is a Deligne-Mumford stack of finite type and ( a smooth quasi-

projective curve, together with a perfect obstruction theory q and a cosection f : O1q → ~- . In [12]

and [14], it is shown that the virtual fundamental cycle [-]vir ∈ �∗(-) and virtual structure sheaf

[~vir
-
] ∈  0(-) localize to the vanishing locus - (f) of f, being the pushforward of localized classes

in �∗(- (f)) and  0(- (f)), respectively, in a canonical way.

In this section, we prove the analogous cosection localization for virtual structure sheaves induced

by an almost perfect obstruction theory.

4.1. Cosection localization for perfect obstruction theory

Let - → ( be as above. Let d : * → - be an étale morphism from a scheme*, and let q : � → L≥−1
*/(

be a perfect obstruction theory with � = [�−1 → �0] a global resolution by vector bundles. Moreover,

suppose that we have a morphism

f : O1* −→ ~* ,

which, following [12], we refer to as a cosection.

Let f be the composition �1 = (�−1)∨ → O1* → ~* , * (f) the vanishing locus of f, *◦ =

* −* (f) and

�1 (f) = �1 |* (f) ∪ ker
(
f |*◦ : �1 |*◦ −→ ~*◦

)
. (4.1)
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In [14], the authors define a localized Gysin map

0!
�1 ,f

:  0(�1 (f)) →  0(* (f)).

We recall the construction. Let g : *̃ → * be the blowup of * along * (f) with exceptional divisor

�. If �̃1 = g∗�1, we have an induced surjection

f̃ : �̃1 −→ ~
*̃
(−�).

Let � ′
1
= ker f̃ and

g̃ : � ′1 −→ �1(f) (4.2)

be the morphism induced from �̃1 → �1.

For any coherent sheaf A on �1(f), we have a natural morphism by adjunction

[A : A −→ g̃∗g̃
∗A.

Since [A is an isomorphism over *◦, the sheaves ker([A), coker([A) and '8 g̃∗g̃
∗A for 8 ≥ 1 are

supported on �1 |* (f) .

We may therefore define

'A := [ker([A)] − [coker([A)] −
∑

8≥1

(−1)8 ['8 g̃∗g̃
∗A] ∈  0(�1 |* (f) ). (4.3)

Definition 4.1. [14] The cosection localized Gysin map is given by the formula

0!
�1 ,f
[A] := (g |�)∗

(
�∨ · 0!

�′
1
[g̃∗A]

)
+ 0!

�1 |* (f)
'A ∈  0(* (f)), (4.4)

where �∨ · [A′] = [~
-̃
→ ~

-̃
(�)] ⊗ [A′].

Let�1 := c-/(×O1- �1 ⊂ �1 be the obstruction cone of the perfect obstruction theory q. In [12], it is

shown that�1 has reduced support in �1(f). Therefore, if we let � denote the ideal sheaf of (�1)
red ⊂ �1,

the sheaves A 9 = �
9
~�1
/� 9+1~�1

for 9 ≥ 0 are naturally coherent sheaves on �1(f), and moreover

[~�1
] =

∑

9≥0

[A 9 ] ∈  0(�1 (f)),

where the summation is finite, since � 9 = 0 for large enough 9 .

Definition-Theorem 4.2. [14] The cosection localized virtual structure sheaf on* is defined by

[~vir
*,loc] = 0!

�1 ,f
[~�1
] :=

∑

9≥0

0!
�1 ,f
[A 9 ] ∈  0(* (f)).

It satisfies

]∗ [~
vir
*,loc] = [~

vir
* ] ∈  0(*),

where ] : * (f) → * is the inclusion, is independent of the particular choice of global resolution for �

and deformation invariant.

The purpose of this section is to generalize Definition-Theorem 4.2 to the setting of almost perfect

obstruction theories.
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4.2. Intrinsic normal cone under a cosection

Recall from Section 2.4 that under the assumptions of Definition 2.10, if - → ( is equipped with an

almost perfect obstruction theory q, we have the intrinsic normal sheaf c-/( , which is a closed substack

of the obstruction sheaf $1- of q. Let F = $1- in the rest of this section.

For any local chart & = (*, d, �, A� ) of the sheaf stack F, we have a Cartesian square

� //

��

�

A�

��
c-/( |* // F|*

(4.5)

whose horizontal arrows are closed immersions. Hence � is a closed subscheme of the vector bundle

� , and its structure sheaf ~� is a coherent sheaf on � . It is obvious that the assignment & ↦→ ~� is a

coherent sheaf on the sheaf stack F, which we denote by

~c-/(
∈ Coh(F).

Now suppose we have a cosection

f : F = $1- −→ ~-

of the obstruction sheaf. As mentioned above, it was proved in [12] that for any local chart& = (d : * →

-, A� : � → F|* ) of the sheaf stack F, the cone� = �×F |* c-/( |* ⊂ � in (4.5) has reduced support in

� (f) = � |* (f) ∪ ker(�
A�
−→F|*

f
−→~* ), (4.6)

where * (f) is the vanishing locus of f that is the closed subscheme of * defined by the image of

f |* : F|* = d∗F→ ~* . The closed substacks � (f) for local charts & = (*, d, �, A� ) define a closed

substack that we denote by F(f). We let Coh(F) denote the set of isomorphism classes of coherent

sheaves on the sheaf stack F, and let

Coh
f
(F) (4.7)

denote the subset of isomorphisms classes of coherent sheaves A on F with support in F(f): that is,

for each local chart & = (*, d, �, A� ), A& has support in � (f).

The assignment to a local chart& of the ideal sheaf �& of � (f) on � is a coherent sheaf I, and there

exist exact sequences

0 −→ I 9+1~c-/(
−→ I 9~c-/(

−→ I 9~c-/(
/I 9+1~c-/(

−→ 0.

We let

A 9 = I 9~c-/(
/I 9+1~c-/(

∈ Coh(F) (4.8)

so that for any local chart & = (*, d, �, A� ) of F, (A 9 )& ∈ Coh(�) is a coherent sheaf supported in

� (f). Note that the isomorphism class of A 9 lies in Coh
f
(F) and

[~c-/(
] =

∑

9

[A 9 ] ∈  0(F) (4.9)

by the definition of the A 9 .
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4.3. Cosection localized Gysin maps

In this subsection, we will define a map

0!
F,f : Coh

f
(F) −→  0(- (f)) (4.10)

where - (f) is the vanishing locus of the cosection f. The cosection localized virtual structure sheaf

[~vir
-,loc
] ∈  0(- (f)) will be defined by

[~vir
-,loc] =

∑

9

0!
F,f (A 9 ) (4.11)

with A 9 from (4.8). By construction, it will follow that the pushforward of [~vir
-,loc
] by the inclusion

- (f) ↩→ - is the usual virtual structure sheaf [~vir
-
] ∈  0(-).

Let g : -̃ → - be the blowup of - along - (f). Let � denote the exceptional divisor. The cosection

f : F → ~- lifts to a surjection g∗F = F|
-̃
→ ~

-̃
(−�) whose kernel is denoted by F′, so that we

have an exact sequence

0 −→ F′
5
−→ g∗F −→ ~

-̃
(−�) −→ 0.

