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Abstract

In this paper we show that any good toric contact manifold has a well-defined
cylindrical contact homology, and describe how it can be combinatorially computed
from the associated moment cone. As an application, we compute the cylindrical contact
homology of a particularly nice family of examples that appear in the work of Gauntlett
et al. on Sasaki–Einstein metrics. We show in particular that these give rise to a new
infinite family of non-equivalent contact structures on S2 × S3 in the unique homotopy
class of almost contact structures with vanishing first Chern class.

1. Introduction

Contact homology is a powerful invariant of contact structures, introduced by Eliashberg
et al. [EGH00] in the bigger framework of symplectic field theory. Its simplest version is
called cylindrical contact homology and can be briefly described in the following way. Let
(N, ξ) be a closed (i.e. compact without boundary) co-oriented contact manifold, α ∈ Ω1(N)
a contact form (ξ = ker α), and Rα ∈ X (N) the corresponding Reeb vector field (ι(Rα) dα≡ 0
and α(Rα)≡ 1). Assume that α is non-degenerate, with the meaning that all contractible closed
orbits of Rα are non-degenerate. Consider the graded Q-vector space C∗(N, α) freely generated
by the contractible closed orbits of Rα, where the grading is determined by an appropriate
dimensional shift of the Conley–Zehnder index (when the first Chern class of the contact
structure is zero this grading is integral, but otherwise it is jus a finite cyclic grading). One
then uses suitable pseudo-holomorphic curves in the symplectization of (N, α) to define a linear
map ∂ : C∗(N, α)→ C∗−1(N, α). Under suitable assumptions, one can prove that ∂2 = 0 and
the homology of (C∗(N, α), ∂) is independent of the choice of contact form α. This is the
cylindrical contact homology HC∗(N, ξ; Q), a graded Q-vector space invariant of the contact
manifold (N, ξ). (Note: for transversality reasons, the identity ∂2 = 0 and the invariance property
of contact homology are conditional on the completion of foundational work by Hofer et al.
[HWZ07, HWZ09a, HWZ09b].)

The simplest example of a cylindrical contact homology computation, already described
in [EGH00], is the case of the standard contact sphere (S2n+1, ξst), where

S2n+1 ∼=
{
z ∈ Cn+1 :

n+1∑
j=1

|zj |2 = 1
}
⊂ Cn+1
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and
ξst := TS2n+1 ∩ iTS2n+1 = hyperplane field of complex tangencies.

This contact structure admits the natural contact form

αst :=
i

2

n+1∑
j=1

(zj dz̄j − z̄j dzj)|S2n+1

with completely periodic Reeb flow given by

(Rst)s(z1, . . . , zn+1) 7→ (eisz1, . . . , e
iszn+1), s ∈ R.

In the presence of a degenerate contact form, such as αst, there are two approaches to compute
cylindrical contact homology:

(i) the Morse–Bott approach of Bourgeois [Bou03a], which computes it directly from the spaces
of contractible periodic orbits of the degenerate Reeb flow;

(ii) the non-degenerate approach above, which computes it from the countably many
contractible periodic orbits of the Reeb flow associated to a non-degenerate perturbation
of the original degenerate contact form.

Since approach (ii) is the approach we will use in this paper, let us give a description of how
it can work in this (S2n+1, ξst) example. One can obtain a suitable perturbation of the contact
form αst by perturbing the embedding of S2n+1 ↪→ Cn+1 via

S2n+1 ∼= S2n+1
a :=

{
z ∈ Cn+1 :

n+1∑
j=1

aj |zj |2 = 1
}
⊂ Cn+1 with aj ∈ R+ for all j = 1, . . . , n+ 1,

and noting that
ξst
∼= ξa := TS2n+1

a ∩ iTS2n+1
a .

The perturbed contact form αa is then given by

αa :=
i

2

n+1∑
j=1

(zj dz̄j − z̄j dzj)|S2n+1
a

,

and the corresponding Reeb flow can be written as

(Ra)s(z1, . . . , zn+1) 7→ (eia1sz1, . . . , e
ian+1szn+1), s ∈ R.

If the aj are Q-independent, the contact form αa is non-degenerate and the Reeb flow has exactly
n+ 1 simple closed orbits γ1, . . . , γn+1, where each γ` corresponds to the orbit of the Reeb flow
through the point p` ∈ S2n+1

a with coordinates

zj =

{
1/
√
a` if j = `,

0 if j 6= `.

As it turns out, in this example any closed Reeb orbit γN` has even contact homology degree,
which implies that the boundary operator is zero and

HC∗(S2n+1, ξst; Q) = C∗(αa).

After some simple Conley–Zehnder index computations one concludes that

HC∗(S2n+1, ξst; Q)∼=

{
Q if ∗> 2n and even,
0 otherwise.
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The standard contact sphere (S2n+1, ξst) is the most basic example of a good toric contact
manifold and, as we show in this paper, this contact homology calculation has a toric description
that generalizes to any good toric contact manifold.

Closed toric contact manifolds are the odd-dimensional analogues of closed toric symplectic
manifolds. They can be defined as contact manifolds of dimension 2n+ 1 equipped with an
effective Hamiltonian action of a torus of dimension n+ 1, and have been classified by Banyaga
and Molino [BM93, BM96, Ban99], Boyer and Galicki [BG00], and Lerman [Ler03a].

Good toric contact manifolds of dimension three are (S3, ξst) and its finite quotients. Good
toric contact manifolds of dimension greater than three are closed toric contact manifolds whose
torus action is not free. These form the most important class of closed toric contact manifolds,
and can be classified by the associated moment cones, in the same way that Delzant’s theorem
classifies closed toric symplectic manifolds by the associated moment polytopes.

In this paper we show that any good toric contact manifold has a well-defined cylindrical
contact homology, and describe how it can be combinatorially computed from the associated
moment cone.

To be more precise, consider the following definition.

Definition 1.1. A non-degenerate contact form is called nice if its Reeb flow has no closed
contractible orbit of contact homology degree equal to −1, 0 or 1. A non-degenerate contact
form is called even if all closed contractible orbits of its Reeb flow have even contact homology
degree.

The following proposition is a direct generalization to even contact forms of a well-known
result for nice contact forms.

Proposition 1.2. Let (N, ξ) be a contact manifold with an even or nice non-degenerate

contact form α. Then the boundary operator ∂ : C∗(N, α)→ C∗−1(N, α) satisfies ∂2 = 0 , and the

homology of (C∗(N, α), ∂) is independent of the choice of even or nice non-degenerate contact

form α. Hence, the cylindrical contact homology HC∗(N, ξ; Q) is a well-defined invariant of the

contact manifold (N, ξ).

Our first main result is the following theorem.

Theorem 1.3. Any good toric contact manifold admits even non-degenerate toric contact forms.

The corresponding cylindrical contact homology, isomorphic to the chain complex associated to

any such contact form, is a well-defined invariant that can be combinatorially computed from

the associated good moment cone.

By applying this theorem to a particularly nice family of examples, originally considered
by the mathematical physicists Gauntlett et al. in the context of their work on Sasaki–
Einstein metrics [GMSW04a] (see also [Abr10, MSY06]), we obtain the second main result of
this paper.

Theorem 1.4. There are infinitely many non-equivalent contact structures ξk on S2 × S3,
k ∈ N0, in the unique homotopy class determined by the vanishing of the first Chern class. These
contact structures are toric and can be distinguished by the degree zero cylindrical contact
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homology. More precisely,

rankHC∗(S2 × S3, ξk; Q) =


k if ∗= 0,
2k + 1 if ∗= 2,
2k + 2 if ∗> 2 and even,

0 otherwise.

Remark 1.5. All even non-degenerate toric contact forms that we consider for this family of
examples have exactly four simple closed Reeb orbits. As we will see in § 6, by a suitable choice
of such contact forms it is possible to concentrate all relevant contact homology information in
the multiples of a single simple closed Reeb orbit: the one with minimal action or, equivalently,
minimal period.

Remark 1.6. Van Koert constructs in [van08] an infinite family of non-equivalent contact
structures on S2 × S3 with vanishing first Chern class. Since his contact structures have vanishing
degree zero contact homology, they are necessarily different from the ones given by the k > 0
cases of Theorem 1.4. We will see that (S2 × S3, ξ0) is contactomorphic to the unit cosphere
bundle of S3.

A recent preprint by Pati [Pat09] discusses a generalization of the Morse–Bott approach of
Bourgeois to compute the contact homology of S1-bundles over certain symplectic orbifolds and
applies it to toric contact manifolds. His explicit examples do not overlap with the ones in this
paper.

Note also the recent preprint by Hamilton [Ham10] discussing inequivalent contact structures
on simply-connected 5-manifolds which arise as S1-bundles over simply-connected 4-manifolds.
His contact structures have non-zero first Chern class.

The paper is organized as follows. Section 2 contains the necessary introduction to toric
contact manifolds, their classification and main properties. The Conley–Zehnder index is
described in § 3, where we also give a proof of its invariance property under symplectic reduction
by a circle action (Lemma 3.4). This result, which plays an important role in the paper and
could also be of independent interest, is known to experts but we could not find a reference.
Section 4 gives a more detailed description of cylindrical contact homology and contains a proof
of Proposition 1.2 (restated there as Proposition 4.2). Section 5 contains the proof of Theorem 1.3,
while the examples and cylindrical contact homology computations relevant for Theorem 1.4 are
the subject of § 6.

Notation. In this paper, unless explicitly stated otherwise, closed Reeb orbit means contractible
closed Reeb orbit.

2. Toric contact manifolds

In this section we introduce toric contact manifolds via toric symplectic cones, and describe their
classification and explicit construction via the associated moment cones. We will also describe
the fundamental group and the first Chern class of a toric symplectic cone, as well as the space
of toric contact forms and Reeb vector fields that are relevant in this context. For further details
see Lerman’s papers [Ler03a, Ler03b, Ler04].
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2.1 Symplectic cones
Definition 2.1. A symplectic cone is a triple (W, ω, X), where (W, ω) is a connected symplectic
manifold, i.e. ω ∈ Ω2(W ) is a closed and non-degenerate 2-form, and X ∈ X (W ) is a vector field
generating a proper R-action ρt :W →W , t ∈ R, such that ρ∗t (ω) = e2tω. Note that the Liouville
vector field X satisfies LXω = 2ω, or equivalently

ω = 1
2d(ι(X)ω).

