FROM MATRICES TO GRAPHS

W. T. TUTTE

1. Introduction. All the matrices considered in this paper have their elements in the field of residues mod 2.

Two non-singular matrices are equivalent if each row of either matrix is a linear combination of rows of the other. The matrices then have equal numbers of rows and equal numbers of columns.

A nodal matrix is a non-singular matrix in which no column has more than two 1's. A graphic matrix is a non-singular matrix equivalent to a nodal matrix.

In this paper we present an algorithm for determining whether a given nonsingular matrix is graphic, and if so for finding an equivalent nodal matrix.

Algorithms of this sort are of interest to electrical engineers, for whom the graphic matrices are the cut-set matrices of graphs. Those so far suggested have been based largely on graph-theoretical concepts (1, chap. 5). In the present paper we adopt a purely algebraic point of view.
2. Operations on matrices. Let M be a non-singular matrix. Suppose M^{\prime} to be an equivalent matrix. We say that the (i, j) th element of M^{\prime} corresponds to the (i, j) th element of M. If S is a submatrix of M, then the corresponding submatrix of M^{\prime} is made up of the elements corresponding to those of S. We say that S is transformed into its corresponding submatrix in M^{\prime} by any operation which changes M into M^{\prime}.

We define a central column of M as one having just one 1 . We write $C(M)$ for the submatrix of M, possibly null, made up of all the central columns. If $C(M)$ has a 1 in each row of M we call M a central matrix and say that $C(M)$ is its centre.

Suppose M has a 1 in the p th row and q th column. Let us replace each other row of M having a 1 in the q th column by its sum with the p th row. We refer to this process as "clearing the q th column with the p th row." It evidently transforms M into an equivalent matrix M^{\prime}.

The column-clearing operation transforms the q th column into a central column of M^{\prime}, having its 1 in the p th row. It leaves unchanged every column having a zero in the p th row. Hence if the p th row has no 1 in $C(M)$ the operation increases the number of distinct central columns of M. On the other hand any central column of M with its 1 in the p th row transforms into a column of M^{\prime} equal to the q th column of M. If this column of M^{\prime} is cleared with the p th row the original matrix M is restored. From these observations we deduce the following theorems.

[^0](2.1) Any non-singular matrix can be transformed into an equivalent central matrix by a sequence of column-clearing operations, no two of which are performed with corresponding rows.
(2.2) When a central matrix M is subjected to a column-clearing operation, it is transformed into a central matrix M^{\prime}. Moreover M^{\prime} can be changed back into M by another column-clearing operation.

If M is central we write $\Lambda(M)$ for the set of all matrices derivable from M by column-clearing operations.

Our algorithm is based mainly on a theory of column-clearing operations. But we conclude this section by mentioning some other operations on matrices which are helpful.

We may, for example, permute the rows of a non-singular matrix, thereby changing it into an equivalent one. We may also permute columns. The latter operation does not necessarily change a given matrix into an equivalent one. It does, however, transform nodal matrices into nodal matrices, and therefore graphic matrices into graphic ones.

We define a row-submatrix of M as a submatrix made up of one or more complete rows of M. The operation of replacing a given row-submatrix S by a matrix equivalent to S evidently converts M into an equivalent matrix.

For nodal matrices we have the following theorem.
(2.3) Let M_{i} be obtxined from a nodal matrix M by replacing the ith row by the sum of all the rows of M. Then M_{i} is a nodal matrix equivalent to M.

Proof. M_{i} is clearly equivalent to M. But the i th row of M_{i} has a 1 in the j th column if and only if M has just one 1 in that column. Hence M_{i} is nodal.
3. Central matrices. Let M be a central matrix. We consider the rowvectors which are linear combinations of rows of M. We shall speak of the j th component of such a vector as being "in" the j th column of M.
(3.1) Let K be a non-zero vector which is a linear combination of rows of M. Then K has a 1 in some central column of M. Moreover K is the sum of those rows J of M such that J and K have 1's in the same central column.

Proof. Since K is non-zero it is the sum of a non-null set U of rows of M. Each $J \in U$ has a 1 in $C(M)$, since M is central, and each 1 of J in $C(M)$ gives rise to a 1 of K in the same column. On the other hand, if K has a 1 in a column X of $C(M)$ then U must include the row of M having a 1 in X. These results determine U uniquely, and establish the theorem.
(3.2) Any row-submatrix S of a central matrix M is central.