Let A ∈ Coh(F) whose isomorphism class lies in Coh
f
(F). By the pullback functors (3.9) and

(3.12), we have

[ 5 ∗g∗A] ∈  0(F
′). (4.12)

By applying the Gysin map for F′ (Definition 2.9), we obtain

0!
F′
[ 5 ∗g∗A] ∈  0( -̃).

Then we intersect it with −� to obtain

�∨ · 0!
F′
[ 5 ∗g∗A] = [~

-̃
→ ~

-̃
(�)] ⊗ 0!

F′
[ 5 ∗g∗A] ∈  0(�).

Now we push it down to - (f) by g |� to obtain

(g |�)∗

(
�∨ · 0!

F′
[ 5 ∗g∗A]

)
∈  0(- (f)). (4.13)

Let y : - (f) → - and ỹ : � → -̃ denote the inclusions. Then

y∗(g |�)∗

(
�∨ · 0!

F′
[ 5 ∗g∗A]

)
= g∗̃y∗

(
�∨ · 0!

F′
[ 5 ∗g∗A]

)
(4.14)

= g∗0
!
~
-̃
(−�)0

!
F′
[ 5 ∗g∗A] = g∗0

!
g∗F [ 5∗ 5

∗g∗A]

= 0!
F
g∗ [ 5∗ 5

∗g∗A] =
∑

8≥0

(−1)80!
F
['8g∗ 5∗ 5

∗g∗A] .

Since A is a sheaf with support in F(f) and g is an isomorphism on - − - (f), we find that

'8g∗ 5∗ 5
∗g∗A|-−- (f) = 0 is a coherent sheaf on the closed substack F|- (f) for 8 > 0. Likewise, the

kernel and cokernel of the natural homomorphism

[A : A −→ g∗ 5∗ 5
∗g∗A
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are coherent sheaves on F|- (f) . Let

'A := [ker([A)] − [coker([A)] −
∑

8≥1

(−1)8 ['8g∗ 5∗ 5
∗g∗A] ∈  0(F|- (f) ). (4.15)

Then by Lemma 3.9, we have

y∗0
!
F |- (f)

'A = 0!
F
y∗'A (4.16)

= 0!
F

(
[A] − [g∗ 5∗ 5

∗g∗A] −
∑

8≥1

(−1)8 ['8g∗ 5∗ 5
∗g∗A]

)

= 0!
F
[A] −

∑

8≥0

(−1)80!
F
['8g∗ 5∗ 5

∗g∗A] ∈  0(-).

Definition 4.3. The cosection localized Gysin map

0!
F,f : Coh

f
(F) −→  0(- (f)) (4.17)

for F is defined by

0!
F,f [A] = (g |�)∗

(
�∨ · 0!

F′
[ 5 ∗g∗A]

)
+ 0!

F |- (f)
'A ∈  0(- (f))

for any coherent sheaf A on F with support in F(f).

By adding (4.13) and (4.16), we obtain the following comparison of the Gysin maps 0!
F

and 0!
F,f

.

Proposition 4.4. For [A] ∈ Coh
f
(F), we have the equality

y∗0
!
F,f (A) = 0!

F
[A] ∈  0(-).

4.4. Cosection localized virtual structure sheaf for almost perfect obstruction theory

Using (4.8), (4.9) and (4.17), we may now generalize the cosection localized virtual structure sheaf in

[14] to Deligne-Mumford stacks equipped with almost perfect obstruction theories.

Definition 4.5. The cosection localized virtual structure sheaf for an almost prefect obstruction theory

q is defined by

[~vir
-,loc] :=

∑

9≥0

0!
O1- ,f

(A 9 ) ∈  0(- (f)),

where 0!
O1- ,f

is the cosection localized Gysin map in Definition 4.17 and the sheaves A 9 are defined

in (4.8).

Proposition 4.6. The pushforward of [~vir
-,loc
] by the inclusion y : - (f) → - is the ordinary virtual

structure sheaf [~vir
-
] ∈  0(-) in [16].

Proof. By Proposition 4.4, (4.9) and Definition 2.11, we have

y∗ [~
vir
-,loc] =

∑

9≥0

y∗0
!
O1- ,f

(A 9 ) =
∑

9≥0

0!
O1-
[A 9 ]

= 0!
O1-

∑

9≥0

[A 9 ] = 0!
O1-
[~c-/(

] = [~vir
- ]

as desired. �
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The cosection localized virtual structure sheaf is deformation invariant. The proof is rather standard

and can be found in the Appendix.

Remark 4.7. As discussed carefully in [14], we can be quite flexible in choosing a lift of A to a class

in  0(F
′). Above, we used (4.12) for simplicity, but we could use left derived pullbacks ! 5 ∗ and !g∗

instead of the ordinary pullbacks 5 ∗ and g∗. With this derived choice, we have a homomorphism

0!
F,loc :  0(F(f)) −→  0(- (f))

where  0(F(f)) is the Grothendieck group of the abelian category Cohf (F) of coherent sheaves on

F with support in F(f).

5. Virtual torus localization

A virtual torus localization formula has been established at the level of intersection theory for virtual

fundamental cycles in the cases of perfect [7] and semi-perfect obstruction theory [11] and at the

level of  -theory for virtual structure sheaves for perfect obstruction theory [26]. In this section, we

generalize the formula to the setting of virtual structure sheaves in  -theory obtained by an almost

perfect obstruction theory.

5.1. )-equivariant almost perfect obstruction theory

Let ) = C∗ denote the one-dimensional torus and - a Deligne-Mumford stack with an action of ) .

We denote the fixed locus by �. This is the closed substack locally defined by Spec �/(�<E ) on

an equivariant étale chart Spec � → - , where (�<E ) denotes the ideal generated by weight spaces

corresponding to non-zero )-weights. Finally, let

] : � −→ -

denote the inclusion map. For details on group actions on stacks, we refer the reader to [27].

We can give the following definition, which generalizes directly the definition of an almost perfect

obstruction theory.

Definition 5.1. ()-equivariant almost perfect obstruction theory) Let - be a Deligne-Mumford stack

with a )-action. A )-equivariant almost perfect obstruction theory q consists of the following data:

(a) A )-equivariant étale covering {-U → -}U∈� of -

(b) For each index U ∈ �, an object �U ∈ � ([-U/)]) and a morphism qU : �U → L-U
in � ([-U/)])

that is a perfect obstruction theory on -U

These are required to satisfy the following conditions:

1. For each pair of indices U, V, there exists a )-equivariant isomorphism

kUV : O1-U
|-UV
−→ O1-V

|-UV

so that the collection {O1-U
= ℎ1 (�∨U), kUV} gives a descent datum of a sheaf O1- , called the

obstruction sheaf, on - .