A closed symplectic cone is a symplectic cone (W, ω, X) for which the quotient W/R is closed.

Definition 2.2. A co-orientable contact manifold is a pair (N, ξ), where N is a connected odd-
dimensional manifold, and ξ ⊂ TN is a hyperplane distribution globally defined by ξ = ker α
for some α ∈ Ω1(N) such that dα|ξ is non-degenerate. Such a 1-form α is called a contact form
for ξ, and the non-degeneracy condition is equivalent to ξ being maximally non-integrable, i.e. its
integral submanifolds have at most half of its dimension.

A co-oriented contact manifold is a triple (N, ξ, [α]), where (N, ξ) is a co-orientable contact
manifold and [α] is the conformal class of some contact form α, i.e.

[α] = {ehα | h ∈ C∞(N)}.

Given a co-oriented contact manifold (N, ξ, [α]), with contact form α, let

W :=N × R, ω := d(etα) and X := 2
∂

∂t
,

where t is the R-coordinate. Then (W, ω, X) is a symplectic cone, usually called the
symplectization of (N, ξ, [α]).

Conversely, given a symplectic cone (W, ω, X) let

N :=W/R, ξ := π∗(ker(ι(X)ω)) and α := s∗(ι(X)ω),

where π :W →N is the natural principal R-bundle quotient projection and s :N →W is any
global section (note that such global sections always exist, since any principal R-bundle is trivial).
Then (N, ξ, [α]) is a co-oriented contact manifold whose symplectization is the symplectic cone
(W, ω, X).

In fact,

co-oriented contact manifolds 1:1←→ symplectic cones

(see [Ler03b, ch. 2] for details). Under this bijection, closed contact manifolds correspond to
closed symplectic cones and toric contact manifolds correspond to toric symplectic cones (see
below). Moreover, the following are equivalent:

(i) choice of a contact form for (N, ξ, [α]);

(ii) choice of a global section of π :W →N ;

(iii) choice of an R-equivariant splitting W ∼=N × R.

The choice of a contact form α for a contact manifold (N, ξ) gives rise to the Reeb vector
field Rα ∈ X (N), uniquely defined by

ι(Rα) dα≡ 0 and α(Rα)≡ 1,

and corresponding Reeb flow (Rα)s :N →N satisfying

(Rα)∗s(α) = α, ∀s ∈ R.
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The obvious horizontal lift of Rα to the symplectic cone (W =N × R, ω = d(etα), X = 2(∂/∂t))
will also be denoted by Rα. It satisfies

[Rα, X] = 0 and ι(Rα)ω =−d(et).

In other words, the lift of the Reeb flow is X-preserving and Hamiltonian.

Remark 2.3. On a symplectic cone (M, ω, X), any X-preserving symplectic action of a Lie
group G is Hamiltonian. In fact, the map µ :M → g∗ defined by

〈µ, Y 〉= ω(X, YM ), ∀Y ∈ g,

where YM is the vector field on M induced by Y via the G-action, is a moment map [Ler03b].

Remark 2.4. Any co-oriented contact manifold (N, ξ, [α]) has well-defined Chern classes

ck(ξ) ∈H2k(N ; Z), k = 1, . . . , n,

given by the Chern classes of the conformal symplectic vector bundle

(ξ, [dα|ξ])−→N.

Under the canonical isomorphism π∗ :H∗(N ; Z)→H∗(W, Z), induced by the natural principal
R-bundle projection π :W →N , these Chern classes coincide with the Chern classes of the
tangent bundle of the symplectization (W, ω, X). In fact

(TW, ω)∼= ε2 ⊕ π∗(ξ, [dα|ξ]),

where ε2 is a trivial rank-2 symplectic vector bundle. The choice of a contact form α gives rise
to an explicit isomorphism

ε2 ∼= span{X, Rα} and π∗(ξ)∼= (span{X, Rα})ω.

Example 2.5. The most basic example of a symplectic cone is R2(n+1)\{0} with linear
coordinates

(u1, . . . , un+1, v1, . . . , vn+1),
symplectic form

ωst = du ∧ dv :=
n+1∑
j=1

duj ∧ dvj

and Liouville vector field

Xst = u
∂

∂u
+ v

∂

∂v
:=

n+1∑
j=1

(
uj

∂

∂uj
+ vj

∂

∂vj

)
.

The associated co-oriented contact manifold is isomorphic to (S2n+1, ξst), where S2n+1 ⊂ Cn+1

is the unit sphere and ξst is the hyperplane distribution of complex tangencies, i.e.

ξst = TS2n+1 ∩ i TS2n+1.

The restriction of αst := ι(Xst)ωst to S2n+1 is a contact form for ξst. Its Reeb flow (Rst)s is the
restriction to S2n+1 of the diagonal flow on Cn+1 given by

(Rst)s · (z1, . . . , zn+1) = (eisz1, . . . , e
iszn+1),

where
zj = uj + ivj , j = 1, . . . , n+ 1,

give the usual identification R2(n+1) ∼= Cn+1.
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Example 2.6. Let (M, ω) be a symplectic manifold such that the cohomology class
1

2π
[ω] ∈H2(M, R) is integral, i.e. in the image of the natural map H2(M, Z)→H2(M, R).

Suppose that H2(M, Z) has no torsion, so that the above natural map is injective and we can
consider H2(M, Z)⊂H2(M, R). Denote by π :N →M the principal circle bundle with first
Chern class

c1(N) =
1

2π
[ω].

A theorem of Boothby and Wang [BW58] asserts that there is a connection 1-form α on N with
dα= π∗ω and, consequently, α is a contact form. We will call (N, ξ := ker(α)) the Boothby–Wang
manifold of (M, ω). The associated symplectic cone is the total space of the corresponding line
bundle L→M with the zero section deleted. The Reeb vector field Rα generates the natural
S1-action of N , associated to its circle bundle structure.

When M = CPn, with its standard Fubini–Study symplectic form, we recover Example 2.5,
i.e. (N, ξ)∼= (S2n+1, ξst) and π : S2n+1→ CPn is the Hopf map.

2.2 Toric symplectic cones
Definition 2.7. A toric symplectic cone is a symplectic cone (W, ω, X) of dimension 2(n+ 1)
equipped with an effective X-preserving symplectic Tn+1-action, with moment map µ :W →
t∗ ∼= Rn+1 such that µ(ρt(w)) = e2tρt(w), for all w ∈W, t ∈ R. Its moment cone is defined to be
the set

C := µ(W ) ∪ {0} ⊂ Rn+1.

Example 2.8. Consider the usual identification R2(n+1) ∼= Cn+1 given by

zj = uj + ivj , j = 1, . . . , n+ 1,

and the standard Tn+1-action defined by

(y1, . . . , yn+1) · (z1, . . . , zn+1) = (eiy1z1, . . . , e
iyn+1zn+1).

The symplectic cone (R2(n+1)\{0}, ωst, Xst) of Example 2.5 equipped with this Tn+1-action is a
toric symplectic cone. The moment map µst : R2(n+1)\{0}→ Rn+1 is given by

µst(u1, . . . , un+1, v1, . . . , vn+1) = 1
2(u2

1 + v2
1, . . . , u

2
n+1 + v2

n+1),

and the moment cone is C = (R+
0 )n+1 ⊂ Rn+1.

In [Ler03a] Lerman completed the classification of closed toric symplectic cones, initiated
by Banyaga and Molino [Ban99, BM93, BM96], and continued by Boyer and Galicki [BG00].
The ones that are relevant for toric Kähler–Sasaki geometry are characterized by having good
moment cones.

Definition 2.9 (Lerman). A cone C ⊂ Rn+1 is good if there exists a minimal set of primitive
vectors ν1, . . . , νd ∈ Zn+1, with d> n+ 1, such that the following hold.

(i) C =
⋂d
j=1{x ∈ Rn+1 : `j(x) := 〈x, νj〉> 0}.

(ii) Any codimension-k face of C, 1 6 k 6 n, is the intersection of exactly k facets whose set
of normals can be completed to an integral base of Zn+1.

Theorem 2.10 (Banyaga–Molino, Boyer–Galicki, Lerman). For each good cone C ⊂ Rn+1 there
exists a unique closed toric symplectic cone (WC , ωC , XC , µC) with moment cone C.

310

https://doi.org/10.1112/S0010437X11007044 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007044


Contact homology of good toric contact manifolds

Definition 2.11. The closed toric symplectic cones (respectively closed toric contact manifolds)
characterized by Theorem 2.10 will be called good toric symplectic cones (respectively good toric
contact manifolds).

Remark 2.12. According to Lerman’s classification (see [Ler03a, Theorem 2.18]), the list of
closed toric contact manifolds that are not good is the following:

(i) certain overtwisted contact structures on three-dimensional lens spaces (including S1 × S2);

(ii) the tight contact structures ξn, n> 1, on T3 = S1 × T2, defined as

ξn = ker(cos(nθ) dy1 + sin(nθ) dy2), (θ, y1, y2) ∈ S1 × T2

(Giroux [Gir94] and Kanda [Kan97] proved independently that these are all inequivalent);

(iii) a unique toric contact structure on each principal Tn+1-bundle over the sphere Sn, with
n> 2.

Item (iii) classifies all closed toric contact manifolds of dimension 2n+ 1, n> 2, and free
Tn+1-action [Ler03a]. Hence, a closed toric contact manifold of dimension greater than three is
good if and only if the corresponding torus action is not free.

Example 2.13. Let P ⊂ Rn be an integral Delzant polytope, i.e. a Delzant polytope with integral
vertices or, equivalently, the moment polytope of a closed toric symplectic manifold (MP , ωP , µP )
such that (1/2π)[ω] ∈H2(MP , Z). Then, its standard cone

C := {z(x, 1) ∈ Rn × R : x ∈ P, z > 0} ⊂ Rn+1

is a good cone. Moreover, we have the following.