Proof. Each row of S has a 1 in a central column X of M, and the intersection of X with S is a central column of S.
(3.3) Suppose M is graphic, with an equivalent nodal matrix N. Let S be any row-submatrix of M. Then S is graphic. Moreover S has an equivalent nodal matrix N_{S} such that every common row of S and N is a row of N_{S}.

Proof. If M has only one row, the only row-submatrix of M is M itself. Thus the theorem is trivially true in this case.

Assume the theorem true whenever M has less than k rows, where k is an integer >1, and consider the case in which M has just k rows.

Let S be any row-submatrix of M. If $S=M$, the theorem is satisfied. We may therefore assume that S is contained in a row-submatrix T of M with exactly $k-1$ rows. Let J be the row of M not in T and let X be a central column of M having its 1 in J.

Let N be a nodal matrix equivalent to M. Let Y be its column corresponding to X. By permuting rows of N we can arrange that the row J^{\prime} corresponding to J has a 1 in Y. If some other row of N has a 1 in Y we replace it by the sum of all the rows. We thus transform N into a nodal matrix N^{\prime} equivalent to N, by (2.3). In the remaining case we write $N^{\prime}=N$. In each case we write X^{\prime} for the column of N^{\prime} corresponding to X, and T^{\prime} for the submatrix of N^{\prime} corresponding to T. Clearly X^{\prime} is a central column of N^{\prime} with its 1 in J^{\prime}, and each common row of N and S is a row of T^{\prime}.

Any row of T is a linear combination of rows of N^{\prime}. Since it has a 0 in X it is therefore a linear combination of rows of T^{\prime}. Similarly each row of T^{\prime} is a linear combination of rows of T. But T^{\prime} is nodal, and therefore T is graphic. It follows, by the inductive hypothesis, that S is graphic, having an equivalent nodal matrix N_{S} which includes all the common rows of S and T^{\prime}, and therefore all the common rows of S and N.

The theorem now follows in general by induction.
4. Connection. Two distinct rows of an arbitrary matrix U are linked if there is a column of U having a 1 in each.

A path in U is a sequence of one or more distinct rows of U such that any two consecutive members of the sequence are linked. If A and B are its first and last terms respectively we call it a path from A to B. It is a geodesic path if no two non-consecutive terms are linked.

Two rows A and B of U are connected in U if there is a path from A to B in U. Connection in U is evidently an equivalence relation. It partitions U into disjoint non-null row-submatrices $U_{1}, U_{2}, \ldots, U_{k}$ such that two rows are connected in U if and only if they belong to the same submatrix U_{i}. We refer to the submatrices U_{i} as the layers of U. If $k=1$, then U is connected.

From the above definitions and results we deduce the following theorems.
(4.1) Any connected submatrix of U is a submatrix of some layer of U.
(4.2) Let S be a row-submatrix of U such that no column of U has both a 1 in S and a 1 outside S. Then S is a union of layers of U.

We can determine the layers of U as follows. We assign the number 1 to an arbitrarily chosen row A. Then we assign numbers $2,3,4, \ldots$ according to the following rule. When the number $n \geqslant 1$ has been assigned, the number $n+1$ is attached to every as yet unnumbered row of U which is linked to a row numbered n. We continue this process until it terminates. The numbered rows then make up a connected submatrix $U(A)$ of U. This is the layer of U containing A, by (4.1) and (4.2).

If, in the above numbering process, we assign the number n to a row B we can evidently trace backwards from B a geodesic path from A to B in which there are just n terms, the j th term having been assigned the number j. We thus have an algorithm for constructing a geodesic path in U from a given row A to any other row in the same layer.

5. Connection in central matrices.

(5.1) If a connected central matrix M is equivalent to a matrix M^{\prime}, then M^{\prime} is connected.

Proof. Suppose M^{\prime} is not connected. Let U be one of its layers. Let S^{\prime} be the submatrix of M^{\prime} consisting of the columns having 1's in U, and let T^{\prime} be the submatrix consisting of all other columns. Since M^{\prime} is non-singular, it has 1's in both S^{\prime} and T^{\prime}. (See Fig. 1.)