2. For each pair of indices U, V, there exists a )-equivariant étale covering {+_ → -UV}_∈Γ of -UV =

-U ×- -V such that for any _, the perfect obstruction theories qU |+_ and qV |+_ are isomorphic and

compatible with kUV . This means there exists an isomorphism

[UV_ : �U |+_ −→ �V |+_
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in � ([+_/)]) fitting in a commutative diagram

�U |+_

qU |+_

��

[UV_ // �V |+_

qV |+_
��

L-U
|+_

//

�

$$■
■
■
■
■
■
■
■
■

L-V
|+_

�

��
L+_

(5.1)

which moreover satisfies ℎ1 ([∨
UV_
) = k−1

UV
|+_ .

In the above, � ([-U/)]) and � ([+_/)]) denote the bounded derived categories of )-equivariant

quasi-coherent sheaves on*U and +_, respectively.

Remark 5.2. When the étale covering in part (a) of the definition consists of the identity morphism

id : - → - , part (b) gives a )-equivariant perfect obstruction theory on - , and conditions 1 & 2

are vacuously satisfied. Thus a )-equivariant perfect obstruction theory on - is a special case of a

)-equivariant almost perfect obstruction theory.

5.2. )-equivariant almost perfect obstruction theory on the fixed locus

Suppose that - is a Deligne-Mumford stack with an action of ) , equipped with a )-equivariant almost

perfect obstruction theory as above. Let �U = -U ×- �, so that {�U → �}U∈� gives an étale covering

of the fixed locus �.

For each index U, we have the decomposition

�U |�U
= �U |

fix

�U
⊕ �U |

<E
�U

(5.2)

into the )-fixed and moving part. Moreover, qU |�U
similarly decomposes as a direct sum of

q
fix
U : �U |

fix

�U
→ L-U

|
fix

�U
and q<EU : �U |

<E
�U
→ L-U

|<E�U
. (5.3)

Since �U has a trivial )-action, the morphism L-U
|�U
→ L�U

factors through

L-U
|
fix

�U
−→ L�U

. (5.4)

Composing (5.3) and (5.4), we obtain a morphism

q�U : �U |
fix

�U
−→ L�U

. (5.5)

By [7], this gives a perfect obstruction theory on �U.

Proposition 5.3. The étale covering {�U → �} and the perfect obstruction theories q�U : �U |
fix

�U
→ L�U

form an induced almost perfect obstruction theory q� on the fixed locus � with obstruction sheaf

O1� = O1- |
fix

�
.

Proof. We need to verify that conditions (1) and (2) in Definition 2.10 hold for the perfect obstruction

theories on the given étale cover of �.
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It is clear that O1�U
= ℎ1(�∨U |

fix

�U
) = O1-U

|
fix

�U
. Since �UV = �U ×� �V is the fixed locus of

-UV = -U ×- -V and kUV is )-equivariant, we obtain induced isomorphisms

k�UV := kUV |
fix

�UV
: O1�U

|�UV
−→ O1�V |�UV

(5.6)

that satisfy the cocycle condition and give descent data for the obstruction sheaf O1� = O1- |
fix

�
.

Let +)
_

denote the fixed locus of +_. Similarly, by )-equivariance, the isomorphisms [UV_ induce

isomorphisms

[�UV_ := [UV_ |
fix

+ )
_

: �U |
fix

+ )
_

−→ �V |
fix

+ )
_

fitting in a commutative diagram

�U |
fix

+ )
_

q�
U |+)

_

��

[�
UV_ // �V |

fix

+ )
_

q�
V
|
+)
_

��
L�U
|+ )

_

//

$$■
■
■
■
■
■
■
■
■

L�V |+ )
_

��
L+ )

_

(5.7)

and satisfying ℎ1 ([∨
UV_
|
fix

+ )
_

) = k−1
UV
|
fix

�UV
, as desired. �

Let #vir
U = (�U |

<E
�U
)∨ be the virtual normal bundle of �U in -U, and write ��U = �U |

fix

�U
for brevity

from now on.

To prove the torus localization formula in the next subsection, we will need to modify the almost

perfect obstruction theory q� on �. To this end, we make the following assumption.

Assumption 5.4. There exists a two-term complex

#vir
= [#0 −→ #1]

of locally free sheaves on � and an isomorphism ` : ℎ1 (#vir) → O1q |
<E
�

such that for any index U,

we have an isomorphism #vir |�U
� #vir

U whose homology in degree 1 induces the restriction ` |�U
. We

write #−1 = #∨
1
, #0 = #∨

0
.

This assumption may turn out to be unnecessary in the future, but under the current state of technology,

this is a weakest assumption for a proof of the virtual torus localization formula, Theorem 5.15 below.

We will compare the virtual structure sheaves [~vir
-
] on - and [~vir

�
] on � through an intermediate

virtual structure sheaf [~̃vir
�
], after introducing an auxiliary almost perfect obstruction theory on �. Here

is an outline:

1. (Proposition 5.6) [~̃vir
�
] = [~vir

�
] ∩ 4(#1), where (·) ∩ 4(#1) is tensoring the Koszul complex ∧•#−1

for the zero section of #1.

2. (Proposition 5.9) y! [~vir
-
] = [~̃vir

�
], where y : � → - is the inclusion and y! is the virtual pullback

defined in [26].

3. (Proposition 5.13) y∗b = [~
vir
-
] for some b ∈  0(�) ⊗Q Q(C).

4. (Theorem 5.15) Since b ∩ 4(#0) = y
!y∗b = y! [~vir

-
] = [~vir

�
] ∩ 4(#1), we have b = [~vir

�
]/4(#vir),

where 4(#vir) = 4(#0)/4(#1). We thus obtain the torus localization formula

[~vir
- ] = y∗

[~vir
�
]

4(#vir)
. (5.8)

In the subsequent subsections, we will work out the details of the outline.
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5.3. An auxiliary almost perfect obstruction theory on the fixed locus

We will introduce a new almost perfect obstruction theory on � by adding the locally free sheaf #1 to

the obstruction sheaf and compare the virtual structure sheaves arising from the old and new almost

perfect obstruction theories.

For each index U, we let

�̃�U = ��U ⊕ #
∨
1 |�U
[1] and q̃�U : �̃�U −→ ��U

q�
U
−−→ L�U

, (5.9)

where the first arrow �̃�U → ��U in the composition is projection onto the first summand. It is clear that

q̃�U is a perfect obstruction theory on �U with obstruction sheaf O1 q̃�
U
= ℎ1 ((�̃�U )

∨) = O1q�
U
⊕ #1 |�U

.

Proposition 5.5. The étale covering {�U → �} and the perfect obstruction theories q̃�U : �̃�U → L�U

form an almost perfect obstruction theory q̃� on � with obstruction sheaf Õ1� = O1� ⊕ #1.

Proof. The proof is identical to that of Proposition 5.3 using

k̃�UV = k�UV ⊕ id#1 |�UV
and [̃�UV_ = [

�
UV_ ⊕ id#1 |+)

_

for the appropriate compatibilities. �

The two almost perfect obstruction theories q� and q̃� on � induce virtual structure sheaves

[~vir
�
] ∈  0(�) and [~̃vir

�
] ∈  0(�), respectively. These are related by the following formula.