(i) The toric symplectic manifold (MP , ωP , µP ) is the S1 ∼= {1} × S1 ⊂ Tn+1 symplectic
reduction of the toric symplectic cone (WC , ωC , XC , µC) (at level one).

(ii) The contact manifold (NC := µ−1
C (Rn × {1}), αC := (ι(XC)ωC)|NC ) is the Boothby–Wang

manifold of (MP , ωP ). The restricted Tn+1-action makes it a toric contact manifold.

(iii) The toric symplectic cone (WC , ωC , XC) is the symplectization of (NC , αC).

See [Ler03c, Lemma 3.7] for a proof of these facts.

If P ⊂ Rn is the standard simplex, i.e. MP = CPn, then its standard cone C ⊂ Rn+1 is the
moment cone of (WC = Cn+1\{0}, ωst, Xst) equipped with the Tn+1-action given by

(y1, . . . , yn, yn+1) · (z1, . . . , zn, zn+1)
= (ei(y1+yn+1)z1, . . . , e

i(yn+yn+1)zn, e
iyn+1zn+1).

The moment map µC : Cn+1\{0}→ Rn+1 is given by

µC(z) = 1
2(|z1|2, . . . , |zn|2, |z1|2 + · · ·+ |zn|2 + |zn+1|2)

and

NC := µ−1
C (Rn × {1}) = {z ∈ Cn+1 : ‖z‖2 = 2} ∼= S2n+1.

Remark 2.14. Up to a possible twist of the action by an automorphism of the torus Tn+1,
any good toric symplectic cone can be obtained via an orbifold version of the Boothby–Wang
construction of Example 2.6, where the base is a toric symplectic orbifold.
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2.3 Explicit models
Like the case of closed toric symplectic manifolds, the existence part of Theorem 2.10 follows
from an explicit symplectic reduction construction, starting from a standard (R2d\{0}, ωst, Xst)
(cf. Example 2.8). Since it will be needed later, we will briefly describe it here. Complete details
can be found, for example, in [Ler03a] (proof of Lemma 6.3).

Let C ⊂ (Rn+1)∗ be a good cone defined by

C =
d⋂
j=1

{x ∈ (Rn+1)∗ : `j(x) := 〈x, νj〉> 0}

where d> n+ 1 is the number of facets and each νj is a primitive element of the lattice
Zn+1 ⊂ Rn+1 (the inward-pointing normal to the jth facet of C).

Let (e1, . . . , ed) denote the standard basis of Rd, and define a linear map β : Rd→ Rn+1 by

β(ej) = νj , j = 1, . . . , d. (1)

The conditions of Definition 2.9 imply that β is surjective. Denoting by k its kernel, we have
short exact sequences

0→ k
ι−→ Rd β−−→ Rn+1→ 0 and its dual, 0→ (Rn+1)∗

β∗
−−−→ (Rd)∗ ι∗

−−→ k∗→ 0.

Let K denote the kernel of the map from Td = Rd/2πZd to Tn+1 = Rn+1/2πZn+1 induced by β.
More precisely,

K =
{

[y] ∈ Td :
d∑
j=1

yjνj ∈ 2πZn
}
. (2)

It is a compact abelian subgroup of Td with Lie algebra k = ker(β). Note that K need not be
connected (this will be relevant in the proof of Proposition 2.15).

Consider R2d with its standard symplectic form

ωst = du ∧ dv =
d∑
j=1

duj ∧ dvj ,

and identify R2d with Cd via zj = uj + ivj , j = 1, . . . , d. The standard action of Td on R2d ∼= Cd

is given by

y · z = (eiy1z1, . . . , e
iydzd)

and has a moment map given by

φTd(z1, . . . , zd) =
d∑
j=1

|zj |2

2
e∗j ∈ (Rd)∗.

Since K is a subgroup of Td, K acts on Cd with moment map

φK = ι∗ ◦ φTd =
d∑
j=1

|zj |2

2
ι∗(e∗j ) ∈ k∗. (3)

The toric symplectic cone (WC , ωC , XC) associated to the good cone C is the symplectic
reduction of (R2d\{0}, ωst, Xst) with respect to the K-action, i.e.

WC = Z/K where Z = φ−1
K (0)\{0} ≡ zero level set of moment map in R2d\{0},
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the symplectic form ωC comes from ωst via symplectic reduction, while the R-action of the
Liouville vector field XC and the action of Tn+1 ∼= Td/K are induced by the actions of Xst and
Td on Z.

2.4 Fundamental group and first Chern class
Lerman showed in [Ler04] how to compute the fundamental group of a good toric symplectic
cone, which is canonically isomorphic to the fundamental group of the associated good toric
contact manifold.

Proposition 2.15 (See [Ler04]). Let WC be the good toric symplectic cone determined by a
good cone C ⊂ Rn+1. Let N :=N{ν1, . . . , νd} denote the sublattice of Zn+1 generated by the
primitive integral normal vectors to the facets of C. The fundamental group of WC is the finite
abelian group

Zn+1/N .

Proof (Outline). (i) We know that

WC = Z/K,

where K ⊂ Td acts on Cd with moment map φK : Cd→ k∗ defined by (3) and Z = φ−1
K (0)\{0}.

(ii) The set Z has the homotopy type of

Cd\(V1 ∪ · · · ∪ Vr),

where each Vj ⊂ Cd is a linear subspace of complex codimension at least two. In particular,

π0(Z) = π1(Z) = π2(Z) = 1.

(iii) The torus K acts freely on Z, and the long exact sequence of homotopy groups for the
fibration

K→ Z→WC

implies that

π1(WC) = π0(K).

(iv) The fact that K = ker β, with β : Td→ Tn+1 defined by (1), implies that

π0(K) = Zn+1/N .

Recall from Remark 2.4 that the Chern classes of the tangent bundle of a symplectic cone can
be canonically identified with the Chern classes of the associated co-oriented contact manifold.
The following proposition gives a combinatorial characterization of the vanishing of the first
Chern class of good toric symplectic cones.

Proposition 2.16. Let (WC , ωC , XC) be the good toric symplectic cone determined by the
good cone C ∈ Rn+1 via the explicit symplectic reduction construction of the previous subsection.
Let K ∈ Td be defined by (2), and denote by χ1, . . . , χd the characters that determine its natural
representation on Cd. Then

c1(TWC) = 0⇔ χ1 + · · ·+ χd = 0.

Proof. It follows from the symplectic reduction description of WC as Z/K, where K ⊂ Td acts
freely on Z ⊂ Cd, that the quotient map Z→WC is a principal K-bundle. We then have the

313

https://doi.org/10.1112/S0010437X11007044 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007044


M. Abreu and L. Macarini

following classifying diagram.

Z //

��

EK

��
WC

f // BK

Consider the induced map between the homotopy long exact sequences of these two principal
fibrations with the same fiber K. Note that EK is contractible. As we pointed out in the proof
of the previous proposition, Lerman showed in [Ler04] that π0(Z) = π1(Z) = π2(Z) = 1. This
implies that

f∗ : πi(WC)−→ πi(BK) is an isomorphism for i= 0, 1, 2.

Since π3(BK)∼= π2(K) = 1, we also know that

f∗ : π3(WC)−→ π3(BK) is surjective.

This means that the map f :WC →BK is 3-connected and so induces an isomorphism in
homology, and also in cohomology, in degree less than or equal to two. In particular,

f∗ :H2(BK; Z)−→H2(WC ; Z) is an isomorphism.

The natural representation of K ⊂ Td on Cd and this principal K-bundle Z→WC give rise
to a vector bundle Z ×K Cd→WC with the following classifying diagram.

Z ×K Cd //

��

EK ×K Cd

��
WC

f // BK

One can also think of this vector bundle as the quotient by K of the trivial K-equivariant vector
bundle Z × Cd→ Z that one gets by restricting the tangent bundle of Cd to Z. Let kC denote
the complexified Lie algebra of K. The trivial vector bundle WC × kC→WC can be seen as a
sub-bundle of Z ×K Cd→WC via the map

WC × kC −→ Z ×K Cd

([z], v) 7−→ [z, Xv]

where we use the description of WC as Z/K and Xv ∈ TzCd ∼= Cd is induced by the free action of
K on Z. The quotient bundle (Z ×K Cd)/(WC × kC) is naturally isomorphic to TWC , and this
shows that

Z ×K Cd ∼= TWC ⊕ (WC × kC).

Hence

c1(TWC) = c1(Z ×K Cd) = f∗c1(EK ×K Cd) and c1(TWC) = 0⇔ c1(EK ×K Cd) = 0.

Since

H2(BK; Z)∼= character group of K

and c1(EK ×K Cd) ∈H2(BK; Z) is given by

c1(EK ×K Cd) = χ1 + · · ·+ χd,

the result follows.
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Remark 2.17. Let k1, . . . , kd−n−1 ∈ Zd ⊂ Rd be an integral basis for the Lie algebra of K ⊂ Td.
Proposition 2.16 states that

c1(TWC) = 0⇔
d∑
j=1

(ki)j = 0, for all i= 1, . . . , d− n− 1.

2.5 Sasaki contact forms and Reeb vectors
Let (W, ω, X) be a good toric symplectic cone of dimension 2(n+ 1), with corresponding closed
toric manifold (N, ξ). Denote by XX(W, ω) the set of X-preserving symplectic vector fields on W
and by X (N, ξ) the corresponding set of contact vector fields on N . The Tn+1-action associates
to every vector ν ∈ t∼= Rn+1 a vector field Rν ∈ XX(W, ω)∼= X (N, ξ).

Definition 2.18. A contact form α ∈ Ω1(N, ξ) is called Sasaki if its Reeb vector field Rα
satisfies

Rα =Rν for some ν ∈ Rn+1.
In this case we will say that ν ∈ Rn+1 is a Reeb vector.

In the context of their work on toric Sasaki geometry, Martelli et al. characterize in [MSY06]
which ν ∈ Rn+1 are Reeb vectors of a Sasaki contact form on (N, ξ).

