
J. Fluid Mech. (2023), vol. 977, A3, doi:10.1017/jfm.2023.934

The flow around a stepped cylinder with
turbulent wake and stable shear layer
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The turbulent external flow around a three-dimensional stepped cylinder is studied by
means of direct numerical simulations with the adaptive mesh refinement technique.
We give a broad perspective of the flow regimes from laminar to turbulent wake at
ReD = 5000, which is the highest ever considered for this flow case. In particular, we
focus on the intermediate Reynolds number ReD = 1000 that reveals a turbulent wake
coupled with a stable cylinder shear layer (subcritical regime). This flow shows a junction
dynamics similar to the laminar ReD = 150, where no hairpin vortex appears around the
edges, and just two horseshoe vortices are visible. A new stable vortex in the form of a ring,
which coils around the rear area, is also identified. In the turbulent wake, the presence
of three wake cells is pointed out: the large and small cylinder cells together with the
modulation region. However, the modulation dynamics varies between the subcritical and
turbulent regimes. A time-averaged, three-dimensional set of statistics is computed, and
spatially coherent structures are extracted via proper orthogonal decomposition (POD).
The POD identifies the (long-debated) connection between the N-cell and the downwash
behind the junction. Furthermore, as the Reynolds number increases, the downwash
phenomenon becomes less prominent. Eventually, a reduced-order reconstruction with the
most energetically relevant modes is defined to explain the wake vortex interactions. This
also serves as a valuable starting point for simulating the stepped cylinder wake behaviour
within complex frameworks, e.g. fluid–structure interaction.

Key words: turbulence simulation, vortex dynamics, wakes

1. Introduction

The study of the flow past a smooth cylinder represents one of the canonical flows in fluid
mechanics, being relevant for both fundamental research and engineering applications.
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As a result, an extended literature exists on the topic, arising from earlier experimental
and numerical investigations, e.g. Tritton (1959), Roshko (1961), Berger & Wille (1972),
Williamson (1996) and Dong & Karniadakis (2005). It is well established that the
Reynolds number is the only parameter that drives the flow behaviour, with ReD = UD/ν

based on the cylinder diameter D, the uniform inflow velocity U, and the kinematic
viscosity ν. Williamson (1996) provided a comprehensive description of the different
regimes. When the Reynolds number ReD is less than 47, the flow is laminar and steady,
while two-dimensional laminar vortex shedding occurs for 47 < ReD < 180. For Reynolds
numbers in 180 < ReD < 300 the periodic wake becomes three-dimensional and unstable.
In this transition regime, the inception of the so-called modes A and B is observed,
both involving streamwise vortex structures but with distinct spanwise wavelengths. They
correspond to elliptic and hyperbolic instability, respectively, with the first occurring in
the primary vortex core, and the second in the saddle point region between the primary
rollers; see also Roshko (1954). The flow around a cylinder, as a whole, entails three
shear flows: a wake flow, a mixing layer flow that separates from the lateral surfaces
of the body, and a boundary layer flow on the cylinder surface (Williamson 1996). As
ReD increases, these three shear flows become progressively unstable: first, the wake gets
turbulent at approximately ReD > 200, then the shear layer transitions at ReD > 1200, and
eventually the cylinder boundary layer gets unstable for ReD > 200 000. At a glance: as the
Reynolds number increases, a drop-down formation of smaller scales occurs, whereas the
turbulent transition point moves further upstream until the boundary layer on the surface
of the cylinder becomes turbulent. Whilst the flow around a uniform cylinder has been
well-known since the last century, our knowledge of (even slightly) more complicated
geometries turns out to be insufficient. Here, the flow around a three-dimensional stepped
cylinder – namely two cylinders with different diameters joined at one extremity – is
considered. The latter represents a good model for several engineering applications, e.g.
aircraft landing gear and offshore wind turbine towers. The understanding of its flow
dynamics is still far from being comprehensive. As an example, three different vortex
shedding frequencies are identified in the wake, which is counterintuitive since one would
expect just two cells (Lewis & Gharib 1992). This has turned out to have relevant side
effects on the structural stability of the cylinder itself.

Compared to the uniform cylinder, the flow around a single-stepped cylinder has an
additional parameter to take into account, namely the ratio between the two diameters
(r = D/d). Performing a parametric study on r, Lewis & Gharib (1992) reported first
a direct and indirect vortex interaction mode for the range 1.14 < D/d < 1.76 at 67 <

ReD < 200. The direct mode occurs when D/d < 1.25, and it consists of two dominating
shedding frequencies for the small and large cylinders, labelled fS and fL, respectively.
Initially in phase and connected one by one across the interface, the cells quickly move
out of phase, and at least one half-loop connection between oppositely rotating vortices
appears. The interruptions of one-by-one connection occur during a period called the
beat cycle. For D/d > 1.55, this interaction generates another distinct region behind the
large cylinder. This is named the modulation zone by Lewis & Gharib (1992) because
the velocity variation was modulated by the main frequency behind the large cylinder.
They also measured the modulation frequency fN . For each of the dominating shedding
frequencies, Dunn & Tavoularis (2006) classified three main regions: the S- and L-cells
behind the small and large cylinders, and the modulation N-cell with the lowest shedding
frequency ( fS > fL > fN). Thereafter, many authors adopted this classification (Morton,
Yarusevych & Carvajal-Mariscal 2009; Morton & Yarusevych 2010; McClure, Morton
& Yarusevych 2015; Tian et al. 2017; Wang et al. 2018; Massaro, Peplinski & Schlatter
2023c), which is used in the current study as well.
977 A3-2
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The interactions among the cells were studied first by Dunn & Tavoularis (2006) for
D/d = 2 at ReD = 150 through experiments, and the results were confirmed later by
Morton & Yarusevych (2010) via Reynolds-averaged Navier–Stokes equations. At the
S–N cell boundary, Morton & Yarusevych (2010) observed a stable behaviour with a
spanwise layer deflection into the large cylinder direction. The number of S–N vortex
connections depends on the frequency ratio ( fS/fN), while the interruption of the N–S
connection happens with the beat frequency fS − fN . The vortex dislocation induces
half-loop connections between S-cell vortices. The concept of dislocation was introduced
first by Williamson (1989), who adapted the idea from a solid-mechanics mechanism.
Williamson (1989) described how the vorticity varies between two adjacent cells with
different frequencies: first, in phase, the vortices in the cell with lower frequency are
induced downstream by the high-frequency cell; then, out of phase, a contorted tangle of
vortices appears across the boundary, i.e. the vortex dislocation. In the current simulations,
we also observe such inclined vortical structures behind the cylinders, with a larger
deflection inside the N-cell; see also Massaro, Peplinski & Schlatter (2022). At the
lower N–L boundary, Morton & Yarusevych (2010) and Tian et al. (2017) pointed out
antisymmetric features between two adjacent N-cell cycles, where, together with the L–L
half-loop, there is a ‘real loop’ and a ‘fake loop’, called N–N and N–L, respectively.
Morton & Yarusevych (2010) and Tian et al. (2017, 2020) focused on the laminar
vortex shedding regime, and their observations seem to hold as ReD increases. Similar
conclusions are drawn for the dual (Ji et al. 2020; Yan, Ji & Srinil 2020, 2021) and multiple
(Ayancik et al. 2022) stepped cylinders. More recently, the rotating case in the laminar
regime has also been studied by Zhao & Zhang (2023).

Nevertheless, these various modes and interactions need to be verified at higher
Reynolds numbers, in particular when the transition to turbulence in the wake
occurs. Experimentally, Norberg (1992) and Ko & Chan (1992) measured the main
integral quantities at ReD = 80 000. Morton & Yarusevych (2014a) and Morton,
Yarusevych & Scarano (2016) studied the wake dynamics at ReD = 2100, and performed
tomographic particle image velocimetry investigation, respectively. Numerically, only a
few studies examined the turbulent wake regime: Morton et al. (2009) used unsteady
Reynolds-averaged Navier–Stokes equations to achieve ReD = 2000, whereas recently,
Tian et al. (2021) and Massaro et al. (2023c) performed direct numerical simulations
(DNS) at the Reynolds numbers ReD = 3900 and 5000, respectively. Tian et al. (2021)
focused on the junction region behaviour, without resolving the wake region fully.
Massaro et al. (2023c) analysed the spatially coherent structures arising in the fully
turbulent regime, with an unsteady cylinder shear layer. The current study uses the same
numerical approach as in Massaro et al. (2023c). Whereas that study focused on the
coherent structures of the flow at ReD = 5000, the focus of the present work is the lower
ReD = 1000. We first perform a comprehensive comparison between the two regimes
related to the first two shear flow instabilities, i.e. the cylinder shear layer and the wake
(ReD = 1000, 5000). The main part, however, will focus on the lower ReD = 1000. That
so-called subcritical regime has not been investigated in detail before. At this Reynolds
number, the cylinder shear layer is still stable, and the junction dynamics resembles that
of the laminar case. The downwash appears to be dynamically significant, and by means
of the proper orthogonal decomposition (POD), we detect the connection between the
junction dynamics and the N-cell formation, whose origin has been debated for a long
time. An explanation of the downwash mechanism behind a stepped cylinder is proposed,
supported by the statistical data and modal analysis results. To limit the parameter space,
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a fixed diameter ratio r = D/d = 2 is considered. However, as stated previously, Lewis
& Gharib (1992) identified for the stepped cylinder geometry two distinct regimes: direct
(r < 1.25) and indirect (r > 1.55) interactions. Thus the current results can be generalised
for a wide range of diameter ratios, as long as an indirect interaction occurs.