Proposition 5.6. [~̃vir
�
] = [~vir

�
] ∩ 4(#1) ∈  0(�) where (·) ∩ 4(#1) denotes tensoring with the Koszul

complex ∧•(#−1) for the zero section of #1.

Proof. Let 9q� : c� → O1� be the induced embedding of the coarse intrinsic normal cone stack of �

into the obstruction sheaf stack of q� . By the definition of q̃� , it is easy to see that the embedding 9 q̃�

is the composition of 9q� with the inclusion O1� → Õ1� = O1� ⊕ #1 as the first summand.

By Definition 2.11, we have

[~̃vir
� ] = 0!

Õ1�
[~c� ] = 0!

O1� ⊕#1
[~c� ]

= 0!
#1

(
0!
$1�
[~c� ]

)
= 0!

#1
[~vir
� ] = [~

vir
� ] ∩ 4(#1)

as desired. �

5.4. Refined intersection with the fixed locus

In this subsection, we prove Proposition 5.9 below.

Lemma 5.7. [~̃vir
�
] = 0!

O1- |� ⊕#0
[~c�/C-

] ∈  0(�).

Proof. The proof is an adaptation of a standard functoriality argument, following the lines of the proof

of [16, Theorem 4.3]. We repeat a sketch of the argument here for the convenience of the reader.

Let M◦
- → P1 be the deformation of SpecC to the intrinsic normal cone stack C- . Let W =

M◦
�×P1/M◦

-

be the double deformation space given by the deformation of � × P1 inside M◦
- to its

normal cone C�×P1/M◦
-

. We also write N�×P1/M◦
-

for the intrinsic normal sheaf with coarse moduli

sheaf the sheaf stack n�×P1/M◦
-

. We have a morphism W → P1 × P1 and denote the two projections

W→ P1 by c1 and c2, respectively.
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The fiber over (1, 0) is C� , while the flat specialization at the point (0, 0) along {0} × P1 is C�/C-
.

In particular, the flat specialization at (0, 0) along P1 × {0} is also C�/C-
, meaning there exists a closed

substack Z ⊂ C�×P1/M◦
-

, flat over P1, with fibers

ZC =

{
C� , C ≠ 0

C�/C-
, C = 0.

(5.10)

Thus

[~Z ⊗
!
~
P1
C0] = [~Z0

] = [~C�/C-
]

[~Z ⊗
!
~
P1
C1] = [~Z1

] = [~C�
],

and since [C0] = [C1] ∈  0(P
1), we obtain

[~C�
] = [~C�/C-

] ∈  0(C�×P1/M◦
-
).

Pushing forward to N�×P1/M◦
-

, the equality holds in  0(N�×P1/M◦
-
) as well.

The same argument at the level of coarse moduli sheaves yields the equality

[~c� ] = [~c�/C-
] ∈  0(n�×P1/M◦

-
). (5.11)

As in, [17], for each U we have a commutative diagram of exact triangles on �U × P
1

�U |�U
(−1)

��

^U // �U |�U
⊕ �̃�U

//

��

2(^U)

��

//

L-U
|�U
(−1)

`U
// L-U
|�U
⊕ L�U

// 2(`U) //

where ^U = (I0 · id, I1 · 6U) with I0, I1 homogeneous coordinates on P1, and 6U is the canonical

morphism from the inclusion �U → *U. The morphism `U is the restriction to �U of a global arrow `,

and it is shown in [17] that ℎ1/ℎ0 (2(`)∨) = N�×P1/M◦
-

.

By the compatibilities afforded by the almost perfect obstruction theories and the definition (5.9) of

�̃�U , we see that the closed embeddings

ℎ1 (2(`U)
∨) −→ ℎ1 (2(^U)

∨)

glue to a global embedding of sheaf stacks on - × P1

n�×P1/M◦
-
−→ K.

Moreover, it is routine to check that the fiber of K over 0 ∈ P1 is O1- |� ⊕ #0, while the fiber at 1 ∈ P1

is Õ1� . Therefore, (5.11) and the discussion preceding it imply that

[~̃vir
� ] = 0!

Õ1�
[~c� ] = 0!

O1- |� ⊕#0
[~c�/C-

],

as desired. �
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By the definition of �̃�U , for any index U, we have a commutative diagram of exact triangles

�U |�U

qU |�U

��

6U // �̃�U

q̃�
U

��

// #∨
0
|�U
[1]

\U

��

//

L-U
|�U

// L�U
// L�U/-U

// .

(5.12)

By the following proposition, \U gives a perfect obstruction theory on the morphism �U → *U.

Proposition 5.8. The étale covering {�U → �} and the perfect obstruction theories \U : #∨
0
|�U
[1] →

L�U/-U
form an almost perfect obstruction theory \ on ] : � → - with obstruction sheaf O1�/- = #0.

Proof. Since �U → -U is a closed embedding, L�U/-U
is supported in degree −1. The long exact

sequence in cohomology for the diagram (5.12) yields

ℎ−1 (�U |�U
)

ℎ−1 (qU |�U )

��

// ℎ−1 (�̃�U )

ℎ−1 ( q̃�
U )

��

// #∨
0
|�U

ℎ−1 (\U)

��

// ℎ0 (�U |�U
)

ℎ0 (qU |�U )

��

// ℎ0 (�̃�U )

ℎ0 ( q̃�
U )

��
ℎ−1 (L-U

|�U
) // ℎ−1 (L�U

) // ℎ−1 (L�U/-U
) // ℎ0 (L-U

|�U
) // ℎ0 (L�U

).

The two leftmost vertical arrows are surjections, while the two rightmost arrows are isomorphisms.

Thus, by the five lemma, the middle arrow ℎ−1(\U) is a surjection. Since ℎ0 (#∨
0
|�U
[1]) = ℎ0 (L�U/*U

) =

0, \U is a perfect obstruction theory for the inclusion �U → -U.

The rest of the proof is a diagram chase using the definition (5.9) of �̃�U and the compatibilities kUV
from Definition 2.10 and [̃�

UV_
from Proposition 5.5. The details are omitted. �

The almost perfect obstruction theory \ induces a closed embedding

9 : c�/- −→ O1�/- = #0.

Since ] : � → - is an embedding, the coarse intrinsic normal cone stack c�/- coincides with the

intrinsic normal cone C�/- , and we obtain a virtual pullback by the formula

y! :  0(-)
fy
−−→  0(C�/- )

9∗
−→  0(#0)

0!
#0
−−−→  0(�),

where fy is the deformation to the normal cone (see also [26, §2.1]).

Now we can prove the following.

Proposition 5.9. With the notation above, we have

]! [~vir
- ] = [~

vir
� ] ∩ 4(#1).

Proof. By Proposition 5.6 and Lemma 5.7, it suffices to prove

y! [~vir
- ] = 0!

O1- |� ⊕#0
[~c�/C-

] ∈  0(�). (5.13)

For each local chart & = (*, d, �, A� ) of $1- , let �* = � ×- *, � = c- |* ×$1- |* � be the lift of

the normal cone c- to � .