Proposition 2.19 (See [MSY06]). Let ν1, . . . , νd ∈ Rn+1 be the defining integral normals of the
moment cone C ∈ Rn+1 associated with (W, ω, X) and (N, ξ). The vector field Rν ∈ XX(W, ω)∼=
X (N, ξ) is the Reeb vector field of a Sasaki contact form αν ∈ Ω1(N, ξ) if and only if

ν =
d∑
j=1

ajνj with aj ∈ R+ for all j = 1, . . . , d.

Proof (Outline). This result is well-known for (Cd\{0}, ωst, Xst). In fact, any such Reeb vector
field Rν corresponds to

ν =
d∑
j=1

ajej = (a1, . . . , ad) ∈ (R+)d

and can be written in complex coordinates as

Rν = i

d∑
j=1

aj

(
zj

∂

∂zj
− z̄j

∂

∂z̄j

)
.

The corresponding Reeb flow is given by

(Rν)s · (z1, . . . , zd) = (eia1sz1, . . . , e
iadszd),

and the contact form αν is the restriction of

αst := ι(Xst)ωst =
i

2

d∑
j=1

(zj dz̄j − z̄j dzj)

to
S2d−1 ∼= {z ∈ Cd : (αst)z(Rν) = 1}

=
{
z ∈ Cd :

d∑
j=1

aj |zj |2 = 1
}
.

(Compare with the example in the Introduction and Example 2.5.)
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The result follows for any good toric symplectic cone (W, ω, X), with moment cone C, from
the explicit reduction construction of the model (WC , ωC , XC). Note in particular the definition
of the linear map β : Rd→ Rn+1 given by (1). 2

3. The Conley–Zehnder index

3.1 The Maslov index for loops of symplectic matrices
Let Sp(2n) denote the symplectic linear group, i.e. the group of linear transformations of R2n that
preserve its standard linear symplectic form. The Maslov index provides an explicit isomorphism
π1(Sp(2n))∼= Z. It assigns an integer µM (ϕ) to every loop ϕ : S1 = R/2πZ→ Sp(2n), uniquely
characterized by the following properties.

– Homotopy: two loops in Sp(2n) are homotopic if and only if they have the same Maslov
index.

– Product: for any two loops ϕ1, ϕ2 : S1→ Sp(2n) we have

µM (ϕ1 · ϕ2) = µM (ϕ1) + µM (ϕ2).

In particular, the constant identity loop has Maslov index zero.
– Direct sum: if n= n1 + n2, we may regard Sp(2n1)⊕ Sp(2n2) as a subgroup of Sp(2n) and

µM (ϕ1 ⊕ ϕ2) = µM (ϕ1) + µM (ϕ2).

– Normalization: the loop ϕ : S1→ U(1)⊂ Sp(2) defined by ϕ(θ) = eiθ has Maslov index one.

3.2 The Conley–Zehnder index for paths of symplectic matrices
Robin and Salamon [RS93] defined a Conley–Zehnder index which assigns a half-integer µCZ(Γ)
to any path of symplectic matrices Γ : [a, b]→ Sp(2n). This Conley–Zehnder index satisfies the
following properties.

(1) Naturality: µCZ(Γ) = µCZ(ψΓψ−1) for all ψ ∈ Sp(2n).
(2) Homotopy: µCZ(Γ) is invariant under homotopies of Γ with fixed endpoints.
(3) Zero: if Γ(a) is the identity matrix and Γ(t) has no eigenvalue on the unit circle for

t ∈ (a, b], then µCZ(Γ) = 0.
(4) Direct sum: if n= n1 + n2, we may regard Sp(2n1)⊕ Sp(2n2) as a subgroup of Sp(2n)

and
µCZ(Γ1 ⊕ Γ2) = µCZ(Γ1) + µCZ(Γ2).

(5) Loop: if ϕ : [a, b]→ Sp(2n) is a loop with ϕ(a) = ϕ(b) = identity matrix, then

µCZ(ϕ · Γ) = 2µM (ϕ) + µCZ(Γ).

(6) Concatenation: for any a < c < b we have

µCZ(Γ) = µCZ(Γ|[a,c]) + µCZ(Γ|[c,b]).

(7) Signature: given a symmetric (2n× 2n)-matrix S with ‖S‖< 1, the Conley–Zehnder
index of the path Γ : [0, 1]→ Sp(2n) defined by Γ(t) = exp(2πJ0St) is given by

µCZ(Γ) = 1
2 sign S.

Here ‖S‖ := max|v|=1 |Sv|, using the standard Euclidean norm on R2n, sign(S) := signature of
the matrix S, i.e. the number of positive minus the number of negative eigenvalues, and J0 is
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the matrix representing the standard complex structure on R2n, i.e.

J0 =
[
0 −I
I 0

]
.

(8) Shear axiom: the index of a symplectic shear

Γ(t) =
(
I B(t)
0 I

)
is given by 1

2 signB(a)− 1
2 signB(b).

Example 3.1. If Γ : [a, b]→ Sp(2n) is a loop then

µCZ(Γ) = 2µM (Γ).

Example 3.2. Let T > 0 and Γ : [0, T ]→ U(1)⊂ Sp(2) be defined by

Γ(t) = e2πit =
[
cos(2πt) −sin(2πt)
sin(2πt) cos(2πt)

]
.

Then

µCZ(Γ) =

{
2T if T ∈ N,
2bT c+ 1 otherwise,

where bT c := max{n ∈ Z; n6 T}.

3.3 The Conley–Zehnder index for contractible periodic Reeb orbits
We will now define the Conley–Zehnder index of a periodic Reeb orbit which, for the sake of
simplicity, we will assume to be contractible.

Let (N2n+1, ξ) be a co-oriented contact manifold, with contact form α and Reeb vector field
Rα. Given a contractible periodic Reeb orbit γ, consider a capping disk of γ, that is a map
σγ :D→N that satisfies

σγ |∂D = γ.

Choose a (unique up to homotopy) symplectic trivialization

Φ : σ∗γξ→D × R2n.

We can define the symplectic path

Γ(t) = Φ(γ(t)) ◦ d(Rα)t(γ(0))|ξ ◦ Φ−1(γ(0)). (4)

The Conley–Zehnder index of γ with respect to the capping disk σγ is defined by

µCZ(γ, σγ) = µCZ(Γ).

This is in general a half integer number, and it is an integer number if the periodic orbit is
non-degenerate. This means that the linearized Poincaré map of γ has no eigenvalue equal to
one.

This index in general does depend on the choice of the capping disk. More precisely, given
another capping disk σ̄γ , we have

µCZ(γ, σ̄γ)− µCZ(γ, σγ) = 2〈c1(ξ), σ̄γ#(−σγ)〉,

where σ̄γ#(−σγ) denotes the homology class of the gluing of the capping disks σ̄γ and σγ with
the reversed orientation. Notice however that the parity of the index of a non-degenerate closed
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orbit does not depend on the chosen capping disk. In particular, the index of a contractible
non-degenerate periodic orbit is a well-defined element in Z/2c(ξ)Z, where

c(ξ) := inf{k > 0; ∃A ∈ π2(N), 〈c1(ξ), A〉= k}

is the minimal Chern number of ξ (here we adopt the convention that the infimum over the
empty set equals ∞).

Remark 3.3. We can define the Conley–Zehnder index of a contractible periodic orbit γ of a
Hamiltonian flow on a symplectic manifold V in the same way, taking a capping disk σγ and
a trivialization of TV over σγ . Analogously to periodic orbits of Reeb flows, the difference of the
indexes with respect to two capping disks σ̄γ and σγ is given by

µCZ(γ, σ̄γ)− µCZ(γ, σγ) = 2〈c1(TV ), σ̄γ#(−σγ)〉, (5)

where c1(TV ) is the first Chern class of TV .

3.4 Behavior of the Conley–Zehnder index under symplectic reduction

In this section we address the question of the relation between the Conley–Zehnder index of a
periodic orbit and the Conley–Zehnder index of its symplectic reduction. This will be important
later. Again, for the sake of simplicity, we will only consider contractible periodic orbits.

Let V be a symplectic manifold and h : V × R→ R a time-dependent Hamiltonian on V with
a first integral f : V → R, that is, a function f constant along the orbits of h. Denote by Xt

h and
Xf the Hamiltonian vector fields of h and f respectively. Consider a Riemannian metric on V
induced by a compatible almost complex structure.

Let Z be a regular level of f , and suppose that Xf generates a free circle action on Z. Denote
by W the Marsden–Weinstein reduced symplectic manifold Z/S1. The Hamiltonian h induces
a Hamiltonian g on W whose Hamiltonian flow ψt satisfies the relation π ◦ ϕt = ψt ◦ π, where
ϕt is the Hamiltonian flow of h and π : Z→W is the quotient projection. In particular, every
periodic orbit γ̃ of Xt

h gives rise to a periodic orbit γ = π ◦ γ̃ of Xt
g with the same period.

Lemma 3.4. Suppose that the linearized Hamiltonian flow of h on Z leaves the distribution
span{∇f} invariant. Let γ̃ be a closed orbit of Xh contractible in Z and σγ̃ :D→ Z a capping
disk for γ̃. Then the capping disk σγ := π ◦ σγ̃ for the reduced periodic orbit γ satisfies

µCZ(γ̃, σγ̃) = µCZ(γ, σγ).

Proof. Denote by D the symplectic distribution generated by Xf and ∇f . The hypothesis on
∇f and the fact that f is a first integral for h imply that D is invariant under dϕt. Hence, the
symplectic orthogonal complement Dω is also invariant under dϕt.

Let Φ : σ∗γ̃TV →D2 × R2d be a (unique up to homotopy) trivialization of TV over σγ̃
(dim V = 2d). Since Xf , ∇f and Dω are defined over the whole disk σγ̃ , one can find a symplectic
bundle isomorphism Ψ :D2 × R2d→D2 × R2d that covers the identity and satisfies:

(P1) π2(Ψ(Φ(Xf ))) = e1 and π2(Ψ(Φ(∇f))) ∈ span{f1}, where {e1, . . . , ed, f1, . . . , fd} is a fixed
symplectic basis in R2d and π2 :D2 × R2d→ R2d is the projection onto the second factor;

(P2) π2(Ψ(Φ(σ∗γ̃Dω))) = span{e2, . . . , en, f2, . . . , fn}.