In the next section, the numerical set-up and the adaptive mesh refinement (AMR)
technique are introduced. Section 3 presents the two turbulent regimes at ReD = 1000
and 5000, with stable and unstable cylinder shear layers, respectively. The junction and
wake dynamics are described via instantaneous vortical structures and three-dimensional
statistics. The latter were collected for at least 200 small cylinder vortex shedding periods
after discarding the first 400 time units (D/U) to ensure proper flow development. Section
4 shows the results of the modal analysis, characterising the energy content and extension
of the cells, and discussing the downwash mechanism. The connection between the POD
mode 7 (and 10) and the N-cell, i.e. the relation between the downwash and the modulation
cell, is described, also by considering the analytical superimposition of travelling waves. A
simplified reduced-order reconstruction is used to unveil the large-scale vortex connections
in the wake. Finally, the main findings and conclusions are presented in § 5.

2. Numerical framework and validation

Direct numerical simulations of the incompressible Navier–Stokes equations using the
open-source code Nek5000 (Fischer, Lottes & Kerkemeier 2008) are performed. In the
past decades, Nek5000 has been used extensively in the computational fluid dynamics
community to perform high-fidelity numerical simulations of transitional and high
Reynolds incompressible flows; see, for example, El Khoury et al. (2013), Martínez
et al. (2019), Merzari et al. (2020) and Chauvat et al. (2020). The code is based on
a spectral element method (Patera 1984) offering minimal dissipation and dispersion,
high accuracy and nearly local exponential convergence. This spatial discretisation is
similar to a high-order finite element method with a computational domain decomposed
into non-overlapping hexahedral subdomains called elements. Each element is treated as
a spectral domain with a solution spanned by the Lagrangian interpolants defined on
the Gauss–Lobatto–Legendre (GLL) or Gauss–Legendre (GL) points. The PN − PN−2
formulation is used. This corresponds to a staggered grid, where velocity and pressure are
represented using p + 1 GLL and p − 1 GL points, respectively (where p is the polynomial
order). In our simulation, p is set equal to 7, as no improvement has been observed by
using a higher polynomial order. The time integration is performed via third-order implicit
backward differentiation, with an extrapolation scheme of order 3 for the convective term.
In addition, the advection term is also over-integrated, or de-aliased, to retain its skew
symmetry (Malm et al. 2013). While collecting data, a constant time step is used to ensure
a Courant–Friedrichs–Lewy number smaller than 0.4 and capture the highest temporal
frequencies.

2.1. Adaptive mesh refinement
An important extension of Nek5000 was implemented and developed by our group,
namely the AMR technique (Offermans et al. 2020, 2023; Massaro, Peplinski & Schlatter
2023d). The AMR technique is considered one of the relevant milestones in the
future (and current) numerical simulations (Slotnick et al. 2014), providing significant
meshing flexibility and dynamical mesh modifications during the simulation based on the
instantaneous or time-averaged estimated computational error. It decreases significantly
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the count of computational degrees of freedom, and allows the study of flows without
prior knowledge of their dynamics. The process involves the assessment of the error,
with a suitable refinement criterion, and an appropriate refinement/coarsening technique.
Offermans (2019) introduced in Nek5000 an h-type refinement, where the number
of degrees of freedom is modified by splitting the entire element. In this case, an
oct-tree refinement is performed, replacing a single parent element with eight (in three
dimensions) children (Burstedde, Wilcox & Ghattas 2011). Following Kruse (1997), the
conforming-space/non-conforming-mesh approach is used, where the hanging nodes are
not considered as real degrees of freedom, and non-conforming interfaces are treated with
an interpolation operator. Massaro et al. (2023d) showed that non-conforming interfaces
neither affect the solution field nor introduce any further instabilities. Appendix A provides
supplemental details about the error measurement and the mesh quality assessment. In
particular, it is shown that the present configuration corresponds to fully resolved DNS
throughout the domain.

2.2. Problem formulation
The numerical configuration for the flow around a three-dimensional stepped cylinder
is presented here. First, the set of governing equations with the corresponding initial
and boundary conditions is specified. Then the geometry of the problem is described,
specifying the domain sizes. The current study performs DNS of the incompressible
Navier–Stokes equations, which in non-dimensional form read

∇ · u = 0,
∂u
∂t

+ (u · ∇) u = −∇P + 1
ReD

∇2u,

⎫⎬
⎭ (2.1)

where u is the non-dimensional velocity vector, P is the non-dimensional pressure, and
ReD = UD/ν is the Reynolds number based on the cylinder diameter D, the uniform
inflow streamwise velocity component U, and the kinematic viscosity ν. The set of
equations is incomplete without proper initial and boundary conditions. In our set-up,
the initial condition is a uniform distribution of the streamwise velocity with unitary value
u(x, t0) = (1, 0, 0), which, however, adapts quickly to a more physical solution. At the
inflow, the same is set as a Dirichlet boundary condition u(x, t0) = u(x0, t) = (1, 0, 0).
The outflow consists of natural boundary condition (−pI + ν ∇u) · n = 0, where n is
the normal vector. We focus on the junction and wake dynamics, rather than considering
the end-plate effects. Thus our top/bottom boundary conditions assume an infinitely
long cylinder, prescribing symmetry boundary conditions u · n = 0 with (∇u · t) · n = 0,
where t is the tangent vector. For the front and back boundaries, mixed conditions are
used, similar to the open boundary at the outflow, but prescribing zero velocity increment
in non-normal directions. The stepped cylinder surface has a no-slip and impermeable
wall.

The stepped cylinder presents two cylinders of different diameters joined at one
extremity, with a ratio D/d = 2 (D = 1). An infinitely long cylinder is considered, using
the boundary conditions discussed above. We have devised a configuration akin to that in
Morton & Yarusevych (2014b), in order to corroborate our findings through comparison
with prior experiments. The stepped cylinder is located at the origin of the Cartesian frame
oriented with the z-axis on the cylinder. The large and small cylinders span vertically
for 10 and 12 diameters D, respectively. The computational box is a parallelepiped with
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St1 St2 St3 St4 St5

Current DNS 0.408 0.22–0.41 0.188 0.19–0.20 0.201
Experiments by Morton & Yarusevych (2014b) 0.398 — 0.189 — 0.198

Table 1. Strouhal numbers for different probe locations. The results from the current study and the
experiments by Morton & Yarusevych (2014b) are reported in the first and second rows, respectively.

extension (−10D, 30D) in x, (−10D, 10D) in y, and (−10D, 12D) in z, where x, y, z are
the streamwise, lateral and vertical (or spanwise) directions, respectively (see figure 1). To
prevent any undesired side and boundary effects, the domain has been designed carefully.
In the planning phase, tests were conducted to monitor closely both local and global
quantities while varying the domain sizes. Furthermore, the implementation of the AMR
technique allows for the usage of a substantially larger domain while ensuring DNS-like
resolution. For more details, refer to Appendix A.

2.3. Consistency with experimental measures
Not many reference data of high quality exist for the present flow case. In order to verify
the accuracy of our numerical configuration, local and integral measures were compared
with experiments from Morton & Yarusevych (2014b) and Roshko (1961).

First, the spectral analysis of velocity signals is used to determine the vortex shedding
frequency and investigate how it varies with the spanwise location. Five virtual velocity
probes are placed at the same locations as in Morton & Yarusevych (2014b). The time
signals are acquired with the sampling frequency fD/U = 100. The Nyquist theorem
requirements are definitely met since the highest frequency of the flow is expected to be the
small cylinder vortex shedding at fsD/U ≈ 0.4. The time interval is long enough to capture
the slowest dynamics exploring over approximately 200 S-cell vortex shedding periods.
The virtual probes have identical streamwise and lateral locations (x = 5D and y =
0.75D), but different spanwise locations: z1 = 4D, z2 = −1D, z3 = −3D, z4 = −5D and
z5 = −9D. At these positions, the power spectral density (PSD) of the streamwise velocity
component is computed. The results are in excellent agreement with the measurements by
Morton & Yarusevych (2014b); see table 1. For each cell, a single peak is evident with a
high energy content (z1, z3, z5). At the upper (S–N) and lower (N–L) interfaces, a double
peak appears. Here, the PSD highlights the interaction between two different shedding
frequencies, and the twofold hills have a lower energy content; see figure 2(b).

The frequency peak is used to calculate the Strouhal number, defined as St = fD/U. The
frequency f at the specific location and the unitary inflow velocity U are considered. Once
again, the agreement with the experimental measurements is excellent. Each wake region
is characterised by a distinct shedding frequency and exhibits a single peak: StS = 0.408,
StN = 0.188 and StL = 0.201 for the S-, N- and L-cells, respectively. At the S–N boundary
(z2), the two dominant peaks are related to the Strouhal numbers of each of the adjacent
cells. Analogously, a double peak at the N–L boundary is observed. Morton & Yarusevych
(2014b) use the streamwise velocity spectra to analyse how the energy content varies in
the different cells and the extension of the cell. Analogous conclusions can be drawn in
this scenario: at the interface in figure 2(b), the energy content is diminished substantially
compared to that within the single cells; see figures 2(a,c,d). Nevertheless, a more detailed
discussion about the energy content for each cell is carried out in the POD section.
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Figure 1. Sketch of the three-dimensional stepped cylinder with planar cross-sections at z = 0 and x = 0. The
frame of reference and the dimensions of the domain are reported. The black arrows indicate the uniform inflow
with streamwise velocity U. The figure is adapted from Massaro et al. 2023c.