For a closed immersion / ↩→ , , "◦
//,

denotes the deformation to the normal cone: that is, it is the

blowup of, × P1 along / × {0} with the strict transform of, × {0} deleted. We have a flat morphism

"◦
//,
→ P1 whose fiber over C ≠ 0 (respectively, C = 0) is, (respectively, the normal cone �//, ).
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Then we have a commutative diagram

�� _

��

� × A1oo � � //
� _

��

"◦
�* /�� _

��

��*/�
? _oo

� _

��
�

����

� × A1
?A1oo � � //

����

"◦
�* /�

��

��* /�
? _oo

����

� � // � |�* ⊕ #0 |�*

����
$1- |*

��

$1- |* × A
1oo

��

// $1- |* ×* "◦
�* /*

��

$1- |�* ×�* ��*/*
oo � � //

��

$1- |�* ⊕ #0 |�*

��
* * × A1

?A1oo � � // "◦
�* /*

��*/*
? _oo � � // #0 |�* .

(5.14)

By descent, we have a diagram

 0 (-)
?A∗

1 //  0 (- × A
1)  0 ("

◦
�/-
)oo //

 0 ($1- )
?A∗

1 //

0!
$1-

OO

 0 ($1- |-×A1 )

0!
$1- |-×A1

OO

 0 ($1- |" ◦
�/-
)

0!
$1- |"◦

�/-

OO

oo //

(5.15)

//  0 (��/- )
9∗ //  0 (#0)

0!
#0 //  0 (�)

//  0 ($1- |� ×� ��/- )
//

0!
$1- |��/-

OO

 0 ($1- |� ⊕ #0)

0!
$1- |#0

OO

0!
$1- |� ⊕#0

88♣♣♣♣♣♣♣♣♣♣♣

that is commutative by Lemmas 3.7, 3.8 and 3.9. Although there are left arrows in (5.15), the composition

of the horizontal arrows for the top row is well defined. For the bottom row, the composition of the

horizontal arrows evaluated at [~c- ] is well defined and equal to [~c�/C-
] by (5.14). By the definition

of y!, 0!
$1-
[~c- ] = [~

vir
-
] is mapped to y! [~vir

-
]. Hence (5.13) follows from (5.15). �

Finally, the following standard equality for virtual pullbacks holds in our setting (see also [26,

Proposition 2.14]).

Proposition 5.10. For any A ∈  0(�), y
!y∗(A) = A ∩ 4(#0) = A ⊗ ∧•(#0).

Proof. This is an easy computation, similar to the proof of Proposition 5.6 (but simpler), using the fact

that f] (A) = A ∈  0(C�/- ). �

5.5. Virtual torus localization formula

We are now ready to prove the virtual torus localization formula, using the results of the previous

subsections.

All  -groups are now considered with Q-coefficients. We denote by C the equivariant parameter so

that  )
0
(SpecC) = Q[C, C−1].

We introduce some terminology.
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Definition 5.11. Let - be a Deligne-Mumford stack with an action of ) and y : � → - denote its

)-fixed locus. We say that - is admissible for torus localization if the homomorphism

y∗ :  
)
0 (�) →  )0 (-)

of  )
0
(SpecC) = Q[C, C−1]-modules becomes an isomorphism after tensoring with Q(C).

Remark 5.12. By [6], if - is an algebraic space with a )-action, then - is admissible.

The following proposition implies that when the -U in condition (a) of Definition 5.1 are schemes,

then a Deligne-Mumford stack with a )-equivariant almost perfect obstruction theory is admissible.

Proposition 5.13. Let - be a Deligne-Mumford stack with an action of ) and a )-equivariant étale

atlas 5 : * → - of finite type. Then - is admissible.

Proof. Let" = -−� and+ = 5 −1("). Using the existence of the equivariant atlas 5 : * → - , we have

the excision exact sequence for  -theory of Deligne-Mumford stacks (see also [31, Proposition 3.3]),

and thus it suffices to show that

 )∗ (") ⊗Q[C ,C−1 ] Q(C) = 0

or, equivalently,

 )∗ (") ⊗Q[C ,C−1 ] C(C) = 0, (5.16)

where  )∗ (") is the direct sum of all )-equivariant  -theory groups.

More generally, we will show that if" is a Deligne-Mumford stack with a)-action and)-equivariant

atlas 5 : + → " with empty fixed locus ") = ∅, then (5.16) holds. In the rest of the proof, all  -groups

are considered with C-coefficients.

Let "1 ⊂ " be an open substack such that 5 : +1 = 5 −1("1) → "1 is étale of (maximal) degree =.

"1 is preserved by the )-action. Then, as in [18, Proposition 3.5.5.(iii)], we have that "1 is isomorphic

to the quotient of the complement of all diagonals in the =-fold product+1×"1
...×"1

+1 by the action of

the symmetric group (=. Thus "1 is of the form [,1/�1], where�1 is a finite group acting on a scheme

,1 and the )-action is given by an action on,1 commuting with the �1-action and such that,)
1
= ∅.

We write dim: '(�1) → C for the morphism induced by mapping every representation to its

dimension with kernel the augmentation (maximal) ideal m�1
.

We thus have

 )∗ ("1) =  
)
∗ ([,1/�1]) =  

)×�1
∗ (,1).

Since ,)
1

= ∅, ) acts on ,1 with finite stabilizers, and thus we may choose ℎ1 ∈ ) such that

,
ℎ1

1
= ∅. Then ℎ1 belongs to the center of ) ×�1, and so its conjugacy class is just {ℎ1}. Therefore, [6,

Theorem 3.3(a)] implies that

 
)×�1
∗ (,1)mℎ1

= 0,

wheremℎ1
is the maximal ideal of the complex representation ring '()×�1) = '(�1) [C, C

−1] generated

by the augmentation ideal m�1
of �1 and (C − ℎ1).

In particular, for any element [G] ∈  
)×�1
∗ (,1), there exists a Laurent polynomial `1 (C) ∈

'(�1) [C, C
−1] −mℎ1

such that

`1 (C) · [G] = 0 ∈  
)×�1
∗ (,1).

Letting ℓ1(C) = `1(C) mod m�1
∈ C[C, C−1], we have ℓ1(C) ≠ 0 and

ℓ1(C) · [G] ∈ m�1
 
) ×�1
∗ (,1)
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so that

ℓ1(C) · [G] =
∑

<8 [G8]

with <8 ∈ m�1
and [G8] ∈  

)×�1
∗ (,1).

Repeating the argument for the [G8], we can find a non-zero Laurent polynomial ℓ2(C) ∈ C[C, C
−1]

such that

ℓ2(C)ℓ1(C) · [G] ∈ m
2
�1
 
) ×�1
∗ (,1)

and, continuing inductively, for any positive integer # , non-zero Laurent polynomials

ℓ1(C), ℓ2(C), ..., ℓ# (C) ∈ C[C, C
−1] such that

ℓ# (C)...ℓ1(C) · [G] ∈ m
#
�1
 
) ×�1
∗ (,1).