Note that σγ = π ◦ σγ̃ is a capping disk for γ and the differential of π induces the identification
dπ|Dω : σ∗γ̃Dω→ σ∗γTW . Hence, in order that Φ induces a trivialization over σγ it is enough to
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choose it such that it sends Dω to a fixed symplectic subspace in R2d. Property (P2) ensures that
the trivialization Λ := Ψ ◦ Φ satisfies this property. In fact, consider the splitting R2d = E1 ⊕ E2,
where E1 = span{e1, f1} and E2 = span{e2, . . . , en, f2, . . . , fn}. We have Λ(σ∗γ̃Dω) =D2 × E2,
and the trivialization over σγ is then given by

Λ ◦ (dπ|Dω)−1 : σ∗γTW →D2 × E2.

Now, define the symplectic path

Γ(t) = Λ(γ̃(t)) ◦ dϕt(γ̃(0)) ◦ Λ−1(γ̃(0)),

so that µ(γ̃, σγ̃) = µ(Γ). Since f is a first integral, Xf is preserved by dϕt and, by hypothesis,
span{∇f} is preserved as well. Thus, by property (P1), Γ|E1 is a symmetric symplectic path
in R2 with an eigenvalue one. However, a symmetric symplectic isomorphism in R2 with an
eigenvalue one is necessarily the identity.

Consequently, the direct sum property of the index yields

µ(Γ) = µ(Γ|E1) + µ(Γ|E2) = µ(Γ|E2) = µ(γ, σγ),

finishing the proof of the lemma.

Remark 3.5. The assumption on span{∇f} is necessary. In order to show this, consider the
Hamiltonian h : C2→ R given by h(z1, z2) = g(|z1|2 + |z2|2), where g is a smooth real function. It
is obviously invariant under the Hamiltonian circle action generated by f(z1, z2) = |z1|2 + |z2|2
whose reduced symplectic manifold is S2. Every reduced orbit is a constant solution whose
constant capping disk has index zero. Consequently, by (5) and the fact that c1(TS2) = 2, the
index of a reduced orbit is given by an integer multiple of four, whatever is the choice of
the capping disk. However, one can show that a non-constant orbit γ̃ of h has index

µ(γ̃) =


7/2 if g′′(f(γ̃))< 0,
4 if g′′(f(γ̃)) = 0,
9/2 if g′′(f(γ̃))> 0.

The hint for showing this fact is the existence of a trivialization over a capping disk σγ̃ such that
the linearized Hamiltonian flow restricted to the subspace spanned by Xf and ∇f is given by
the symplectic shear (

1 −g′′(f(γ̃))t
0 1

)
.

Note that the linearized Hamiltonian flow of h preserves ∇f precisely when g′′(f(γ̃)) = 0.

Remark 3.6. The hypothesis that γ̃ is contractible in Z is also necessary (notice that to define
the Conley–Zehnder index of γ̃ we need only to suppose that γ̃ is contractible in V ). As a matter
of fact, let W be a symplectic manifold with first Chern class different from one, and consider
on V :=W × C the circle action generated by f(p, z) = |z|2. It is easy to see that every orbit
γ̃ of f has a capping disk with index two. On the other hand, the reduced orbit is a constant
solution γ whose constant capping disk has index zero. Consequently, the hypothesis on c1(TW )
and (5) imply that there is no capping disk for γ with index two. A less trivial argument can
give examples where the orbits are not contractible but homologically trivial.

319

https://doi.org/10.1112/S0010437X11007044 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007044


M. Abreu and L. Macarini

4. Cylindrical contact homology

There are several versions of contact homology (see [Bou09] for a survey). A suitable one for our
purposes is cylindrical contact homology, whose definition is closer to the usual construction of
Floer homology [Flo88a, Flo88b, Flo89] but with some rather technical differences. The aim
of this section is to sketch this construction. Details can be found in [Bou03b, EGH00, van05,
Ust99] and references therein.

Let α be a contact form on N2n+1 with contact structure ξ = ker α, and let Rα be its Reeb
vector field. For the sake of simplicity, we will assume that c1(ξ) = 0. Denote by P the set of
periodic orbits of Rα, and suppose that Rα is non-degenerate, i.e. every closed orbit γ ∈ P is
non-degenerate. A periodic orbit of Rα is called bad if it is an even multiple of a periodic orbit
whose parities of the Conley–Zehnder index of odd and even iterates disagree. An orbit that is
not bad is called good. Denote the set of good periodic orbits by P0(α).

Consider the chain complex CC∗(α) given by the graded group with coefficients in Q
generated by good periodic orbits of Rα graded by their Conley–Zehnder index plus n− 2.
This extra term n− 2 is not important in the definition of cylindrical contact homology but the
reason for its use will be apparent later. Let us denote the degree of a periodic orbit by |γ|.

The boundary operator ∂ is given by counting rigid holomorphic cylinders in the
symplectization (W, ω) := (R×N, d(etα)). More precisely, fix an almost complex structure J on
W compatible with ω such that J is invariant by t-translations, J(ξ) = ξ and J(∂/∂t) =Rα. The
space of these almost complex structures is contractible. Let Σ = S2\Γ be a punctured rational
curve, where S2 is endowed with a complex structure j and Γ = {x, y1, . . . , ys} is the set of
(ordered) punctures of Σ. We will consider holomorphic curves from Σ to the symplectization W ,
that is, smooth maps F = (a, f) : Σ→W satisfying dF ◦ j = J ◦ dF . We restrict ourselves to
holomorphic curves such that, for polar coordinates (ρ, θ) centered at a puncture p ∈ Γ, the
following conditions hold:

lim
ρ→0

a(ρ, θ) =

{
+∞ if p= x,

−∞ if p= yi for some i= 1, . . . , s,

lim
ρ→0

f(ρ, θ) =

{
γ(−Tθ/2π) if p= x,

γi(Tiθ/2π) if p= yi for some i= 1, . . . , s,

where γ and γi are good periodic orbits of Rα of periods T and Ti respectively. Denote the set
of such holomorphic curves by M(γ, γ1, . . . , γs; J), and notice that j is not fixed. Define an
equivalence relation ' on M(γ, γ1, . . . , γs; J) by saying that (F = (a, f), j) and (F̃ = (ã, f̃), j̃)
are equivalent if there is a shift τ ∈ R and a biholomorphism ϕ : (S2, j)→ (S2, j̃) such that
ϕ(p) = p for every p ∈ Γ and

(a, f) = (ã ◦ ϕ+ τ, f̃ ◦ ϕ).

Define the moduli space M̂(γ, γ1, . . . , γs; J) as M(γ, γ1, . . . , γs; J)/'. A crucial ingredient in
order to understand the set M̂(γ, γ1, . . . , γs; J) is the operator D(F,j) : TFB1,p,δ(Σ, V )× TjT →
Lp,δ(Σ, F ∗TV ) called the vertical differential and given by

D(F,j)(ψ, y) =∇ψ + J ◦ ∇ψ ◦ j + (∇ψJ) ◦DF ◦ j + J ◦DF ◦ y,

where p > 2, δ > 0 is sufficiently small, B1,p,δ(Σ, V ) is the Banach manifold consisting of W 1,p
loc

maps from Σ to W with a suitable behavior near the punctures, T stands for a Teichmüller
slice through j as defined in [Wen10], and Lp,δ(Σ, F ∗TV ) is a weighted Sobolev space given by
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the completion of the space of smooth anti-holomorphic 1-forms Ω0,1(Σ, F ∗TV ) with respect
to suitable norms, see [Wen10] for details. Notice that we are tacitly taking the Levi-Civita
connection given by the metric induced by the symplectic form and the almost complex
structure.

This is a Fredholm operator with index given by

|γ| −
s∑
i=1

|γi|+ dim Aut(Σ, j),

where Aut(Σ, j) is the group of automorphisms of (Σ, j), see [Wen10, p. 376]. We say that
J is regular if D(F,j) is surjective for every holomorphic curve (F, j) (it does not depend on the
choice of the Teichmüller slice, see [Wen10, Lemma 3.11]). It turns out that if J is regular then
M̂(γ, γ1, . . . , γs; J) is a smooth manifold with dimension given by

|γ| −
s∑
i=1

|γi| − 1.

Moreover, M̂(γ, γ1, . . . , γs; J) admits a compactification M(γ, γ1, . . . , γs; J) with a coherent
orientation [BM04] whose boundary is given by holomorphic buildings [BEHWZ03]. In particular,
if J is regular, then M(γ, γ1, . . . , γs; J) is a finite set with signs whenever |γ| −

∑s
i=1 |γi|= 1.

However, unlike Floer homology in the monotone case, regularity is not achieved in general
by a generic choice of J . Instead, one needs to use multi-valued perturbations equivariant
with respect to the action of biholomorphisms, and this turns out to be a very delicate issue.
Several ongoing approaches have been developed to give a rigorous treatment to this problem,
see [CM07, HWZ07, HWZ09a, HWZ09b]. Consequently, following [BO09, Remark 9], we will
assume the following technical condition throughout this work.

Transversality assumption. We suppose that the almost complex structure J is regular for
holomorphic curves with index less or equal than two (the index of a holomorphic curve is
defined as the degree of the positive periodic orbit minus the sum of the degrees of the negative
ones). Moreover, we will also assume the existence of regular almost complex structures for
holomorphic curves with index less or equal than one in cobordisms and with index less or equal
than zero in 1-parameter families of cobordisms.

We have then the following result on the structure of moduli spaces of holomorphic cylinders
in symplectizations.

Proposition 4.1 [EGH00]. Under the previous transversality assumption, the moduli spaces
M(γ, γ1) of dimension zero consist of finitely many points with rational weights. The moduli
spaces M(γ, γ1) of dimension one have boundary given by finitely many points corresponding
to holomorphic buildings with rational weights whose sum counted with orientations vanishes.
Moreover, if a holomorphic building in the boundary consists of a broken cylinder then its weight
is given by the product of the weights of each cylinder.