104

102

100

10–2

10–2 100 10–2 100

10–2 100 10–2 100

10–4

10–6

104

102

100

10–2

10–4

10–6

104

102

100

10–2

10–4

10–6

104

102

100

10–2

10–4

10–6

P
S

D
P

S
D

St St

(a) (b)

(c) (d )

Figure 2. Logarithmic plot of power spectral density (PSD) of the streamwise velocity component at locations
(a) z1 = 4D, (b) z2 = −1D, (c) z3 = −3D, and (d) z5 = −9D. The green circles indicate the double peak at the
N–L interface. The time signals are acquired with the sampling frequency fD/U = 100, for at least 200 S-cell
vortex shedding periods.
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Figure 3. Different regimes of the flow around a stepped cylinder: (a) the laminar vortex shedding at ReD =
150, and the turbulent wake with a (b) stable and (c) unstable shear layer at ReD = 1000 and ReD = 5000,
respectively. Isosurfaces of the velocity magnitude in the xy (z = 0) plane.

When studying the flow around a bluff body, the pressure and drag coefficients are
useful integral indicators. Thus the estimated mean value and variance of the drag for each
cylinder are computed. The dimensionless drag coefficient cD is defined as the component
of the aerodynamic force aligned with the inflow flow (here horizontal) and normalised
with (1/2)ρU2DLz, with Lz being the vertical cylinder length. Then it is averaged in time
to yield c̄D. The aerodynamic force components along the y and z directions are computed
as well. For symmetry reasons, the lateral y component of the coefficient c̄y is expected
to approach zero. In the current study, the results are c̄yS = 0.0017 and c̄yL = 0.00053, for
the small and large cylinders, respectively. This assesses the good temporal convergence
of our statistics for any integral quantities. When it comes to the z-averaged mean drag
coefficients, the results are c̄DS = 1.1084 and c̄DL = 0.9083. The standard deviation of
both signals is small, with value σcD ≈ 0.016. As predicted by Roshko (1961), in the
Reynolds number range 100 < ReD < 105, the drag coefficient is cD ≈ 1. Now the viscous
and pressure contributions to the overall drag are computed. For both cylinders, the
pressure term is dominant (approximately 90 %) with respect to the viscous one, but the
viscous component is slightly larger for the small cylinder, where c̄Dv ∼ 12.7 % instead
of c̄Dv ∼ 9.6 %. Because previous studies did not provide cD estimations at this specific
Reynolds number and did not analyse individually drag contributions from the small and
large cylinders, we undertake a comparison with the outcomes of the uniform cylinder
by Roshko (1961). The results are in good agreement, with integral difference less than
5 %. As expected, the junction does not affect substantially the integral drag values.
However, as we will explore in the following sections, this is not true for three-dimensional
time-averaged statistics, particularly in the near-wake area.

3. The evolution of the turbulent flow

In the current section, the main features of turbulent flow around a single-stepped cylinder
are described. After conducting a set of three simulations that represent different regimes,
as shown in figure 3, we turn our attention to the turbulent wake regime. More precisely,
the stepped cylinder with both a stable (ReD = 1000) and unstable (ReD = 5000) cylinder
shear layer is studied, as the laminar vortex shedding (ReD = 150) was investigated
thoroughly in previous works (Lewis & Gharib 1992; Dunn & Tavoularis 2006; Morton &
Yarusevych 2010).

3.1. Characterisation of the junction region
Looking at the instantaneous vortical structures, we first focus on the junction region, i.e.
the flat surface with sharp edges that joins the two cylinders. Aware that an unequivocal
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definition for a fundamental structure as the vortex does not yet exist (Cucitore, Quadrio
& Baron 1999), we rely on the λ2 criterion by Jeong & Hussain (1995) to identify
organised and coherent structures in the flow. The λ2 definition corresponds to connected
planar regions of pressure minimum, discarding the contributions of unsteady irrotational
straining and viscous terms in the Navier–Stokes equations. An adequate normalisation
is taken into account, and from now on each λ2 value is normalised by U2/D2. The
structures’ classification follows the convention by Massaro et al. (2023c).

At ReD = 1000 (figure 4a), on the front of the junction, the impingement of the flow,
due to the presence of the small cylinder, together with the leading edge separation, is
mainly responsible for the horseshoe vortex H1 formation. By definition, the horseshoe
vortex consists of a trio of interconnected vortices (Dargahi 1989). These comprise a
bound vortex encircling the small cylinder, along with two trailing vortices that stretch
from the bound vortex into the wake area. The consequent recirculating bubble has the
time-averaged pressure minimum at (x, y, z) = (−0.354D, 0D, 0.046D). In addition, the
blockage and the H1 rotation induce the incoming flow to divert laterally, where it spills
over the edges of the step. Here, it rolls up into two streamwise edge vortices E, similar to
the tip vortices on the free-end surface of a finite-length cylinder (Zdravkovich et al. 1989).
These observations agree with the measurements first made by Dunn & Tavoularis (2006)
at ReD = 150 and with the hydrogen bubble visualisations by Morton & Yarusevych
(2014b) at ReD = 1000. Recently, Tian et al. (2021) has pointed out some additional
structures, confirmed by Massaro et al. (2023c). In the laminar front part of the junction,
they observe two horseshoe vortices, H3 and H4, with H4 appearing upstream of H3,
and rotating in the same direction as H1. At ReD = 1000, the configuration is different.
Figure 4(a) shows clearly that the horseshoe vortices H3 and H4 do not appear, and
the leading edge separation generates only H1. This leads to a crucial difference in the
E formation mechanism. As long as the cylinder shear layer remains stable, the process
that generates the edge vortices agrees with the Dunn & Tavoularis (2006) observations
at lower ReD = 150. The leading edge separation with the small cylinder impingement
drives the recirculating vortex H1 formation that laterally deviates the incoming flow
shaping the E. Furthermore, no hairpin vortices (HP) appear at ReD = 1000. On the
other hand, a train of hairpins is clearly visible in figure 4(b), and their cyclic dynamics
is described by Massaro et al. (2023c). The second kind of structure reported by Tian
et al. (2021) is named H2. Interestingly, this is present also at the current ReD = 1000
(figure 4). Less dynamically relevant, since it evolves at the base of the small cylinder and
does not interact with other structures, this horseshoe vortex has a cross-flow width that
continues to increase downstream, as for H1. The H2 structure is induced by the downward
flow separation along the small cylinder wall, as confirmed by the time-averaged vertical
velocity in figure 5. It is understandable that Morton & Yarusevych (2014b) do not report
these structures due to the challenges of handling hydrogen bubbles on the junction. More
surprisingly, this vortex has not been classified before at lower Reynolds numbers (Vallès,
Andersson & Jenssen 2002; Dunn & Tavoularis 2006; Tian et al. 2020). Nevertheless, the
downward flow separation along the small cylinder is not associated with the turbulent
character of the flow, and H2 structures are expected to be observed at lower Re as well.
Simulating all three different flow regimes, and guaranteeing a well-resolved mesh around
the junction with the AMR, the presence of H2 is confirmed. Based on the overall view,
we assert that this is a common feature for all three flow regimes.

All these vortices are stable and with only small fluctuations in time, as they develop in
the laminar/transitional part of the flow. On the contrary, the back structures are weaker and
more difficult to identify since they are placed in the turbulent wake of the small cylinder.
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Figure 4. Top view of instantaneous λ2 structures around the junction: isocontours of λ2 coloured with
the streamwise vorticity for (a) ReD = 1000 (λ2 = −4U2/D2) and (b) ReD = 5000 (λ2 = −40U2/D2). The
horseshoe and hairpin vortices are indicated (H1, H2, H3, H4 and HP), along with the edge (E) and ring (R)
vortical structures. In the circle, the E vortex rolling up around the edge and splitting is highlighted.
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Figure 5. Time-averaged vertical velocity component in the xz (y = 0) and xy (z = 0) planes at
(a) ReD = 1000 and (b) ReD = 5000.

This makes them almost indistinguishable from the small turbulent eddies. However, the
heads of the two streamwise base vortices that begin to develop on the back part of the
junction are identified; see also Massaro et al. (2022). Furthermore, the λ2 structure
named ring R vortex points out the recirculation occurring at the trailing edge and is
reported here for the first time. This structure is weaker than H1 and with a different
formation mechanism: the E vortices roll up around the edges and split before diverging
laterally; see figure 4(a). The low-pressure region behind the cylinder stabilises R on the
back, whereas the strong downstream advection interrupts the ring connection laterally. At
ReD = 5000, the ring vortex is not observed (independently on the λ2 threshold) as the
hairpins interaction modifies the flow topology substantially.
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The turbulent flow around a stepped cylinder

The analysis of time-averaged statistical quantities supports the description of the main
junction mechanisms. In particular, figure 5 shows the vertical velocity component W̄.
On the forepart of the xz plane, the leading edge separation at x = −0.5D is in red, and
the downward flow separation along the small cylinder wall is in blue. In the xy plane, a
symmetric behaviour is observed for positive and negative y: an upward flow induced by
H1 surrounded by the downward flow separation along the small cylinder and the edge H2
induced flow. A larger number of structures at ReD = 5000 leads to a more complicated
statistical footprint. This is always the case when an obstacle interacts with a wall, namely
the small cylinder with the junction. Nevertheless, it is remarkable that these interactions
are observed on such a narrow surface with only 0.25D radial widths; see figure 5(b).
The xy plane confirms the structures’ evolution detected above: the H3 appearance only at
higher Reynolds numbers, and the E formation mechanism being ReD-related.