Since '(�1) is an Artinian C-algebra of finite type, we have m
#
�1

= 0 for large enough # . We

conclude that for any [G] ∈  
)×�1
∗ (,1), there exists a non-zero Laurent polynomial ℓ(C) ∈ C[C, C−1]

such that

ℓ(C) · [G] = 0 ∈  
)×�1
∗ (,1),

which implies that

 )∗ ("1) ⊗ C(C) =  
)×�1
∗ (,1) ⊗ C(C) = 0.

Letting /1 = " − "1 be the complement of "1, by excision we are reduced to showing that

 )∗ (/1) ⊗ C(C) = 0. Repeating the above argument and using Noetherian induction concludes the

proof. �

Remark 5.14. By the results of [1], a (separated) Deligne-Mumford stack of finite type with a )-action

always admits a )-equivariant affine étale atlas of finite type after possibly reparameterizing the action

of ) . So assuming the existence of an equivariant atlas is not a restriction for the purposes of this paper.

Theorem 5.15. (Virtual torus localization formula) Let - be an admissible Deligne-Mumford stack

with an action of ) and a )-equivariant almost perfect obstruction theory q such that Assumption 5.4

holds. Let � denote the )-fixed locus of - and q� its induced almost perfect obstruction theory. Then

[~vir
- ] = ]∗

[~vir
�
]

4(#vir)
∈  )0 (-) ⊗Q[C ,C−1 ] Q(C),

where the Euler class 4(#vir) = 4(#0)/4(#1) = ∧
•((#vir)∨) denotes multiplication by ∧•#0/∧•#−1.

Proof. We first remark that the operation (·) ∩ 4(#0) on  )
0
(�) ⊗Q[C ,C−1 ] Q(C) is invertible. Using the

canonical isomorphism  )
0
(. red) �  )

0
(. ) for any Deligne-Mumford stack . with a )-action (see also

[14, Proposition 2.1]), excision for  -theory and Noetherian induction, as in the proof of the previous

proposition, we may reduce to the case � = [,/�], where � is a finite group acting on a smooth

scheme , and the torus ) acts trivially on , . Then  )∗ (�) =  )×�∗ (,) and [6, Theorem 3.3(b)]

applies, choosing any ℎ ∈ ) that is not a root of unity, since the )-weights of #0 are non-zero and � is

the )-fixed locus of the total space of the vector bundle #0.

Now, by Propositions 5.9 and 5.10, we have

y!y∗
[~vir
�
]

4(#vir)
= y!y∗

(
[~vir
�
] ∩ 4(#1)

4(#0)

)
= [~vir

� ] ∩ 4(#1) = y
! [~vir

- ] . (5.17)

By the previous proposition, y∗ becomes an isomorphism after tensoring with Q(C). Hence, Proposi-

tion 5.10 implies that y!

4 (#0)
is the inverse of y∗. In particular, y! is injective. Thus the virtual torus

localization formula follows from (5.17). �
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6. Torus localization of cosection localized virtual structure sheaf

Torus localization for cosection localized virtual cycles has been established in [5] and [11] in the settings

of perfect and semi-perfect obstruction theory, respectively. In this section, we prove the corresponding

statement for virtual structure sheaves obtained by an almost perfect obstruction theory. As usual, )

denotes the torus C∗.

Let - be an admissible Deligne-Mumford stack with a )-action and a )-equivariant almost perfect

obstruction theory q given by perfect obstruction theories qU : �U → L-U
on a )-equivariant étale

cover {dU : -U → -}. Moreover, suppose that we have a )-invariant cosection

f : O1- −→ ~- .

We use the same notation as in Section 4 and Section 5. Let � (f) = � ×- - (f).

By Proposition 5.3, the fixed locus � admits an almost perfect obstruction theory q� on the étale

cover {�U → �} with obstruction sheaf

O1� = O1- |
fix

�
.

Since the cosection f is )-invariant, f |� factors through a morphism

f� : O1� −→ ~�

whose zero locus is precisely � (f). Therefore, by Definition 4.5, we have cosection localized virtual

structure sheaves

[~vir
-,loc] ∈  0(- (f)), [~vir

�,loc] ∈  0(� (f)).

Theorem 6.1. Let y : � (f) → - (f) denote the inclusion, and suppose that Assumption 5.4 holds. Then

[~vir
-,loc] = ]∗

[~vir
�,loc
]

4(#vir)
∈  )0 (- (f)) ⊗Q[C ,C−1 ] Q(C).

Proof. The proof proceeds along the same steps as the proof of Theorem 5.15, with minor modifications

to account for the presence of the cosections f and f� .

The proof of Proposition 5.6 goes through, using the cosection

f̃� : Õ1� = O1� ⊕ #1 −→ O1�
f�
−−→ ~�

and working with the sheaves A 9 defined in (4.8).

For Lemma 5.7, it is shown in [12, Section 5] that there exists an extended cosection f̄ for K that

restricts to the cosection f̃� over 1 ∈ P1 and the cosection

O1- |� ⊕ #0 −→ O1- |�
f |�
−−−→ ~�

over 0 ∈ P1. Furthermore, it is shown that the coarse intrinsic normal cone c�×P1/M◦
-

has reduced support

in K(f̄). A more detailed account of the same argument is also given in A. With these considerations,

the proof goes through identically.

Finally, in Proposition 5.9, it is easy to check that all the sheaves and cones have the appropriate

supports with respect to the cosections at hand. �
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7. Applications

We now discuss some applications of the theory developed thus far. We establish a wall-crossing

formula for simple C∗-wall crossing in the setting of almost perfect obstruction theory, using the torus

localization formula of Theorem 5.15. Moreover, we show that the Jiang-Thomas dual obstruction cone

in [10] admits an almost perfect obstruction theory and thus gives rise to  -theoretic invariants, using

the combination of torus localization and cosection localization in Theorem 6.1.

7.1.  -theoretic simple C∗-wall crossing

In this subsection, we establish a  -theoretic wall-crossing formula for simple C∗-wall crossing, fol-

lowing the construction given in [13].

Let - be an admissible Deligne-Mumford stack acted on by the torus ) = C∗ and equipped with a

)-equivariant almost perfect obstruction theory q consisting of perfect obstruction theories qU : �U →

L-U
on a)-equivariant étale cover {-U → -}. Let � denote the fixed locus. We assume that Assumption

5.4 holds, so that we have the two-term complex #vir = [#0 → #1] of locally free sheaves on �. Let

1. -B be the open substack of - , consisting of G ∈ - such that the orbit ) · G is 1-dimensional and

closed in -;

2. Σ0
± = {G ∈ - − (-

B ∪ �) | limC→0 C
±1 · G ∈ �};

3. Σ± = Σ0
± ∪ �;

4. -± = - − Σ∓ ⊂ -;

5. "± = [-±/)] ⊂ " = [-/)].

We assume that "± are separated Deligne-Mumford stacks.