We expect the transversality assumption to be completely removed using the polyfold theory
developed by Hofer, Wysocki and Zehnder, see [HWZ07, HWZ09a, HWZ09b].

Thus, fix s= 1; that is, let Σ be a cylinder. By the discussion above, if two periodic orbits γ
and γ̄ satisfy |γ|= |γ̄|+ 1 then M(γ, γ̄) is a finite set. This enables us to define the boundary
operator in the following way. Let γ be a periodic orbit of multiplicity m(γ), i.e. γ is a covering
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of degree m(γ) of a simple closed orbit. Define

∂γ =m(γ)
∑

γ̄∈P0(α),|γ̄|=|γ|−1

∑
F∈M(γ,γ̄)

sign(F ) weight(F )γ̄,

where sign(F ) is the sign of F determined by the coherent orientation ofM(γ, γ̄) and weight(F )
is the weight established in the previous proposition. A somewhat different definition of the
boundary operator is given in [EGH00] using asymptotic markers, but one can check that this
is equivalent to the definition above. Notice the similarity with Floer homology, but we have to
consider weights in the boundary operator.

The next proposition is a generalization of [EGH00, § 1.9.2], where it is shown that cylindrical
contact homology is well defined and an invariant of the contact structure for nice contact forms.
The specific nature of the weights in the boundary operator does not play any role in the proof;
the point is to avoid the presence of certain tree-like curves in the boundary of moduli spaces of
dimension one, and it is here that the hypothesis on the contact forms comes in. As a matter of
fact, as will be accounted in the proof, the assumption that the contact form is even implies
that there is no holomorphic curve of index one in the symplectization, and the hypothesis of
non-existence of periodic orbits of degree 1, 0 and −1 is to avoid rigid planes (rigid means that
it belongs to a moduli space of dimension zero) in symplectizations, cobordisms and cobordisms
in 1-parameter families of cobordisms respectively.

Following exactly as in the proof in [Bou03b, EGH00, Ust99], one can extend the argument
to even contact forms, and prove Proposition 1.2, which we restate here for the convenience of
the reader.

Proposition 4.2. Let (N, ξ) be a contact manifold with an even or nice non-degenerate
contact form α. Then the boundary operator ∂ : C∗(N, α)→ C∗−1(N, α) satisfies ∂2 = 0, and the
homology of (C∗(N, α), ∂) is independent of the choice of even or nice non-degenerate contact
form α. Hence, the cylindrical contact homology HC∗(N, ξ; Q) is a well-defined invariant of the
contact manifold (N, ξ).

Proof. The proof follows the proofs in [Bou03b, EGH00, Ust99]. We will just recall the main
steps and explain how to proceed with even contact forms.

If α is even then obviously ∂2 = 0, since ∂ = 0. To deal with the case that α is nice, notice
that ∂2 counts broken rigid holomorphic cylinders in the symplectization of α that appear (by a
gluing argument) as points in the boundary of the moduli space of cylinders connecting orbits
with index difference equal to two. The condition that Rα has no periodic orbit of degree one
implies that there is nothing else in the boundary of this moduli space. Indeed, we could have
in the boundary a tree-like curve with one level of index 1 and the other level consisting of a
rigid plane and a vertical cylinder. However, the non-existence of orbits of degree one excludes
the existence of these planes.

Thus, ∂2 counts points in the boundary of the moduli space of dimension one, and the sum of
the weights of these points counted with orientations vanishes. These weights are the products
of the weights of the rigid holomorphic cylinders in each level and the number of ways that such
cylinders can be glued to each other is given precisely by the multiplicity of the closed orbit
where we glue. This is the reason why the factor m(γ) appears in the definition of ∂. Hence it
follows that ∂2 = 0.

Now, let us consider the invariance problem. To carry it out, we will construct an isomorphism
Φ :HC∗(N, α)→HC∗(N, α̃). Since α̃ defines the same contact structure as α we can
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write α̃= fα, where f :N → R is a smooth positive function. Take a function g : R×N → R
such that g(t, x) = et for t > R, g(t, x) = etf(x) for t <−R and ∂tg > 0, where R> 0 is a
constant big enough. It is easy to check that d(gα) is a symplectic form on R×N . We call
(W, ω) := (R×N, d(gα)) a symplectic cobordism with ends W+ = (R,+∞)×N and W− =
(−∞,−R)×N , restricted to which ω coincides with the symplectic forms of the symplectizations
of α and α̃ respectively. Denote by J+ and J− the corresponding almost complex structures on
W+ and W− as defined previously, and consider a compatible almost complex structure JW on
W that extends J− and J+.

In order to define Φ, we need to consider holomorphic curves on W in a similar fashion to
what we did in symplectizations. More precisely, let Σ be as before, and fix a periodic orbit γ
of Rα and periodic orbits γ̃1, . . . , γ̃s of Rα̃. We look at holomorphic curves F : Σ→W that are
asymptotic to γ and γ̃1, . . . , γ̃s at the positive and negative punctures respectively. Denote the
set of such curves by M(γ, γ̃1, . . . , γ̃s; JW ).

Analogously to symplectizations, define an equivalence relation ' on M(γ, γ̃1, . . . , γ̃s; JW )
by saying that F = (a, f) and F̃ = (ã, f̃) are equivalent if there is a biholomorphism ϕ : S2→ S2

that restricted to Γ is the identity and

(a, f) = (ã ◦ ϕ, f̃ ◦ ϕ).

The moduli space M̂(γ, γ̃1, . . . , γ̃s; JW ) :=M(γ, γ̃1, . . . , γ̃s; JW )/' admits a compactification

M(γ, γ̃1, . . . , γ̃s; JW )

whose boundary is given by holomorphic buildings.
Under our transversality assumption, a result similar to Proposition 4.1 holds for symplectic

cobordisms, and it establishes that one can choose JW such that the moduli spacesM(γ, γ̃1; JW )
of dimension zero or one have the desired properties. The dimension is given by |γ| − |γ1|.

We define a map Ψ : CC∗(N, α)→ CC∗(N, α̃) by

Ψ(γ) =m(γ)
∑

γ̃∈P0(α̃),|γ̃|=|γ|

∑
F∈M(γ,γ̃)

sign(F ) weight(F )γ̃.

In order to show that Ψ is a chain map, the idea, as in the proof of ∂2 = 0, is to identify ∂α̃Ψ−Ψ∂α
with the boundary of a moduli space of dimension one. To achieve this identification, consider
the moduli space

M(γ; JW ) :=
⋃

γ̃∈P0(α̃),|γ|=|γ̃|+1

M(γ, γ̃; JW ).

By a gluing argument, the broken cylinders counted in (∂α̃Ψ−Ψ∂α)(γ) are contained
in ∂M(γ; JW ). We need to show that there is nothing else than these broken cylinders in
∂M(γ; JW ). However, the compactness results show that the boundary is given by holomorphic
buildings with two levels. Hence, we may have two possibilities:

– a pair of pants of index 0 in the cobordism W , and a rigid plane and a vertical cylinder in
the symplectization of α̃;

– a punctured sphere of index 1 in the symplectization of α, and (possibly several) rigid planes
and a rigid cylinder in the cobordism W .

The first possibility does not hold because if α̃ is even or nice then there is no rigid
holomorphic plane in the symplectization of α̃. The second possibility, in turn, is forbidden
because, if α is even, there is no rigid holomorphic curve in the symplectization and, if α is nice,
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there is no rigid plane in the cobordism from α to α̃, since there is no orbit of degree zero. This
shows that Ψ is a chain map, and consequently it induces a map Φ in the homology.

To prove that Φ is an isomorphism we construct its inverse. Consider the map Ψ̃ :
CC∗(N, α̃)→ CC∗(N, α) obtained by the construction above switching α and α̃. We claim that
Ψ̃ ◦Ψ is chain homotopic to the identity. Indeed,

Ψ̃ ◦Ψ− Id = ∂α ◦A+A ◦ ∂α,

where A : CC∗(N, α)→ CC∗+1(N, α) is a map of degree one obtained in the following way.
Consider a 1-parameter family of symplectic cobordisms Wλ := (W, ωλ), λ ∈ [0, 1], such that

W0 is the symplectic cobordism given by the gluing of the cobordisms from α to α̃ and from α̃
to α, and W1 is the symplectization of α. Let Jλ be a smooth family of almost complex structures
compatible with ωλ, and consider the set

M(γ, γ1, . . . , γs; {Jλ}) = {(λ, F ); 0 6 λ6 1, F ∈M(γ, γ1, . . . , γs; Jλ)}.

Once again, a result similar to Proposition 4.1 holds for 1-parameter families of symplectic
cobordisms establishing that one can choose Jλ such that the moduli spaces M(γ, γ1; {Jλ}) of
dimension zero or one have the desired properties. Now, the dimension is given by |γ| − |γ1|+ 1.
Hence if γ and γ̄ are good periodic orbits of Rα such that |γ| − |γ̄|=−1 then M(γ, γ̄; {Jλ}) is
a finite set. Define

A(γ) =m(γ)
∑

γ̄∈P0(α),|γ̄|=|γ|+1

∑
F∈M(γ,γ̄;{Jλ})

sign(F ) weight(F )γ̄.

By compactness results, if |γ|= |γ̄| then the boundary of M(γ, γ̄; {Jλ}) is given by components
coming from the boundary of [0, 1] and holomorphic buildings of height two. This first component
is the union ofM(γ, γ̄; J0) andM(γ, γ̄; J1), and it counts as Ψ̃ ◦Ψ− Id, since every cylinder of
index zero in the symplectization W1 is trivial. The second one is given by broken cylinders
of index zero counted by ∂α ◦A+A ◦ ∂α, and, besides these broken cylinders, we might have
three possibilities:

– a pair of pants of index −1 in a cobordism Wλ, and a rigid plane and a vertical cylinder in
the symplectization of α;

– a pair of pants of index 1 in the symplectization of α, and a plane of index −1 and a cylinder
of index 0 in a cobordism Wλ;

– a punctured sphere of index 1 in the symplectization of α, (possibly several) planes of index
0, and a cylinder of index −1 in a cobordism Wλ.