3.2. Characterisation of the wake
As the Reynolds number increases, the wake becomes more intricate, and numerous
turbulent eddies emerge in a range that varies from the cylinder diameter to the
Kolmogorov scale. The increasing complexity is clearly visible in figure 6. At ReD =
1000, despite the turbulent wake behaviour, the vertical vortices with z-oriented axis are
still visible. Superposed, smaller streamwise spaghetti-like structures are observed; see
figure 6(a). In laminar vortex shedding, the z vortices are distinguishable, making the
vortex dislocations simple to track (Tian et al. 2020). This is definitely not the case for a
turbulent wake. Nevertheless, at the S–N boundary, the occurrence of the dislocation is
still visible since the boundary is characterised by two largely different frequencies and
is thus stable. Figure 6(a) shows the breaking of the initial in-phase vortex shed by the
cylinder, and the consequent dislocation. The oblique shedding occurs in the modulation
region with the dislocation at its boundary (Massaro et al. 2022). Contrary to the upper
interface, the N–L layer is unstable, and dislocation detection is not possible. At the highest
Reynolds number, the situation worsens even further; see figure 6(b). Massaro et al.
(2023c) characterise the wake of the latter case: secondary spanwise vortices appearing
behind the small cylinder (caused by a Kelvin–Helmholtz instability), spanwise vortices
stack organisation with the appearance of small- and large-scale braids (see figure 5 in
Massaro et al. 2023c). Previous works developed different techniques to study the wake
dynamics, e.g. for obtaining the phase and the shed position of vortices (Tian et al. 2020).
Due to the inherent complexity of turbulence, these methods, valid at lower Reynolds
numbers, no longer hold. In the next section, a different approach is proposed, using the
modal analysis to identify the energy content and the extension of the cells, and to study
the large-scale vortex connections.

Due to the turbulent nature of the wake, analysing its three-dimensional time-averaged
statistics can guide us in distinguishing between the subcritical (ReD = 1000) and fully
turbulent (ReD = 5000) regimes. As expected, the wakes of both the small and large
cylinders exhibit similarities to the uniform cylinder wakes far away from the junction.
Nevertheless, significant differences are noticeable in the region below the junction,
which extends to a considerable distance of 4–5 times the diameter of the large cylinder.
The time-averaged streamwise velocity component in the xz planes (y = 0) points out
distinctly different extensions of the recirculation; see figure 7(a). At ReD = 1000, the
negative Ū region extends for 0.63D and 2.43D behind the small and large cylinders,
respectively. In the case of the larger cylinder, the recirculation gets stronger inside
the N-cell. Qualitatively, this is clear from the more intense blue colour in figure 7(a).
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Figure 6. Instantaneous λ2 structures coloured with the vertical vorticity component in the wake at (a) ReD =
1000 (λ2 = −4U2/D2) and (b) ReD = 5000 (λ2 = −40U2/D2), where (b) is adapted from Massaro et al.
(2023c).

This is a meaningful characteristic of the modulation area only, and the connection
with the downwash mechanism is discussed below. Quantitatively, albeit the trend of
the streamwise velocity Ū does not vary for the two Reynolds numbers, the backflow
phenomenon is more intense at ReD = 5000. The peak reaches 40 % of the inflow velocity,
with the minimum occurring at a lower vertical location; see figure 7(b). Likewise,
figure 7(c) shows that at higher Reynolds numbers, the mean vertical velocity W̄ exhibits
significantly more negative values. Despite the differences in the wake characteristics,
the same trend is observed at distance approximately 5D from the cylinder (figure 7).
Specifically, the wake profile begins to resemble that of a uniform cylinder at this
point, regardless of the Reynolds number. This suggests that the extension of the N-cell
structure, which is responsible for the oblique periodic shedding of vortices, is not affected
significantly by changes in the Reynolds number and the transition of the cylinder shear
layer. This is also confirmed by the POD results in the next section. Eventually, the
variation in the vortex formation length is worth noting and deserves further discussion
as it plays a crucial role in the dynamics of the wake.

The spanwise variation of the vortex formation length refers to the change in the
distance between the consecutive vortex shedding points in the wake, as we move along
the spanwise direction. This variation can lead to the development of different modes
of vortex shedding, which can affect the wake structure and its associated aerodynamic
properties. Therefore, understanding the spanwise variation of the vortex formation length
is essential to gain insight into the wake dynamics and its impact on the flow field. In
the current study, the location of the maximum streamwise velocity fluctuation uu is used
to define the vortex formation length (Norberg 1998; Govardhan & Williamson 2001).
The vortex formation lengths behind the small cylinder for two different ReD values are
observed to match well, with a noticeable reduction inside the N-cell region; see figure 8.
Specifically, decreases of approximately 20 % and 15 % are measured at ReD = 1000

977 A3-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

93
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.934


The turbulent flow around a stepped cylinder

1.36

0.85

0.34

–0.17

–0.68

10

5

0

–5

–2 0 2 4 6 8 10

z/D

x/D
87654321

–0.4

–0.2

0

0.2

x/D

87654321

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

U–

W–

z = 0D
z = –2D
z = –4D
z = –8D

(a) (b)

(c)

Figure 7. (a) Time-averaged streamwise velocity component in the xz plane at y = 0 for ReD = 1000. The
black dashed lines indicate the locations where the data are extracted for (b,c), corresponding to z = 0D (black),
z = −2D (blue), z = −4D (green) and z = −8D (red). The time-averaged (b) streamwise and (c) vertical
velocity components are plotted at different spanwise locations. Both velocity components are normalised
by the inflow velocity U. The solid and dashed lines refer to ReD = 1000 and ReD = 5000, respectively.
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Figure 8. Spanwise variation of the vortex formation length for Reynolds numbers ReD = 1000 and 5000.

and ReD = 5000, respectively. This contraction has a significant connection with the
downwash phenomenon, as discussed below. Indeed, the reduction in vortex formation
length leads to a decrease in the distance between the vortices shed by the cylinder. This,
in turn, creates a larger wake deficit, which has a substantial impact on the aerodynamic
forces experienced by the cylinder.
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In summary, the two turbulent regimes at ReD = 1000 and ReD = 5000 present similar
characteristics far away from the junction, where the wake resembles the uniform cylinder
shape. The reduction of the vortex formation length inside the N-cell is also consistent.
However, the ratio between the frequencies of N- and L-cells tends to diverge with the
Reynolds number (Massaro et al. 2023c). The localised and stronger vertical velocity
flux inside the modulation region at ReD = 5000 (with more intense ww; see figure 9
in Massaro et al. 2023c) is the consequence of a less energetic downwash phenomenon
behind the junction. Therefore, the instability of the cylinder shear layer results in an
increase of the energy content for the modulation cell, in agreement with the trend of
the POD spectrum (see figure 10 in Massaro et al. 2023c). As discussed below, the POD
identifies the three cells as the most energetic structure, in agreement with the statistical
analysis for both ReD values. Nevertheless, a remarkable difference in the downwash
dynamics is observed between the stable and unstable shear layer cases.

4. Modal analysis of the subcritical regime

The detection of the three different cells in the turbulent wake can be achieved by
modal decomposition. In particular, the POD is used to extract the most energetic
spatially coherent structures. For both Reynolds numbers, they coincide with L-, S-
and N-cells. However, at ReD = 1000, i.e. a turbulent wake with a stable shear layer
as the gateway (which has not been documented previously), one of the POD modes
reveals the downwash dynamics in a prominent way. In the current section, first the POD
formulation and the assessment of its convergence are described, with the introduction of a
novel criterion adapted from spectral proper orthogonal decomposition (SPOD). Then the
downwash dynamics is described, by establishing a simplified analytical description and
reconstructing a reduced-order representation of the flow to study the large-scale vortex
connections.

4.1. Theoretical formulation
Given a set of m snapshots uj, with j = 0, . . . , m − 1, these are assembled in the snapshot
matrix Um:

Um = [u0, u1, . . . , um−1] ∈ R
n×m, (4.1)

where n is the total number of grid points multiplied by the number of velocity
components. The modal analysis allows us to split the system into space- and
time-dependent parts. In this regard, the POD is employed (Berkooz, Holmes & Lumley
1993). The POD performs the modal decomposition of the nonlinear flow minimising
the residual energy between the snapshots and their reduced linear representation. They
are constructed to be the orthogonal basis that represents the optimal projection, in
energy terms, of the most important dynamical features. It was first introduced in the
fluid mechanics context by Lumley (1970), and is usually named classical POD. Here,
the snapshot POD is used, developed by Sirovich (1987) to handle the analysis of
three-dimensional flows with a large set of grid points. The notation adopted in the
following derivation follows Sarmast et al. (2014).