The master space associated with the wall crossing "± is defined by

M = [- × P1 − Σ− × {0} − Σ+ × {∞}/C
∗], (7.1)

where C∗ acts trivially on - and on P1 by C · (0 : 1) = (0 : C1). M admits an étale cover {MU →M},

where

MU = [-U × P
1 − (Σ− ×- -U) × {0} − (Σ+ ×- -U) × {∞}/C

∗] .

The )-action on - induces an action of ) on M with fixed locus

"+ ⊔ � ⊔ "−.

For each index U, the pullback of qU to -U×P
1 is C∗-equivariant, and therefore by descent we obtain

a morphism q̄U : �̄U → LMU
.

Proposition 7.1. The morphisms q̄U : �̄U → LMU
on the étale cover {MU →M} form a)-equivariant

almost perfect obstruction theory q̄ on M.

Proof. The proof is straightforward, similar to the arguments given for checking the axioms of almost

perfect obstruction theories in Section 5. �

Applying the virtual torus localization formula then yields the following theorem.

Theorem 7.2. With the above notation and conditions, we have

[~vir
"+
] − [~vir

"−
] = resC=1

[~vir
�
]

4(#vir)
∈  )0 (M).
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Proof. By Theorem 5.15, we have

[~vir
M
] =
[~vir
"+
]

1 − C
+
[~vir
"−
]

1 − C−1
+
[~vir
�
]

4(#vir)
(7.2)

since, by construction, the normal bundle of "+ is trivial with )-weight 1 and the normal bundle of "−
is trivial with )-weight −1.

Since [~vir
M
] ∈  )

0
(M), it has zero residue at C = 1. Therefore, taking residues at C = 1, the left-hand

side of (7.2) vanishes, and we get that

−[~vir
"+
] + [~vir

"−
] + resC=1

[~vir
�
]

4(#vir)

is zero, which is what we want. �

7.2. Dual obstruction cone

We first recall the definition of the Jiang-Thomas dual obstruction cone [10].

Let - be a Deligne-Mumford stack equipped with a perfect obstruction theory q : � → L- with

obstruction sheaf F = $1- = ℎ1 (�∨).

Definition 7.3. The dual obstruction cone of - is defined by

# = Spec- (SymF)
c
−→ -,

which is the functor that assigns to every morphism d : * → - the set Hom* (d
∗F,~* ).

By standard perfect obstruction theory arguments, we can find an étale cover {-U → -}, a smooth

affine scheme �U, a vector bundle VU on �U and a section BU ∈ �
0 (�U,VU) such that -U is the zero

locus of BU and the perfect obstruction theory on -U is given by the two-term complex

�U = � |-U
≃ [V∨U |-U

3B∨U
−−−→ Ω�U

|-U
] (7.3)

together with the natural map to L-U
≃ [�U/�

2
U → Ω�U

|-U
], where �U is the ideal sheaf of -U in �U.

Let #U = # |-U
, and write cU : V∨U |-U

→ -U for the projection. By definition, #U is the closed

subscheme of V∨U |-U
defined by the vanishing of the section

3B∨U : V∨U |-U
−→ c∗UΩ�U

|-U
.

Let G1, . . . , G= be étale coordinates on �U and H1, . . . , HA coordinates on the fibers of the bundle V∨U.

Then #U is cut out by the equations

{B8}1≤8≤A ,

{∑

8

H8
mB8

mG 9

}

1≤ 9≤=

, (7.4)

where B8 = B8 (G1, · · · , G=) are the coordinate functions of the section BU.

Let B̃U : V∨U → C be the function defined by the formula

B̃U =

∑

8

H8B8 .
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The differential of B̃U is then

3B̃U =

∑

8

B83H8 +
∑

9

(∑

8

H8
mB8

mG 9

)
3G 9 . (7.5)

Comparing (7.5) with (7.4), we see that #U is the d-critical locus of the function B̃U. It therefore

admits a symmetric perfect obstruction theory (see also [3]) kU : �U → L#U
with

�U = [)V∨U |#U

3 (3B̃U)
∨

−−−−−−−→ ΩV∨U
|#U
] (7.6)

and obstruction sheaf O1#U
= ℎ1 (�∨U) = Ω#U

.

Theorem 7.4. The étale cover {#U → #} and the (symmetric) perfect obstruction theories kU : �U →

L#U
form an almost perfect obstruction theory k on # with obstruction sheaf O1# = Ω# .

Proof. Let c : # → - denote the projection. For any index U, we have a commutative diagram

c∗�U

��

[c∗V∨U |-U

��

3B∨U // c∗Ω�U
|-U
]

��
�U

��

[)V∨U |#U

��

3 (3B̃U)
∨

// ΩV∨U
|#U
]

��
c∗�∨U [1] [c∗)�U

|-U

(3B∨U)
∨

// c∗VU |-U
]

(7.7)

giving an exact triangle c∗�U → �U → c∗�∨U [1] fitting in a commutative diagram

c∗�U //

c∗qU

��

�U

kU

��

// c∗�∨U [1] //

\U

��
c∗L-U

// L#U
// L#U/-U

//

, (7.8)

where c∗qU and \U are restrictions to #U of global arrows c∗q : c∗� → c∗L- and \ : c∗�∨ [1] →

c∗F → L# /- using the isomorphisms (7.3) and the definition of the dual obstruction cone # . Since

O1#U
= Ω#U

= Ω# |#U
, the obstruction sheaves glue to an obstruction sheaf O1# = Ω# .

Let -UV = -U ×- -V and #UV = #U ×# #V = # ×- -UV . Then (7.8) together with the above

discussion shows that there exist quasi-isomorphisms

[UV : �U |#UV
−→ �V |#UV

that are compatible with the morphisms kU |#UV
and kV |#UV

and respect the symmetry of the obstruction

theories �U and �V , thus inducing the gluing morphisms for the obstruction sheaf Ω# . In particular, the

axioms of an almost perfect obstruction theory are all satisfied. �

Remark 7.5. The almost perfect obstruction theory of # is symmetric in the sense of [3] with respect

to the natural generalization of the definition in our context.

From now on, we assume that the perfect obstruction theory � has a global resolution � = [�−1 →

�0], where �−1, �0 are locally free sheaves on - .

The grading on SymF determines a ) = C∗-action on # , scaling the fibers of # over - , whose

fixed locus is precisely - . Differentiating the )-action, we obtain the Euler vector field whose dual is a
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cosection

f : Ω# −→ ~# (7.9)

and whose vanishing locus is - by [10, Section 3].

By construction, the almost perfect obstruction theory k of Theorem 7.4 is )-equivariant and has

obstruction sheaf O1# = Ω# . By (7.7), the virtual normal bundle of - inside # is �∨, which by

assumption admits the global resolution [�0 → �1], where as usual, �8 = (�
−8)∨ for 8 = 0, 1. Therefore

Assumption 5.4 holds, and we may apply Theorem 5.15 and Definition 4.5 to obtain the following

theorem, keeping in mind that the cosection f vanishes on the )-fixed locus - .