In Figure 1 and some similar figures we show matrices partitioned by horizontal and vertical lines into rectangular submatrices. Each such submatrix is either left blank to indicate that it has zero elements only, blacked in to show that it consists entirely of 1 's, or shaded diagonally to indicate that it may have elements of either kind.

Figure 1
Let S and T be the submatrices of M corresponding to S^{\prime} and T^{\prime} respectively.
Let J be any row of M. Let J_{S} and J_{T} be the vectors derived from it by replacing its l's in S and T respectively by zeros.

Now J is a linear combination of rows of M^{\prime}. Hence both J_{S} and J_{T} are linear combinations of rows of M^{\prime}, and therefore of rows of M. Hence, by (3.1), if either J_{S} or J_{T} is non-zero it is equal to J.

We deduce that no row of M has 1 's in both S and T. Since M is connected,
it follows that either S or T is a zero matrix. But then the corresponding matrix S^{\prime} or T^{\prime} must be zero, which is a contradiction.
(5.2) Let M be any central matrix. Then if M is connected every member of $\Lambda(M)$ is connected.

This follows from (5.1).
(5.3) Let M be any central matrix. Then M is graphic if and only if its layers are all graphic.

Proof. If the layers are all graphic we can replace each one by an equivalent nodal matrix, and so obtain a nodal matrix equivalent to M. The converse result follows from (3.3).
(5.4) Let $P=\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ be a geodesic path in a submatrix N of a central matrix M. Let J_{i} be the row of M containing $V_{i}(1 \leqslant i \leqslant k)$. Then by a sequence of $k-1$ column-clearing operations on columns of M meeting N we can transform M into $M^{\prime} \in \Lambda(M)$ such that $J_{1}+J_{2}+\ldots+J_{k}$ is a row of M^{\prime}.

Proof. Let X_{i} denote a column of M having a 1 in V_{i} and V_{i+1}, but no 1 in any other member of P. By the definition of a geodesic path such a column can be found whenever $1 \leqslant i<k$. Let Q denote the sequence ($J_{1}, J_{2}, \ldots, J_{k}$), and let $K_{i}(1 \leqslant i \leqslant k)$ be the sum of the first i members of Q.

Suppose we have found a matrix $M_{i} \in \Lambda(M)$, where $1 \leqslant i<k$, such that K_{i} and the last $k-i$ members of Q are rows of M_{i}. The column of M_{i} corresponding to X_{i} has 1 's in K_{i} and J_{i+1}, but no 1 in any member of P succeeding V_{i+1}. Clearing this column with K_{i}, we obtain a matrix $M_{i+1} \in \Lambda(M)$ having $K_{i+1}=K_{i}+J_{i+1}$ and the last $K-(i+1)$ members of Q as rows. If $i+1<$ k we repeat the procedure with $i+1$ replacing i, and so on.

Starting with M as M_{1} and applying the above operation for each successive value of i up to $k-1$ we obtain the required matrix $M^{\prime}=M_{k}$.
6. J-Layers. Let M be a connected central matrix and let J be a row of M.

Consider the row-submatrix of M made up of all rows other than J. We partition it into two submatrices $M_{0}(J)$ and $M_{1}(J)$ as follows. An element belongs to $M_{0}(J)$ or $M_{1}(J)$ according as it is contained in a column of M having a 0 or a 1 respectively in J.
(6.1) $M_{0}(J)$ is central.

Proof. Each row K of M other than J has a 1 in a central column X of M. This column evidently contains a central column of $M_{0}(J)$. Thus each row of $M_{0}(J)$ has a 1 in a central column of $M_{0}(J)$. It follows that $M_{0}(J)$ is nonsingular and central.

We enumerate the layers of $M_{0}(J)$ as $B_{1}, B_{2}, \ldots, B_{k}$. With each B_{i} we associate a J-layer L_{i} of M, defined as the row-submatrix of M having 1's in
B_{i}. Thus each row of M other than J belongs to just one J-layer, and J itself belongs to no J-layer of M.