When assembling the snapshots matrix, the collected snapshots are sampled according
to the Nyquist criterion (�t = 0.25D/U) and collected for an interval that is sufficiently
long to embed the slowest frequency. As indicated in (4.1), the set of m snapshots
uj is rearranged in the snapshot matrix Um. The orthogonal basis function X and the
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corresponding time coefficients T are computed via the singular value decomposition of
the snapshot matrix as

Um = XT = XΣW , (4.2)

where T = ΣW , with W being the matrix of the right singular vectors, and Σ ∈ R
n×m

the matrix of singular values of Um (i.e. the energies). To guarantee the unit energy
of each mode, the proper normalisation has to be taken into account: ‖X‖M = I and
‖W‖N = I , where M ∈ R

n×n and N ∈ R
n×n are the mass and the temporal weight matrix,

respectively, and I is the identity matrix. If the snapshots are collected with equidistant time
intervals, then N = I . The above normalisation is obtained by considering M1/2UmN1/2

and computing
M1/2UmN1/2 = X̂ΣŴ , (4.3)

where X̂ and Ŵ are unitary matrices: X̂ TX̂ = I and Ŵ TŴ = I .
Eventually, the modes are reconstructed as X = M−1/2X̂ , with unit energy and

orthogonal to each other, while the time coefficients are T = ΣW T, where the energies
are given by the diagonal matrix Σ .

4.2. Convergence criterion
Before discussing the modal analysis results, the POD convergence is assessed and the set
of snapshots is guaranteed to be adequately large. To this end, first the energy spectrum
for progressively larger m is computed, and then the correlation coefficient is estimated
for two different snapshot sets. To improve the convergence of the decomposition, the
y-symmetry of the stepped cylinder is exploited, resulting in a statistical symmetry for
the flow (Berkooz et al. 1993). In figure 9, the spectrum is computed for progressively
larger data sets, from m = 1200 to m = 2400 snapshots. The last three cases (with
m = 1800, 2000, 2400) show excellent agreement for the first four modes. Starting with
modes 5 and 6, the blue line (m = 1200) deviates from the others. Contrary to these, the
azure (m = 2000) and black (m = 2400) curves nearly overlap, especially for j � 200. As
the POD orders the modes based on their fluctuating energy levels, we observe that the
spectra of the first 200 energetically relevant modes do not show significant deviations.
In addition, good agreement between mode 0 (which corresponds to the expected mean
value according to our notation) and the correspondent mean flow (estimated via statistical
analysis in Massaro et al. 2023, personal communication) is appreciated.

To corroborate previous qualitative observations, a quantitative estimation of the POD
convergence is performed by dividing the data sets into two blocks (A and B), with a
minimum of 10 % overlapping. On each subset, the POD is carried out, and the correlation
between the sets is computed. The criterion is adapted from previous works (Lesshafft
et al. 2019; Abreu et al. 2021) where the SPOD is used. Thus some adjustments are
required. Let us consider the pair of modes i-j: they represent a unique travelling mode
where the mode j is the same mode i with a 90-degree phase shift. For the two sets of
snapshots A and B, the travelling modes are Φij and Φ̂ij, respectively:

Φij = Re
{
φi + iφj

}
, (4.4)

Φ̂ij = Re
{
(φi + iφj) eiθ

}
, (4.5)

where i is the imaginary unit, and the indices i and j refer to the POD mode number. The
angle θ is needed to take into account the possible phase variation between Φ and Φ̂,
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Figure 9. The POD spectrum with the percentage energy contribution: (a) first 500 and (b) first 20 modes are
shown. Different numbers of snapshots m are considered. The orange dashed ellipses and solid circle indicate
the three most energetic travelling modes and the downwash mode (single point), respectively.

p i-j ρp θ

1 1-2 0.9578 3.7
2 3-4 0.9873 3.0
3 5-6 0.8781 5.6
4 8-9 0.8780 5.6

Table 2. Correlation coefficient ρp for all the main pairs p of POD modes i-j. In the last column, the phase
shift θ for the travelling mode p is computed from two sets of snapshots.

as explained below. At this point, the correlation coefficient is introduced for a travelling
mode p, made of two modes i and j:

ρp =
〈
ΦijΦ̂ij

〉

‖Φij‖‖Φ̂ij‖
, (4.6)

e.g. the first travelling mode has p = 1 with i = 1 and j = 2. Since the travelling modes
Φij and Φ̂ij arise from different snapshots, they have many different orientations in
the complex plane, and the possible phase shift has to be taken into account. Thus Φ̂

is multiplied by eiθ , with θ varying between 0 and 2π. When they are aligned, their
correlation is going to be maximum. The phase difference varies among the travelling
modes as reported in table 2.

When the correlation coefficient is close to unity, the POD convergence is achieved. For
the first two pairs, the correlation is higher than 95 %. Interestingly, the second pair has
better convergence than the first. This can be explained by the fact the travelling mode 2-3
is related to the small cylinder, which has a vortex shedding frequency two times larger
than the other frequencies. Consequently, for the same period T , double the number of
vortices are shed. Considering the modulation region modes (5-6), even they show good
convergence: ρp > 0.87. This criterion does not apply to single mode 7, which is discussed
below. Even the next pair, 8-9, is highly correlated, indicating that the first ten modes are
converged adequately (ρp > 0.87) given the collected number of snapshots.
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Figure 10. Isosurfaces of the velocity magnitude 0.1U for the (a) first, (b) third and (c) fifth POD modes at
arbitrary phase. The second, fourth and sixth modes correspond to the phase-shifted versions of the shown
modes. Dashed lines indicate the corresponding cells, and the solid ellipse highlights the S vortical structures
deflection. Dotted lines point out the N-cell contraction in the streamwise direction.

4.3. The most energetic structures
We begin by presenting the most relevant structures extracted via POD of the flow. They
correspond to three main travelling modes in the streamwise direction; see figure 10. Each
of them consists of a pair of modes with a 90-degree phase shift, which characterises the
L-, S- and N-cells, respectively. They are all made symmetric with respect to the y-axis,
reflecting the inherent y-symmetry of the flow.

The first pair of modes (1 and 2) corresponds to the large cylinder structures in the
L-cell. Their energy contribution is estimated by computing the fraction λj/

∑
j>0 λj,

where j is the mode index, and λ is the singular value for mode j. They account for
approximately ∼7.5 % of the total (fluctuating) energy each. This means that the coherent
structures behind the large cylinder (and below the modulation region) give an overall
energy contribution of ∼15 %. The S-cell of the small cylinder is characterised by the
second travelling mode 3-4, overall as counting for ∼11 %. It is noticeable that the small
cylinder dynamics (with Red = ReD/2) still has a significant energy contribution. The
modulation region pair is formed by modes 5 and 6, whose contribution is half of the
previous couple, i.e. ∼2.8 %, in total ∼5.6 %.

Morton & Yarusevych (2014b) measure the extension of the cells using hydrogen
bubble visualisations. The qualitative description of the flow carried out in § 3 through
λ2 structures corroborates their observation. In addition, the extracted POD modes allow
us to define the spatial extension of each cell in a quantitative way for the turbulent
regime. Indeed, each of the most energetic POD modes corresponds to a specific cell as it
holds no value beyond the regions outlined below. The S region spreads behind the small
cylinder and slightly below the xy centre plane, at z ≈ −0.5D; see figure 10. On the other
side, the large cylinder modes (1-2) extend for z < −5D. Regarding the N-cell, Dunn &
Tavoularis (2006) observed a non-constant vertical extension in the streamwise direction.
In particular, at the laminar Reynolds numbers ReD = 150 and 152, this is also reported
by Morton & Yarusevych (2010). It is worth noting that such a contraction is persistent in
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the turbulent regime and depicted by the fifth mode in figure 10(c). The spatially coherent
structure of the N-cell has a width that varies with streamwise location. In particular,
the upper and lower envelope of the cell contract proportionally to yup ∼ −0.1x and
ylow ∼ 0.15x, respectively. Moreover, the modulation region develops only behind the
large cylinder −0.5D < z < −4.5D. At first glance, this may appear counterintuitive since
one would expect that the intermediate region is straddling the junction, rather than being
only behind one of the cylinders. A possible explanation and its connection with the
downwash mechanism are discussed below. At the same time, between cells, the vortex
dislocation mechanism by Williamson (1989) occurs: the vortices in the cell with lower
frequency are induced downstream by the high-frequency cell; see N–L interaction. That
is not the case for the N–L boundary since their frequencies are close (table 1). Differently
from the S–N stable interface where the POD modes have a net separation, the unstable
layer N–L generates an overlap at z ≈ −5D between the modes 1-2 and 5-6. The spatial
extension of the three cells is also confirmed by inspecting the vertical variation of the
vortex shedding frequency from the nonlinear field.

In previous studies, the S-, N- and L-cells and their locations are distinguished by
frequencies and convective streamwise velocities. Here, they are categorised by the
energy content too. Many studies (Perrin et al. 2007; Siegel et al. 2008; Kourentis
& Konstantinidis 2012) consider the distribution of energy for the uniform cylinder,
and observe the energy of the first pair being approximately ∼40 %. In the stepped
cylinder case, a similar amount is (not equally) distributed among the three different cells.
Morton & Yarusevych (2014a) use the particle image velocimetry technique to study the
flow around a dual-stepped cylinder focusing on the near-wake region. They perform a
POD of planar velocity data for the cases 0.2 < Lj/D < 3, D/d = 2 at ReD = 2100 and
ReD = 1050, where Lj is the extension of the junction region. The evident geometrical
differences and two-dimensional (instead of three-dimensional) modal analysis do not
allow an adequate comparison (Hufnagel et al. 2018). Our studies confirm how the energy
distribution varies with respect to the uniform case: a considerable energy reduction of
the first POD travelling mode. The discontinuity creates three separated pairs of modes
that correspond to the first pair of a uniform cylinder: two energetic regions (S and L),
interrupted by a low-energy cell (the modulation N). Even when the Reynolds numbers
are higher, three distinct POD modes are shown, corresponding to the L-, S- and N-cells
at ReD = 5000. However, the energetic contributions of S- and N-cells become comparable
(Massaro et al. 2023c).