The first case is discarded because there is no rigid plane in the symplectization if α is even or
nice. The second one does not hold if α is even since there is no rigid curve in the symplectization,
and, if α is nice, there is no plane of index −1 in the cobordism. Finally, the third possibility
cannot happen because, if α is even, there is no rigid curve in the symplectization and, if α is
nice, there is no plane of index 0 in the cobordism. 2

5. Proof of Theorem 1.3

Let us first describe the idea of the proof. We consider a Sasaki contact form on N whose
Reeb flow has finitely many non-degenerate simple periodic orbits γ`, `= 1, . . . , m, where m
is the number of edges of the good moment cone. Let X be the Liouville vector field of the
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corresponding good symplectic cone, and consider the X-invariant Hamiltonian flow associated
to the Reeb flow. For each `= 1, . . . , m we choose a suitable lift of this Hamiltonian flow to
a linear flow on R2d using the symplectic reduction process described after Remark 2.14. More
precisely, we require that the lift γ̃` of γ` is a closed orbit in R2d. This enables us to apply
Lemma 3.4, and consequently reduces the proof to the computation of the Conley–Zehnder
index of γ̃`. For this computation, we can use the global trivialization of TR2d, and, since the
lifted flow is given by a 1-parameter subgroup of Td via the usual Td-action in R2d ' Cd,
the index is easily computed by the corresponding vector in the Lie algebra. This vector, given
by (6), is completely determined by the associated good moment cone, and it turns out that the
degree of every orbit is an even number.

Let (W, ω, X) be a good toric symplectic cone determined by a good moment cone C ⊂
(Rn+1)∗ defined by

C =
d⋂
j=1

{x ∈ (Rn+1)∗ : `j(x) := 〈x, νj〉> 0}

where d> n+ 1 is the number of facets and each νj is a primitive element of the lattice
Zn+1 ⊂ Rn+1 (the inward-pointing normal to the jth facet of C).

Let ν ∈ t∼= Rn+1 be any vector in the Lie algebra of the torus Tn+1 satisfying the following
two conditions.

(i) It can be expressed as

ν =
d∑
j=1

ajνj with aj ∈ R+ for all j = 1, . . . , d.

(ii) The 1-parameter subgroup generated by ν is dense in Tn+1.

Let Rν ∈ XX(W, ω)∼= X (N, ξ) be the Reeb vector field of the Sasaki contact form
αν ∈ Ω1(N, ξ).

Lemma 5.1. The Reeb vector field Rν has exactly m simple closed orbits, where

m= number of edges of C.

Proof. Under the moment map µ :W → C ∈ (Rn+1)∗, any Rν-orbit γ is mapped to a single point
p ∈ C. The pre-image µ−1(p) is a Tn+1-orbit, and the fact that ν generates a dense 1-parameter
subgroup of Tn+1 implies that the Rν-orbit γ is dense in µ−1(p). Hence, γ is closed if and only if
dim(µ−1(p)) = 1, and this happens if and only if p belongs to a one-dimensional face of P , i.e. an
edge. 2

Remark 5.2. If the toric symplectic cone W is not simply connected, the simple closed Reeb
orbit γ associated to an edge E of the moment cone C might not be contractible. However, it
follows from Proposition 2.15 that a finite multiple of γ is contractible, and ‘simple closed Reeb
orbit associated to E’ will always mean ‘smallest multiple of γ that is contractible’.

Let E1, . . . , Em denote the edges of C, and γ1, . . . , γm the corresponding simple closed orbits
of the Reeb vector field Rν . Since C is a good cone, each edge E` is the intersection of exactly n
facets F`1 , . . . , F`n , whose set of normals

ν`1 , . . . , ν`n
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can be completed to an integral base of Zn+1. Hence, for each `= 1, . . . , m, we can choose an
integral vector η` ∈ Zn+1 such that

{ν`1 , . . . , ν`n , η`} is an integral base of Zn+1.

The map β : Rd→ Rn+1 defined by (1) is surjective and integral (β(Zd)⊂ Zn+1). Hence, for
each `= 1, . . . , m, there is a smallest natural number N` ∈ N and an integral vector η̃` ∈ Zd such
that

β(η̃`) =N` η`.

The Reeb vector field Rν can be uniquely written as

Rν =
n∑
i=1

b`iν`i + b`N`η` with b`1, . . . , b
`
n, b

` ∈ R,

and we can then lift it to a vector R̃`ν ∈ Rd as

R̃`ν =
n∑
i=1

b`ie`i + b`η̃`, (6)

so that
β(R̃`ν) =Rν .

Remark 5.3. N` = ‘smallest multiple’ considered in Remark 5.2. If the moment cone C
determines a simply connected toric symplectic cone W , then N` = 1, for all `= 1, . . . , m.

Recall from § 2.3 that W = Z/K, where K = ker β ⊂ Td and

Z = φ−1
K (0)\{0} ≡ zero level set of moment map in Cd\{0}.

The restriction to Z ⊂ Cd of the linear flow on Cd generated by R̃`ν is a lift of the Reeb flow
on W generated by Rν . Consider

Z −→W = Z/K
µ−−→ C ⊂ (Rn+1)∗

z 7−→ [z].

We have
[z] ∈ µ−1(E`)⇔ z`1 = · · ·= z`n = 0.

This implies that γ` can be lifted to Z as a closed orbit γ̃` of R̃`ν . The periods of γ` and γ̃` are
both given by

T` =
2π
b`
,

and the linearization of the lifted Hamiltonian Reeb flow on Cd along γ̃` is the linear flow
generated by R̃`ν . Note that, by replacing η` with −η` if necessary, we can, and will, assume that
b` > 0 for all `= 1, . . . , m. We can now use Lemma 3.4 to assert that

µCZ(γN` ) = µCZ(γ̃N` )

for all `= 1, . . . , m and all iterates N ∈ N.
To compute µCZ(γ̃N` ), note first that, since Rν is assumed to generate a dense 1-parameter

subgroup of the torus Tn+1, we have that the closure of the 1-parameter subgroup of Td generated
by R̃`ν is a torus of dimension n+ 1. That immediately implies that the n+ 1 real numbers

{b`1, . . . , b`n, b`}
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are Q-independent. We can then use Example 3.2 and the direct sum property of the Conley–
Zehnder index to conclude that

µCZ(γ̃N` ) =
n∑
i=1

(
2
⌊
N
b`i
b`

⌋
+ 1
)

+ 2N
( d∑
j=1

(η̃`)j

)

= 2
( n∑
i=1

⌊
N
b`i
b`

⌋
+N

( d∑
j=1

(η̃`)j

))
+ n

= even + n.

This implies that the contact homology degree is given by

deg(γ̃N` ) = µCZ(γ̃N` ) + n− 2 = even + n+ n− 2 = even,

which finishes the proof of Theorem 1.3.

6. Examples and proof of Theorem 1.4

6.1 A particular family of good moment cones
Let {e1, e2, e3} be the standard basis of R3. For each k ∈ N0 consider the cone C(k)⊂ R3 with
four facets defined by the following four normals:

ν1 = e1 + e3 = (1, 0, 1),
ν2 = −e2 + e3 = (0,−1, 1),
ν3 = ke2 + e3 = (0, k, 1),
ν4 = −e1 + (2k − 1)e2 + e3 = (−1, 2k − 1, 1).

Each of these cones is good, and hence defines a smooth, connected, closed toric contact
5-manifold (Nk, ξk). Because all the normals have last coordinate equal to one, Remark 2.17
implies that the first Chern class of all these contact manifolds is zero. Moreover, one can use
Proposition 2.15 to easily check that Nk is simply connected for all k ∈ N. In fact, this family of
good cones is SL(3, Z) equivalent to the family of moment cones associated to the Sasaki–Einstein
toric manifolds Y p,q, with q = 1 and p= k + 1, constructed by Gauntlett et al. in [GMSW04a]
(see also [MSY06]). Hence we have that

(Nk, ξk)∼= (S2 × S3, ξk) with c1(ξk) = 0

and, as hyperplane distributions, the ξk are all homotopic to each other.
When k = 0 there is a direct way of identifying the toric contact manifold (N0, ξ0). In fact, the

cone C(0)⊂ R3 is SL(3, Z) equivalent to the cone C ′ ⊂ R3 defined by the following four normals:

ν ′1 = e1 = (1, 0, 0),
ν ′2 = −e2 + e3 = (0,−1, 1),
ν ′3 = e2 = (0, 1, 0),
ν ′4 = −e1 + e3 = (−1, 0, 1).

One easily checks that C ′ is the standard cone over the square [0, 1]× [0, 1]⊂ R2. Hence, (N0, ξ0)
can be described as the Boothby–Wang manifold over (S2 × S2, ω = σ × σ), where σ(S2) = 2π.
This is also the unit cosphere bundle of S3, and its Calabi–Yau symplectic cone is known in the
physics literature as the conifold.
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Remark 6.1. Gauntlett et al. construct in [GMSW04b] a family of higher dimensional
generalizations of the manifolds Y p,q. They do not describe their exact diffeomorphism type, and
they do not write down the associated moment cones. The latter are described in [Abr10] and can
be used to show that, contrary to what happens in dimension five, different cones in this higher
dimensional family give rise to non-diffeomorphic manifolds.

6.2 Contact homology computations
We will now apply the algorithm of § 5 to this family of good moment cones: C(k)⊂ R3, k ∈ N0.
We will do it for two different types of Reeb vector fields.

First, we consider the case when the Reeb vector field Rν ∈ X (S2 × S3, ξk) is induced by a
Lie algebra vector ν ∈ t3 ∼= R3 of the form

ν = (a1, a2, a3)≈ (0, 0, 1),

with the ai Q-independent.

Remark 6.2. When k > 0, these vectors satisfy the requirement of Proposition 2.19 because the
vector (0, 0, 1) can be written as a positive linear combination of the normals to C(k):

1
3k + 2

(ν1 + (3k − 1)ν2 + ν3 + ν4) = (0, 0, 1).

When k = 0, the second coordinate of all the normals is either zero or negative and so we must
have a2 < 0.

Each cone C(k) has four edges.