We partition the part of any J-layer L in $M_{1}(J)$ into submatrices which we call the (J, L)-fragments of M. Each (J, L)-fragment is made up of one or more columns of L in $M_{1}(J)$, and two columns belong to the same (J, L)-fragment if and only if they are equal vectors.
(6.2) For each J-layer L of M there are at least two distinct (J, L)-fragments of M, one of these being a matrix of zeros only.

Proof. There is a column of $C(M)$ having its 1 in J. This column contains a zero column of L. Hence a zero (J, L)-fragment of M exists.

Suppose there is no other (J, L)-fragment of M. Then no column of M has a 1 in L and a 1 outside L. Hence M is not connected, by (4.2), which is contrary to its definition.

It is convenient to permute the columns of M so that those with 1 's in J appear first. It is also convenient to permute the rows so that J is the first row, the rows of L_{1} appear next, then those of L_{2}, and so on. As a further refinement we can permute the columns with 0 's in J so that those with 1's in L_{1} appear first, then those with 1's in L_{2}, and so on.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	0	1	0	0	1	1	0	1	0	0	0	0	0	0	0
L	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0
	0	1	1	1	1	0	0	0	1	0	0	0	1	0	0
	0	1	0	0	0	0	0	0	0	1	0	0	1	1	0
	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
L_{2}	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1

Figure 2
Figure 2 shows a connected central matrix written in this way. Here the zero (J, L_{1})-fragment is a single column of L_{1}. The third and fourth columns of L_{1} constitute a second $\left(J, L_{1}\right)$-fragment, and the second and fifth columns make up a third. There is a (J, L_{2})-fragment occupying the third, fourth, and fifth columns of L_{2}, and the other two (J, L_{2})-fragments have one column each.
(6.3) Let R be a row-submatrix of M made up of J and one or more J-layers of M. Then R is a connected central matrix. Its J-layers are the J-layers of M contained in R, and any such J-layer L has the same (J, L)-fragments in R as in M.

Proof. Since each of the submatrices B_{i} of M is connected, each J-layer of M is connected, by (4.1). By (6.2) each J-layer of M contained in R belongs to the same layer of R as does J. Hence R is connected. It is central by (3.2).

By (4.1) and (4.2) the layers of $R_{0}(J)$ are the layers of $M_{0}(J)$ associated with the J-layers of M contained in R. Hence these J-layers of M are the J-layers of R. Since the (J, L)-fragments, for a given J-layer L, are determined by J and L alone, the theorem follows.

We now consider those column-clearing operations on M which leave J unchanged. There are just two kinds, those in which some column is cleared with J and those in which the column being cleared has a 0 in J. We refer to these as J-preserving operations of the first and second kind respectively.
(6.4) Let M be transformed into $R \in \Lambda(M)$ by a J-preserving operation. Then each J-layer L of M is transformed into a J-layer L^{\prime} of R. Moreover each (J, L)fragment of M is transformed into a $\left(J, L^{\prime}\right)$-fragment of R.

Proof. We observe that R can be transformed into M by a column-clearing operation, by (2.2), and that this is necessarily J-preserving.

A J-preserving operation of the first kind on M leaves $M_{0}(J)$ unaltered and an operation of the second kind changes it in one J-layer only. In either case a column of M having all its 1 's in a J-layer L is transformed into a column of R having all its 1 's in the submatrix L^{\prime} of R corresponding to L. Hence, by (4.2), any J-layer of M transforms into a union of J-layers of R. But a similar result must hold for the operation transforming R into M. Hence J-layers of M transform into J-layers of R.

It is easily verified that a J-preserving operation of either kind on M transforms equal columns of a J-layer L of M into equal columns of the corresponding J-layer L^{\prime} of R. It therefore transforms each (J, L)-fragment into a submatrix of a (J, L^{\prime})-fragment. An analogous result holds for the transformation of R into M. The theorem follows.
7. J-Layers and K-layers. Let M be a connected central matrix and let J and K be distinct rows of M. We proceed to relate the J-layers of M to the K-layers.

Suppose S and T are submatrices of M. We say that S covers T if each column of M containing a column of T contains also a column of S. We say also that S covers those elements of M which are in columns meeting S.
(7.1) Let E and F be distinct J-layers of M. Then no non-zero (J, F)-fragment covers the zero (J, E)-fragment.