The analysis of time coefficients T identifies the shedding frequency of each travelling
mode, i.e. of each cell. Moreover, the spectral analysis performed via local velocity
measures, and presented in § 3, is compared with the POD results. The PSD analysis of
the time coefficients of the first three modes, computed as Welch’s PSD, is presented
in figure 11. Despite the POD modes being orthogonal only in space, and each mode
containing multiple frequencies, the agreement between Welch’s peak in figure 11 and
table 1 is remarkable. Indeed, the first three pairs of modes, i.e. the travelling modes of
the L-, S- and N-wake regions, have Strouhal numbers Stp=1 = 0.2011, Stp=2 = 0.4062
and Stp=3 = 0.1877, respectively. As each flow region is dominated by a single frequency,
compared to alternative modal decomposition, e.g. dynamic mode decomposition (DMD),
POD is equally able to locate these regions and reveal their dynamics (Rowley et al. 2009;
Malm, Bagheri & Schlatter 2011). We would not expect any better mode identification
using either DMD or spectral POD in this particular case.
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Figure 11. Welch’s PSD estimate for the time coefficients ti of the most energetic three-dimensional POD
modes: mode 1, mode 3 and mode 5. The same estimates are obtained for the corresponding paired modes 2, 4
and 6.

4.4. The downwash mode
The POD of the flow not only portrays the energy content in each cell but also improves
our N-cell understanding. We comment here about two isolated modes visible in the
POD spectrum. In figure 9(b), we notice that the seventh mode to be a single point in
the spectrum, as opposed to all previous ones that pair. The energy content of mode 7
is significantly lower than the top ones, but still not negligible, ∼1.4 %. For larger j, a
further pair of modes (8-9) is identified, and eventually another single point (mode 10).
The modes for j > 10 are energetically irrelevant and do not add any more to our analysis.
In our effort to explain these single modes, the temporal dynamics of modes 7 and 10 are
analysed, and the PSD via Welch’s method is estimated. The PSD peaks are located at the
same frequency: f7 = f10 = 0.0135. All this suggests that we deal with a unique travelling
mode, as discussed in the next subsection. Even more interestingly, the frequency f7 = f10
is the exact difference between the L- and N-cell shedding frequencies computed via
POD: fb = fp=1 − fp=3 = 0.2012 − 0.1877 = 0.0135, i.e. the beating frequency of the
modulation region. Previously, Morton & Yarusevych (2014b) measured a cyclic behaviour
of the N-cell with a beating frequency f̃b = 0.009, which is fairly close to fb. A little
deviation is acceptable since they computed the PSD through a single point probe (a hot
wire) and for a slightly different Reynolds number (ReD = 1050). In addition, they have
a broad peak estimation in the spectrum. With regard to the downwash, they used flow
visualisations to identify its location, and they measured its frequency with a velocity
probe at x = 1D, y = 0, z = −1.5D. The result is noticeable: they observe the same
value as the N–L beating f̃ = 0.009. The modal analysis is thus used to identify the
dynamical mode related to the N-cell beating (mode 7), rather than relying only on local
measurements. By visualising mode 7 (and 10), they exhibit two downward-deflecting
velocity structures. Whereas x- and y-velocity components are negligible, the z-velocity
has a spatial distribution that portrays the downward flow motion taking place at the
back of the junction, into the N-cell (figure 12). Its location behind the step discontinuity
(in the large cylinder wake) extends for z ∈ (−2.3D, −0.46D), y ∈ (−0.60D, 0.60D) and
x ∈ (1.09D, 2.58D), in agreement with the statistical measures discussed below.
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Figure 12. The downwash mechanism behind the junction of a stepped cylinder. (a) Isosurface W/U = −0.04
of the vertical velocity component W of the downwash mode 7 in blue. The edge vortex E at y < 0 is reported
(instantaneous λ2 = −2 vortical structure) and coloured with the streamwise vorticity (red is positive; see
figure 4). At y = 0.45D, in the background, the time-averaged vertical component of the vorticity (downwards
in red) is shown. The edge vortices induce the downward flow motion, as indicated by the black arrows. This
flow feature is depicted by the POD modes 7 and 10. The W contour plots in (b) the xz plane at y = −0.45D
and (c) the yz plane at x = 2D, of the POD mode 7.

Thus the POD technique allows us to depict the dynamical mode associated with the
downwash mechanism. The downwash is the phenomenon occurring behind the free end
of a cylinder, where the low pressure leads to a downward motion of the flow. From the
mass conservation law, it follows that the flow displaced by the cylinder needs to fill the
low-pressure region created behind it. However, even the flow above the free end of a
finite-height circular cylinder (a geometry much simpler than the stepped cylinder) is far
from being completely understood. Despite several models, experimental campaigns and
numerical simulations, we lack complete knowledge of the flow topology and dynamics
(Sumner 2013). Most of the studies are in agreement on some basic elements of the
average flow field on the free-end surface, including, for example, the emergence of a
persistent recirculation zone with distinct mean cross-stream structures such as an ‘arch’
or ‘mushroom’ vortex. This structure, together with the near-wake cross-stream vortex, has
been identified as the main thing responsible for the downwash phenomenon. However, the
arch vortex does not appear on the flat surface of the stepped cylinder, due to the presence
of the small cylinder installed in the middle of the junction; see figure 4. On the other hand,
we observe the edge vortices developing at the sides of the junction, analogously to the
side-tip or tip/trailing streamwise vortices of the uniform cylinder. In the past, it has been
debated about the (weak) influence of these structures on the downwash itself (Park &
Lee 2000). Our findings support previous theories and results (Johnston & Wilson 1996;
Palau-Salvador et al. 2010). Indeed, at ReD = 1000 (subcritical regime), the two stable

977 A3-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

93
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.934


The turbulent flow around a stepped cylinder

edge vortices generate a remarkable downward motion, depicted by POD modes 7-10 (a
few percentages of the total fluctuating energy). As sketched in figure 12, the negative
vertical velocity isosurface clearly highlights the downward flow in correspondence with
the two edge vortices. As previously stated, the latter structures are stable, as related to the
laminar shear layer. The time-averaged vertical vorticity confirms the statistical tendency
of the flow to deflect behind the E vortices (figure 12a). Increasing the Reynolds number,
the shear layer gets unstable and these structures get weaker, being surrounded by a train
of hairpins (Massaro et al. 2023c). Consequently, the modal analysis at ReD = 5000 does
not identify such a flow feature among the most energetic modes.

Furthermore, there exists a temporal relationship between the POD modes and the
modulation region’s frequency, where f7 and f10 coincide with the N beating frequency.
The ‘downwash mode’, is thus defined by POD modes 7-10 and has an overall contribution
to the fluctuating energy of approximately 2.2 %. Remarkably, by means of the modal
analysis, we manage to isolate its dynamics and show the spatial and temporal connection
with the modulation cell. The relation between the seventh and tenth modes is explained
further in the next subsection, where the analytical superposition of two travelling waves
is used to support our results.

4.5. Superposition of travelling modes
During the spectral analysis, we identify the presence of a distinct mode, mode 7, and
investigate its potential connection with mode 10. Our current objective is to establish a
robust link between them. Furthermore, we also consider the influence of the travelling
mode 8-9.

To provide a better understanding, we will use the example of a one-dimensional
travelling wave Ti = sin(kix − ωit), with constant wave number ki and angular frequency
ωi. Each travelling wave is characterised by a frequency f (ωi = 2πfi), a wavelength
λ (ki = 2π/λi), and a speed v = λf . Defining α = k1x − ω1t and β = k2x − ω2t, the
superposition of two travelling waves is

T1 + T2 = sin(α) + sin(β)

= 2 sin
(

α + β

2

)
cos

(
α − β

2

)

= 2 sin
(

k1 + k2

2
x − ω1 + ω2

2
t
)

cos
(

k1 − k2

2
x − ω1 − ω2

2
t
)

= 2 sin
(
k̄x − ω̄t

)
cos

(
k̂x − ω̂t

)
, (4.7)

where k̄ = (k1 + k2)/2, ω̄ = (ω1 + ω2)/2, k̂ = (k1 − k2)/2 and ω̂ = (ω1 − ω2)/2. The
result is a product of two travelling waves: the sine part oscillates with the average
frequency f̄ , and the cosine wave oscillates with the difference in frequencies f̂ . The latter
controls the amplitude envelope of the wave, causing the beating phenomenon with the
beat frequency fb, which is twice f̂ .