(1) The edge E1, with γ1 the corresponding simple closed Rν-orbit, is the intersection of the
facets F1 and F3 with normals

ν1 = (1, 0, 1) and ν3 = (0, k, 1).

The vector η1 ∈ Z3 can be chosen to be

η1 = ν4 = (−1, 2k − 1, 1).

In fact, {ν1, ν3, η1 = ν4} is a Z-basis of Z3 and

Rν = b11ν1 + b12ν3 + b1η1

with

b11 = (1− k)a1 − a2 + ka3,

b12 = (2k − 1)a1 + 2a2 − (2k − 1)a3,

b1 =−ka1 − a2 + ka3.

(2) The edge E2, with γ2 the corresponding simple closed Rν-orbit, is the intersection of the
facets F1 and F2 with normals

ν1 = (1, 0, 1) and ν2 = (0,−1, 1).

The vector η2 ∈ Z3 can be chosen to be

η2 = 2ν3 − ν4 = (1, 1, 1).

In fact, {ν1, ν2, η1 = 2ν3 − ν4} is a Z-basis of Z3 and

Rν = b21ν1 + b22ν2 + b2η2
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with

b21 = 2a1 − a2 − a3,

b22 = −a1 + a3,

b2 = −a1 + a2 + a3.

(3) The edge E3, with γ3 the corresponding simple closed Rν-orbit, is the intersection of the
facets F3 and F4 with normals

ν3 = (0, k, 1) and ν4 = (−1, 2k − 1, 1).

The vector η3 ∈ Z3 can be chosen to be

η3 = ν1 = (1, 0, 1).

In fact, {ν3, ν4, η3 = ν1} is a Z-basis of Z3 and

Rν = b31ν3 + b32ν4 + b3η3

with

b31 = (2k − 1)a1 + 2a2 − (2k − 1)a3,

b32 = −ka1 − a2 + ka3,

b3 = (1− k)a1 − a2 + ka3.

(4) The edge E4, with γ4 the corresponding simple closed Rν-orbit, is the intersection of the
facets F2 and F4 with normals

ν2 = (0,−1, 1) and ν4 = (−1, 2k − 1, 1).

The vector η4 ∈ Z3 can be chosen to be

η4 = 2ν3 − ν1 = (−1, 2k, 1).

In fact, {ν2, ν4, η4 = 2ν3 − ν1} is a Z-basis of Z3 and

Rν = b41ν2 + b42ν4 + b4η4

with

b41 = a1 + a3,

b42 = −(2k + 1)a1 − a2 − a3,

b4 = 2ka1 + a2 + a3.

We can now compute the Conley–Zehnder index of all closed Rν orbits, which coincides in
the n= 2 case with the contact homology degree:

µCZ(γN1 ) = 2
⌊
N

k

⌋
+ sign(a1) +

{
1 if N 6= multiple of k,
sign(a2) if N = multiple of k,

µCZ(γN2 ) = 2N + sign(a1)− sign(a2),

µCZ(γN3 ) = 2
⌊
N

k

⌋
− sign(a1) +

{
1 if N 6= multiple of k,
sign((2k − 1)a1 + a2) if N = multiple of k,

µCZ(γN4 ) = 2N − sign((2k − 1)a1 + a2)− sign(a1).
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To determine the rank of the contact homology groups, we can assume, for example, that
a1, a2 < 0, and get the following table.

deg 0 2 4 6 8 · · ·
γ1 k k k k k · · ·
γ2 −− 1 1 1 1 · · ·
γ3 −− k k k k · · ·
γ4 −− −− 1 1 1 · · ·

rank k 2k + 1 2k + 2 2k + 2 2k + 2 · · ·

Another possibility would be to assume that a1 > 0, a2 < 0 and (2k − 1)a1 + a2 < 0. We would
then get the following table.

deg 0 2 4 6 8 · · ·
γ1 −− k k k k · · ·
γ2 −− −− 1 1 1 · · ·
γ3 k k k k k · · ·
γ4 −− 1 1 1 1 · · ·

rank k 2k + 1 2k + 2 2k + 2 2k + 2 · · ·

Following a suggestion of Viktor Ginzburg, we will now consider a second type of Reeb vector
fields, namely those that are arbitrarily close to one of the normals of the cone C(k) ∈ R3.

More precisely, consider

Rν =
4∑
i=1

εiνi = (a1, a2, a3),

which means that

a1 = ε1 − ε4, a2 =−ε2 + kε3 + (2k − 1)ε4 and a3 = ε1 + ε2 + ε3 + ε4, εi > 0, i= 1, . . . , 4.

Using the already determined formulas for Rν , we have the following.

(1) On the edge E1, where {ν1, ν3, η1 = ν4} is the relevant Z-basis, we can write

Rν = (ε1 + (k + 1)ε2)ν1 + (−(2k + 1)ε2 + ε3)ν3 + ((k + 1)ε2 + ε4)η1.

(2) On the edge E2, where {ν1, ν2, η2 = 2ν3 − ν4} is the relevant Z-basis, we can write

Rν = (ε1 − (k + 1)ε3 − 2(k + 1)ε4)ν1 + (ε2 + ε3 + 2ε4)ν2 + ((k + 1)ε3 + (2k + 1)ε4)η2.

(3) On the edge E3, where {ν3, ν4, η3 = ν1} is the relevant Z-basis, we can write

Rν = (−2(k + 1)ε2 + ε3)ν3 + ((k + 1)ε2 + ε4)ν4 + (ε1 + (k + 1)ε2)η3.

(4) On the edge E4, where {ν2, ν4, η4 = 2ν3 − ν1} is the relevant Z-basis, we can write

Rν = (2ε1 + ε2 + ε3)ν2 + (−2(k + 1)ε1 − (k + 1)ε3 + ε4)ν4 + ((2k + 1)ε1 + (k + 1)ε3)η4.

We can now make Rν arbitrarily close to a normal νj by considering the εi, with i 6= j, to be
arbitrarily small positive numbers and εj ≈ 1.

Let us start with the case
Rν ≈ ν1.

(1) On the edge E1,
Rν ≈ ν1 + εν3 + εη1,
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with ε > 0 an arbitrarily small number. This implies that

µCZ(γN1 )≈ 2N
ε

can be made arbitrarily large for any N ∈ N, and so γN1 gives no contribution to contact homology
up to an arbitrarily large degree.

(2) The same happens for γN2 since, on the edge E2,

Rν ≈ ν1 + εν2 + εη2.

(3) On the edge E3,
Rν ≈ εν3 + εν4 + η3,

with ε > 0 arbitrarily small. This implies that

µCZ(γN3 ) = 2N for N ≈ 1, . . . ,
1
ε
,

and so γN3 gives a rank-one contribution to contact homology in all positive even degrees up to
the arbitrarily large 1/ε.

(4) On the edge E4,

Rν ≈ (2 + ε)ν2 + (−2(k + 1) + ε)ν4 + (2k + 1)η4,

with ε arbitrarily small. This implies a particularly interesting behavior for the Conley–Zehnder
index of γN4 . In fact, when m(2k + 1)− 2k 6N 6m(2k + 1) for some m ∈ N and up to an
arbitrarily large N ∈ N,

µCZ(γN4 ) =


2m− 2 if m(2k + 1)− 2k 6N 6m(2k + 1)− k − 1,
2m if m(2k + 1)− k 6N 6m(2k + 1)− 1,
2m+ 2 if N =m(2k + 1).

For N > k + 1, this can also be written as

µCZ(γN4 ) =


2m if m(2k + 1)− k 6N 6m(2k + 1)− 1,
2m+ 2 if N =m(2k + 1),
2m if m(2k + 1) + 1 6N 6m(2k + 1) + k,

and we see that in this case the Conley–Zehnder index is not monotone with respect to N .

Hence, when Rν ≈ ν1, the rank of the contact homology groups is determined from the following
table.

deg 0 2 4 6 8 · · ·
γ1 −− −− −− −− −− · · ·
γ2 −− −− −− −− −− · · ·
γ3 −− 1 1 1 1 · · ·
γ4 k 2k 2k + 1 2k + 1 2k + 1 · · ·

rank k 2k + 1 2k + 2 2k + 2 2k + 2 · · ·

In this case we have that all the interesting contact homology information is concentrated on
just one closed Reeb orbit (and its multiples): namely, γ4.

When Rν ≈ ν4, we obtain a similar picture, with all interesting contact homology information
concentrated on γ2 and its multiples. In this case, and up to an arbitrarily large contact homology
degree, γN3 and γN4 contribute nothing, while γN1 gives a rank-one contribution to degree 2N .
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When Rν ≈ ν2, we have that γN2 and γN4 contribute nothing, while γN1 and γN3 contribute
about half the rank of contact homology each. When Rν ≈ ν3, we have that γN1 and γN3 contri-
bute nothing, while γN2 and γN4 contribute about half the rank of contact homology each.

In any case, and for any k ∈ N0, the final result is

rankHC∗(S2 × S3, ξk; Q) =


k if ∗= 0,
2k + 1 if ∗= 2,
2k + 2 if ∗> 2 and even,
0 otherwise.
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Norm. Supér. (4) 27 (1994), 697–705.

Ham10 M. J. D. Hamilton, Inequivalent contact structures on Boothby–Wang 5-manifolds,
arXiv:1001.1953.

HWZ07 H. Hofer, K. Wysocki and E. Zehnder, A general Fredholm theory. I. A splicing-based
differential geometry, J. Eur. Math. Soc. (JEMS) 9 (2007), 841–876.

HWZ09a H. Hofer, K. Wysocki and E. Zehnder, A general Fredholm theory. II. Implicit function
theorems, Geom. Funct. Anal. 19 (2009), 206–293.

HWZ09b H. Hofer, K. Wysocki and E. Zehnder, A general Fredholm theory. III. Fredholm functors
and polyfolds, Geom. Topol. 13 (2009), 2279–2387.

Kan97 Y. Kanda, The classification of tight contact structures on the 3-torus, Comm. Anal. Geom.
5 (1997), 413–438.

van05 O. van Koert, Open books for contact five-manifolds and applications of contact homology,
PhD thesis, Universität zu Köln (2005).
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