Theorem 7.6. Let - be a Deligne-Mumford stack with a perfect obstruction theory q : � → L-
with obstruction sheaf F = O1- such that � admits a global resolution by locally free sheaves. Let

k denote the induced )-equivariant almost perfect obstruction theory of the dual obstruction cone

# = Spec- (Sym �) with obstruction sheaf O1# = Ω# and cosection f, as in (7.9). Let ] : - → # be

the inclusion as the zero section. Then the cosection localized virtual structure sheaf [~vir
# ,loc
] ∈  0(-),

and the virtual structure sheaves [~vir
#
] ∈  0(#) and [~vir

-
] ∈  0(-) are related by

[~vir
# ] = ]∗ [~

vir
# ,loc] ∈  0(#),

[~vir
# ] = ]∗

[~vir
-
]

4(�∨)
∈  )0 (#) ⊗Q[C ,C−1 ] Q(C).

In particular, when - is proper, we may define  -theoretic invariants by taking regular and equiv-

ariant Euler characteristics, respectively, to obtain

j
(
[~vir
# ,loc]

)
∈ Q, jC

(
[~vir
-
]

4(�∨)

)
∈ Q(C).

Remark 7.7. )-equivariant  -theoretic invariants refining the Jiang-Thomas signed virtual Euler char-

acteristic studied in [10] have also been defined in [30, Section 2.5] for (−1)-shifted cotangent bundles

of quasi-smooth derived projective schemes.

A. Deformation invariance of cosection localized virtual structure sheaf

Let q be an almost perfect obstruction theory on - → (, given by perfect obstruction theories qU : �U →

L-U/( on an étale cover {-U → -}U∈� of - . Let f : O1- → ~- be a cosection. We follow the notation

of Section 4 throughout.

Suppose that we have a Cartesian diagram

.
D //

��

-

��
/

E
// ,,

(A.1)

where /,, are smooth varieties and E is a regular embedding, so that we also have Cartesian diagram

.U
DU //

��

-U

��
.

D
// -.

(A.2)
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Suppose now that we have an almost perfect obstruction theory on. → ( given by perfect obstruction

theories q′U : � ′U → L.U/( together with commutative diagrams

�U |.U
6U //

qU |+U

��

� ′U

q′U

��

// #∨
//,
|.U [1]

//

L-U/( |.U
// L.U/(

// L.U/-U
//

(A.3)

of distinguished triangles that are compatible with the diagrams (2.5) for q and q′ such that we have

exact sequences

#//, |.U −→ O1.U
ℎ1 (6∨U)
−−−−−→ O1-U

|.U −→ 0 (A.4)

that glue to a sequence

#//, |. −→ O1. −→ O1- |. −→ 0. (A.5)

We obtain an induced cosection

f′ : O1. −→ O1- |.
f |.
−−−→ ~. .

The Cartesian squares (A.1) and (A.2) give rise to a diagram

.U (f
′)

CU //

��

-U (f)

��
. (f′)

C //

��

- (f)

��
/

E
// ,

with Cartesian squares.

Theorem A.1. [~vir
. ,loc
] = E! [~vir

-,loc
] ∈  0(. (f

′)).

Here the Gysin map E! :  0(- (f)) →  0(. (f
′)) is defined by the formula

E! [A] = [~,/ |- (f) ⊗~- (f)
A] ∈  0(. (f

′)) (A.6)

where we fix ~
,
/

to be a finite locally free resolution of E∗~/ . By [19], E! also equals the composition

 0(- (f))
fD
−−→  0(�. (f′)/- (f) )

0!
#//,

−−−−−−→  0(. (f
′)), (A.7)

where fD is specialization to the normal cone and 0!
#//,

is the Gysin map induced from the Cartesian

diagram

. (f′)

��

// �. (f′)/- (f)

��
/ // #//, .
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Proof of Theorem A.1. Let M◦
- → P

1 be the deformation of - to its intrinsic normal cone stack C-
and W = M◦

.×P1/M◦
-

be the double deformation space given by the deformation of . × P1 inside M◦
-

to its normal cone C.×P1/M◦
-

.

As in the proof of Lemma 5.7, we obtain

[~C. ] = [~C. /C-
] ∈  0(C.×P1/M◦

-
). (A.8)

Since C.×P1/M◦
-

is a closed substack of N.×P1/M◦
-

, the equality holds in  0(N.×P1/M◦
-
) as well.

Following [17], for each index U, we consider the commutative diagram of distinguished triangles

on .U × P
1

�U |.U (−1)
^U //

��

�U |.U ⊕ �
′
U

//

��

2(^U) //

��
L-U/( |.U (−1)

_U

// L-U/( |.U ⊕ L.U/(
// 2(_U) // ,

(A.9)

where ^U = () · id,* · 6U) with ),* coordinates on P1.

Clearly, _U is the restriction to +U of a global morphism _. By [17], we have that ℎ1/ℎ0 (2(_)∨) =

N.×P1/M◦
-

.

By the properties of almost perfect obstruction theories and the compatibility diagrams (A.3), the

closed embeddings

ℎ1 (2(_U)
∨) −→ ℎ1 (2(^U)

∨)

glue to a closed embedding of sheaf stacks on . × P1

n.×P1/M◦
-
−→ K.

The same argument works at the level of coarse moduli sheaves, where flatness stands for exactness

of the pullback functor. Thus we deduce the equality

[~c. ] = [~c. /C-
] ∈  0(K). (A.10)

The top row of (A.9) together with (A.4) and (A.5) give a commutative diagram

K //

��

O1- |. ⊕ O1. //

(f |. ,f
′)

��

O1- |. (1) //

f |. (1)

��

0

~.×P1 (−1) // ~.×P1 ⊕ ~.×P1
// ~.×P1 (1) // 0,

and therefore we obtain a (twisted) cosection f̄ : K→ !, where ! is the line bundle ~.×P1 (−1).

By [12, Section 5], c.×P1/M◦
-

has reduced support in K(f̄). The fiber of K over {0} ∈ P1 is O1- |. ⊕

#//, |. , while the fiber over {1} ∈ P1 is O1. . The cosection f̄ also restricts to the corresponding

cosections over these two fibers. Therefore, we obtain by (A.10)

[~vir
. ,loc] = 0!

O1. ,f′
[~c. ] = 0!

O1- |. ⊕#//, |. ,f |.
[~c. /C-

] .
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Now, since the usual properties of Gysin maps hold by working on local charts of the corresponding

sheaf stacks, we have

0!
O1- |. ⊕#//, |. ,f |.

[~c. /C-
] = 0!

O1- |. ,f |.
0!
#//, |.

[~c. /C-
] = 0!

O1- |. ,f |.
E! [~c- ] .

By the next proposition, we have 0!
O1- |. ,f |.

E! = E!0!
O1- ,f

, which implies the desired equality. �

Proposition A.2. For any coherent sheaf A on O1- supported on O1- (f), 0!
O1- |. ,f |.

E! [A] =

E!0!
O1- ,f

[A].

Proof. Since the pullback E! is given by tensoring with the resolution ~
,
/

, the equality follows by

combining the proofs of [14, Lemma 5.6] and [16, Proposition 4.3] together with the construction of

the cosection localized Gysin map in Section 4. �
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