Keeping this model as the basis, we now turn our attention to the modes obtained
through modal analysis for the stepped cylinder, focusing specifically on the L- and
N-cells. The temporal frequencies are obtained directly from the POD spectrum, fL =
0.201 and fN = 0.188, i.e. angular velocities ωL = 1.263 and ωN = 1.179. The approach
differs for the spatial wavelengths. These modes travel only in the streamwise direction
with a given streamwise wavenumber. The wavelengths λ can be estimated by inspecting
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the extracted POD modes at fixed y and z locations to obtain a simplified one-dimensional
travelling wave. The xy planes at z = −8D and −3D are considered, i.e. in the cores of
L- and N-cells, respectively, selecting the y = 0 location. Finally, a constant wavelength
in x is assumed. In fact, a slight variation in the distance between consecutive peaks is
observed in the near-wake region for x < 3D. For this reason, x > 3D is considered to
estimate the constant wavenumbers: λL = 2.02, kL = 3.109, and λN = 2.30, kN = 2.730.
Despite our approximations, the simple model (4.7) improves our understanding of the
superposition between the N and L travelling modes. In relation to TL + TN , the formula
(4.7) gives the product of two waves with λ̄ = 2.15, f̄ = 0.19, λ̂ = 33.14 and f̂ = 0.0069.
The beating frequency is fb = 2f̂ = 0.0136, which corresponds to the frequency peak
observed in the POD spectrum of modes 7-10 ( fp=1 − fp=3 = 0.2012 − 0.1877 = 0.0135).
The frequency of the downwash mode aligns precisely with the expected beating frequency
of the N-cell, thereby establishing a clear connection between the downwash observed
behind the junction and the beating oscillation of the N-cell. This finding offers compelling
proof that the downwash phenomenon constitutes an essential aspect of the flow dynamics
at the junction, connected intricately to the behaviour of the N-cell. In addition, the beating
nodes are not fixed but rather evolve in time with wave speed v = λf .

Using the formula (4.7), as explained above, the estimated x wavelength of the beating
mode is at least one order of magnitude bigger than all the others, λ̂ = 33D. Eventually,
the TL + TN model predicts also the travelling mode 8-9 with high accuracy: the sinusoidal
wave modulated by the beating has the averaged temporal frequency and streamwise
wavenumber λ̄ = 2.15 and f̄ = 0.19. These results are in excellent agreement with the
POD modes 8-9 (λ = 2.14 and f = 0.1875). Differently from the L–N interaction, the
superposition of S–N travelling modes does not turn out to be relevant energetically.
Indeed, all POD modes larger than 10 contribute to less than 0.5 %. As observed by Tian
et al. (2020), the phase difference accumulation (led by the slightly different frequencies)
along with the varying convective velocities generates an unstable interface at the N–L
boundary, differently from the stable S–N cell boundary.

4.6. Statistical footprint of the downwash
In § 3, the wake dynamics is also characterised using three-dimensional statistics. Now,
concentrating on the subcritical regime, we search for any statistical traces of the
downwash in the region outlined by the modal analysis. No previous work analyses
statistical trends in this cell for the stepped cylinder; just a few studies describe the cell
behind the free end of the three-dimensional uniform cylinder in terms of pressure and
velocity variations. In the limit of a significant discontinuity r = D/d � 1 (e.g. r = 2),
the flow behind the junction is expected to resemble the free-end surface of a uniform
cylinder, in terms of statistical behaviour.

Approaching the free end of a uniform cylinder, Park & Lee (2000) observe a decrease
in the turbulence intensity and the vortex formation length. A similar trend is observed in
the modulation cell. The peak of the first diagonal component of the Reynolds stress tensor
uu shows a reduced vortex formation length in the N-cell. Figure 8 indicates a decrease of
approximately 16 %, as the peak of uu goes from (x = 2.70D, y = 0.47D) at z = −1.5D
to (x = 2.28D, y = 0.44D) at z = −8.5D. Similarly, the pressure is a further important
downwash indicator, due to the interaction between the separated downwash flow and the
vortices shed from the two sides of the cylinder (Park & Lee 2000). Zdravkovich et al.
(1989) and Williamson (1989) confirm the appearance of a low-pressure cell. For the
stepped cylinder, this characteristic cell is also present, as shown by the contraction of
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Figure 13. (a) Three-dimensional pressure isosurface P̄/ρU2 = −0.18 with a contraction behind the
junction. Two-dimensional contour plots of the pressure fluctuations pp at (b) z = −1.5D and (c) z = −8.5D.

the three-dimensional pressure isosurface just behind the junction and in the upper part
of the N-cell; see figure 13. In this area, the fluctuating field contributes to the mean
in a manner distinct from any other parts of the flow; see the pp spatial distribution in
figures 13(b,c). The fluctuating pressure field pp is located in the primary vortex cores
everywhere except at z ∈ (−0.5D, 1.5D), where a third peak appears along the centreline
at x ≈ 2.7D. Related to this, the N-cell also shows large vertical velocity fluctuations
ww. The isosurface for ww = 71 % (of the maximum) is located in the modulation area.
These fluctuations are expected as the downwash involves a vertical mass flow. More
interestingly, they characterise the entire N-cell, not only the upper part where the POD
mode 7 is prominent; see figure 14.

The modulation region turns out to have statistical characteristics similar to the free end
of a uniform cylinder. On the whole, the N-cell is a region with a reduction of the base
pressure, intense pp with large ww fluctuations, and a net reduction of the vortex formation
length. Albeit the downwash mechanism is different with respect to the uniform cylinder,
its statistical footprint is similar. First, by using the modal analysis and subsequently
computing the statistics, it becomes possible to characterise this cell and illustrate the
downward flow motion.

4.7. Reduced-order reconstruction
In the previous subsections, three distinct modes are clearly identified in the cylinder wake.
Now we aim to describe their related dynamics. However, in a turbulent environment, this
becomes unfeasible, and relying only on instantaneous flow visualisations is insufficient.
Morton & Yarusevych (2014b) suggest an aerodynamic model for the wake vortices
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Figure 14. (a) Time-averaged vertical velocity fluctuations in the xz plane at y = 0 with the isosurface
ww/U2 = 0.102 (in red). Two-dimensional contour plots at different vertical locations: (b) z = 8.5D,
(c) z = −1.5D, and (d) z = −8.5D.

interaction based on the idea that the circulation is inversely proportional to the frequency
of vortex shedding and proportional to the square of the free stream velocity (Berger &
Wille 1972). Their experimental data seem to agree well with the model. Differently, in
this case, the extracted POD modes are used to perform a reduced-order reconstruction that
serves as a model that captures effectively the dynamics of the wake. The identification of
such critical POD modes could facilitate the creation of a reduced-order model (ROM) by
the Galerkin projection of the system dynamics on the first few, and most relevant, basis
functions. The ROM can enable us to make accurate predictions for future scenarios of the
subcritical regime.

The first six POD modes are essential to capture the L, S and N behaviour, i.e. the most
energetic spatially coherent structures. Similarly, the modes from 7 to 10 are needed to
encapsulate the interaction between the N-cell and the downwash:

u(xi, tj) =
m̃−1∑
k=0

φk(xi) ak(tj), (4.8)

where m̃ = 11, φk(xi) is a column of X = M−1/2X̂ , and ak(tj) is a row of T = ΣW T. In
this way, the reconstructed field accounts for approximately 50 % of the total fluctuating
energy. The comparison between the original and the reconstructed field at the same time
confirms that the largest and more energetic structures are detected and visible. Filtering
out the uncorrelated (small) scales enables us to discern the interactions occurring at the
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Figure 15. Time sequence of the POD reduced-order reconstruction of flow around a three-dimensional
stepped cylinder at ReD = 1000. The vortical structures (λ2 = −2 U2/D2) in the cylinder wake coloured with
the vertical vorticity component at different times are shown. The time interval is �t = 0.25D/U, and the
images are shown at the instants t0, t0 + 5�t, t0 + 10�t, t0 + 120�t, t0 + 125�t and t0 + 160�t. All times are
normalised with the inflow velocity and the large cylinder diameter. In (d), the three different cells are clearly
visible and highlighted by yellow dashed lines.

boundaries of the cell. Figure 15 shows the vortical structures for λ2 = −2 coloured by the
vertical vorticity component. The red and blue colours refer to a z-vortex whose axis points
upwards and downwards, respectively. The connection at the S–N and N–L boundaries is
highlighted with dashed yellow lines. At the upper S–N interface, the large frequency
difference between the S- and N-cells makes the vortex identification simpler.

At the initial time t0 (figure 15a), the N–L cells are in phase, whereas the S-cell starts
to get out of phase. Just a little after, the dislocation occurs and the N-cell vortex splits
into two sub-vortices that connect with two distinct S structures (at t = t0 + 5�t with
�t = 0.25). The Y connection is clearly visible in figure 15(b). This unstable Y linking
does not last long; see figure 15(c) at t = t0 + 10�t. When the half-loop connections
between S-vortices happen, the N structure can form a half-loop with an adjacent N
structure, or connect to another S vortex; see figures 15(c) and 15(d), respectively. The
S, N and L vortical structures are displayed clearly by the dashed lines in figure 15(d).
In addition, a larger penetration of S vortices into the modulation area is observed as the
dislocation among the cells increases (Williamson 1989). The study of the N–L interface
is more difficult since the interface is stable and the cells have almost identical frequencies
(StN = 0.188, 0.201). However, the reduced-order reconstruction, based on a large number
of snapshots, enables the characterisation of the N–L interaction. The N vortices form a
direct connection with L for most of the cycles (figures 15a,c). The phase lag accumulation
gets more and more significant, and eventually, the dislocation occurs; see figure 15(d)
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at t = t0 + 120�t. The N structures tend to split, and connections between consecutive
vortices are visible in the L region (figure 15d). Completely out of phase in 15(e) at
t = t0 + 125�t, the modulation region reaches its maximum extension. Eventually, the
L- and N-cells are again in phase, and they behave like a single mode (figure 15f ).

The POD technique applied to the flow field yields a reduced-order reconstruction that
supports the aerodynamic model proposed by Morton & Yarusevych (2014b). However,
our results reveal some significant differences, particularly in the modulation region
cycle. While Morton & Yarusevych (2014b) reported a cyclic variation of the N-cell with
its dimension changing over time, our observations suggest the occurrence of a direct
connection between the L- and S-cells, when the phase lag is zero. This is supported
also by the analytical model used for the superposition of two travelling modes; see § 4.5.
The L and S alignment leads to the emergence of just two cells in the stepped cylinder
wake for a brief period, representing a novel feature captured by our analysis through the
inclusion of the downwash mode. Integrating this mode into the reconstruction enables
us to grasp the behaviour that was previously overlooked, emphasising the significance of
this phenomenon in the flow dynamics at the junction.

5. Concluding remarks

In the present work, the external flow around a three-dimensional stepped cylinder in
the turbulent wake regime is studied by means of direct numerical simulations. The
simulations are performed with the high-order spectral element method and using the
adaptive mesh refinement (AMR) technique to keep the numerical error under control.
The junction and the wake are finely resolved based on automatic error indicators. The
AMR technique also enables significant computational savings.

Initially, we provide a broad overview of the flow transition as a function of the
Reynolds number from laminar to turbulent, with the wake first, and the cylinder shear
layer transition later. Focusing on the turbulent wake regime, with stable (ReD = 1000)
and unstable (ReD = 5000) cylinder shear layer, instantaneous vortical structures and
statistical data point out substantial differences in the junction dynamics between the
regimes. At ReD = 1000, in the fore part of the junction, the impingement of the flow and
the leading edge separation form the horseshoe vortex H1. A second structure, previously
classified by Tian et al. (2021) and Massaro et al. (2023c), is the vortex H2: this is
induced by the downward flow separation along the small cylinder, and develops attached
to the base of the small cylinder. The strong H1 swirl makes the incoming flow divert
locally, rolling up in the edge vortices. Unlike the ReD = 5000 case, no H4 vortex and
hairpins are observed. In the wake, we observe structures exhibiting a more pronounced
vertical vorticity component and smaller braids, i.e. spaghetti-like streamwise eddies. A
myriad of small spatial scales appears in figure 6 as the Reynolds number increases. The
turbulent wake nature makes impossible any quantitative conclusion by looking at only
instantaneous structures. We thus rely on a modal analysis of the flow to perform a formal
investigation, focusing on the subcritical regime (ReD = 1000), where the downwash is
more prominent.

The three-dimensional proper orthogonal decomposition (POD) is performed, and its
convergence is assessed, suitably adapting the correlation criterion for spectral POD
(Lesshafft et al. 2019; Abreu et al. 2021). The POD points out three energetic streamwise
travelling modes corresponding to the three cells in the wake. The modal analysis thus
confirms three regions in the turbulent regime: the large (L), small (S) and intermediate
(N) cells with Strouhal numbers StL = 0.201, StS = 0.406 and StN = 0.1877, respectively.
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Their contribution to the total fluctuating energy varies substantially: the large and small
cylinders have contributions of approximately 15 % and 11 %, while the modulation region
has 5.6 %. Among the others, we observe the single seventh mode with the same temporal
frequency of the N-cell beating. We label this the ‘downwash mode’ as its spatial shape
resembles the downwash occurring behind the junction. The combination of travelling
modes 8-9 and 7-10 is a result of the superposition of two travelling waves. A theoretical
model is used to describe the interaction between one-dimensional travelling waves with
constant wavelength and frequency, to predict the interaction between N- and L-cells. The
flow characteristic unveiled through POD, coupled with the statistical analysis, enhances
our comprehension of the downwash mechanism behind the junction of a stepped cylinder.
This mechanism at the free end of a uniform cylinder is still debated, as well as whether or
not edge vortices E play a role (Sumner 2013). The stepped cylinder helps to answer this
question since the arch vortex, depicted as the main structure responsible for the downwash
formation, cannot be formed in the step configuration (due to the presence of the small
cylinder). Nevertheless, many statistical terms and some POD modes confirm such a
mechanism behind the junction. This corroborates the idea that the edge vortices actively
promote the downward flow motion. The contrast with the free end of a uniform cylinder
has been discussed in detail in § 4. Furthermore, we clarify the long-standing debated
connection between the downwash phenomenon and the modulation region, i.e. the N-cell
appearing in the indirect interaction regime (D/d > 1.55).

Eventually, the first 10 modes are employed to establish a reduced-order reconstruction
that allows us to investigate the vortices connection that occurs in the wake. Two major
interactions are observed when the dislocations occur: a Y and C connection between
vortices of the same or adjacent regions respectively. In the N-cell cycle, the modulation
region not only is reduced, as hypothesised by Morton & Yarusevych (2014b), but
completely disappears for a short time, when a direct S–L connection happens (resembling
the direct interaction case). The reduced order model based on the proposed low-order
reconstruction can represent a good starting point to be run when modelling the turbulent
wake behaviour in a more complicated framework, e.g. the fluid–structure interaction for
the cylinder stability investigation.
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Appendix A

The AMR technique allows for studying non-canonical geometries automatically adapting
the mesh to the flow physics in both transitional (Massaro & Schlatter 2023, personal
communication; Massaro et al. 2023a,b) and turbulent (Massaro et al. 2022, 2023c) flows.
In this way, the mesh is optimised for the specific flow case, and the over-refinement
of irrelevant regions is avoided. First, the algorithm requires a reliable measure of the
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committed error. Here, we rely on the spectral error indicator, which was introduced first
by Mavriplis (1989) and accounts for truncation and quadrature error for the solution fields,
i.e. the velocity field. To clarify how the error is estimated, a one-dimensional problem is
now considered, where u is the exact solution to a system of partial differential equations,
and uN is an approximate spectral element solution with polynomial order N. Here, u(x)
is expanded on a reference element in terms of the Legendre polynomials:

u(x) =
∞∑

k=0

ûk Lk(x), (A1)

where ûk are the associated spectral coefficients, and Lk(x) is the Legendre polynomial of
order k. The estimated error ε = ‖u − uN‖L2 results in

ε =

⎛
⎜⎝

∫ ∞

N

û(k)2

2k + 1
2

dk + û2
N

2N + 1
2

⎞
⎟⎠

1/2

. (A2)

Assuming an exponential decay for the spectral coefficients of the form û(k) ≈
c exp(−σk), the parameters c and σ are obtained by least squares fitting of the few (usually
four) base functions uk with the highest frequencies in each element. This operation
is performed in each direction separately, and the maximum error for each component
is considered. The error is measured online during the simulation, and ε indicates the
error per element at each time step. Contrary to other studies, we do not attempt to
track instantaneous flow features (Devloo, Tinsley & Pattani 1988) but rather obtain a
statistically converged mesh. To this end, ε is averaged for a given interval T . Once the
building mesh procedure is finalised, the final grid is frozen and the data collection begins.

As DNS are performed, where no filtering or explicit subgrid-scale model is used, a
criterion that guarantees to capture all the turbulent scales is needed. The assessment
of the mesh resolution is performed by computing the ratio between the volumetric grid
spacing lvol = (lx × ly × lz)1/3, where lx, ly and lz are the largest spacings in the x, y and
z directions, respectively, and the isotropic Kolmogorov length scale η. The estimation
is performed element by element, taking into account the non-uniform spacing among
GLL points. In the current cases, the ratio lvol/η is mostly below 4, and less than 9 and
14 everywhere for ReD = 1000 and 5000, respectively. The scale η is estimated by the
dissipation ε extracted via statistical analysis, η = (ν3/ε)1/4. In figure 16, the ratio lvol/η
is shown for different planes. Observe that the Kolmogorov unit is meaningful only in
the turbulent region and represents a conservative measure (Yeung, Sreenivasan & Pope
2018). In addition, a mesh convergence study in the classic sense is performed for three
different meshes with approximately 100, 180 and 260 million GLL points, respectively
(figure 17).

Eventually, for an adaptive simulation, a solver that supports hanging nodes in an
efficient way is needed. This was achieved by introducing some substantial changes to
Nek5000 (Offermans 2019), e.g. an appropriate interpolation at non-conforming interfaces
and the mesh topology handling (Burstedde et al. 2011). For further details on technical
aspects and parallel scaling, refer to Offermans (2019), Peplinski et al. (2020) and
Offermans et al. (2023).
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Figure 16. Ratio between the volumetric grid spacing and the Kolmogorov length scale lvol/η (for each
element) in different planes of the final mesh at ReD = 1000: (a) the xz plane at y = 0; (b) the xy plane at
z = 8D.
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Figure 17. Conventional mesh convergence study for the time-averaged (a) streamwise velocity component
and (b) first diagonal term of the Reynolds stress tensor (ReD = 1000). Comparison among three different
meshes (1, 2 and 3) with approximately 100, 180 and 260 million GLL points, respectively.
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