Proof. There is a central column X of M having its 1 in J, and X meets the zero (J, L)-fragment for each J-layer L of M.
(7.2) Let L be a J-layer of M which does not contain K. If any non-zero (J, L)fragment of M covers a zero of K, then L is contained in the K-layer H of M having J as a row. Otherwise L is a K-layer of M.

Proof. The part D of L in $M_{0}(J)$ is connected, by the definition of a J-layer. It follows that the submatrix B of D, consisting of all the non-zero columns, is
connected. But B is a submatrix of $M_{0}(K)$, since K is not a row of L. Hence L is contained in a K-layer L^{\prime} of M. (See Fig. 3.)

Figure 3

Suppose some column X of $M_{0}(K)$ has a 1 in L and a 1 not in L. By the definition of L, X must have a 1 in J. Hence J is a row of L^{\prime}. In the remaining case L contains a K-layer of M, by (4.2), and therefore $L=L^{\prime}$.
(7.3) Let L be a K-layer of the J-layer G of M containing K. If L has a 1 which is in $M_{1}(J)$ but not $M_{1}(K)$, then L is part of the K-layer H of M containing J. Otherwise L is a K-layer of M.

Proof. The part of L in $M_{0}(K)$ is connected. Hence there is a K-layer L^{\prime} of M containing L.

Suppose some column X of $M_{0}(K)$ has a 1 in L and a 1 not in L. Since the second 1 is not in G, X must have a 1 in J. Hence J is a row of L^{\prime}. In the remaining case, L contains a K-layer of M, by (4.2), and therefore $L=L^{\prime}$. (See Fig. 4.)

Figure 4

We can now recognize three kinds of K-layers, with respect to J. The K layers of the first kind are those which are also J-layers of M. There is only one K-layer of the second kind; it is the one containing J. The K-layers of the third kind are those which are also K-layers of the J-layer G containing K. Theorems (7.2) and (7.3) show that each K-layer of M is of just one of these kinds.
(7.4) Let L be a K-layer of M which is also a J-layer. Then the non-zero (K, L) fragments of M are identical with the non-zero (J, L)-fragments of M.

Proof. By (7.2) any non-zero column of L which is covered by one of $M_{1}(J)$ and $M_{1}(K)$ is covered by both of them. The theorem follows.
8. Nodal sequences. Let M be a connected central matrix and let J be a row of M.

Let Q be a sequence of one or more J-layers of M. If G is any J-layer of M we define a set $A(Q, G)$ as follows. If $G \in Q$, then $A(Q, G)$ is the set of all members of Q preceding G, otherwise it is the set of all members of Q other than the last.
$A(J, G)$-fragment Y_{G} enfolds Q if $A(Q, G)$ is non-null and for each $E \in$ $A(Q, G)$ the matrix Y_{G} covers all but one of the (J, E)-fragments of M. We note that a (J, G)-fragment cannot cover all the columns of $M_{1}(J)$ by (6.2), and therefore cannot cover all the (J, E)-fragments, for any J-layer E.

We call Q a nodal sequence of J in M if, for each J-layer G such that $A(Q, G)$ is non-null, there exists a (J, G)-fragment Y_{G} which enfolds Q.

Any set obtained by selecting one enfolding (J, G)-fragment for each J layer G such that $A(Q, G)$ is non-null will then be called an enfolding set of Q.

The enfolding set may not be uniquely determined by J and Q. An ambiguity for Y_{G} arises when, for each $E \in\{G\} \cup A(Q, G)$, the set $A(Q, G)$ being non-null, there are just two (J, E)-fragments, and these determine the same partition of the set of columns of $M_{1}(J)$ for each such E. However when, in what follows, we speak of a nodal sequence Q of J we assume that some one enfolding set $Y(Q)$ is specified. We then say that Q is simple if each member of $Y(Q)$ consists entirely of 1's. If I is a row of the first member of Q, if I has at least one 1 in $M_{1}(J)$, and if each member of $Y(Q)$ covers all the 1's of I in $M_{1}(J)$, then we say that Q is pinned by I.

A trivial example of a nodal sequence of J is obtained by selecting an arbitrary J-layer as the only term of Q. Then $\mathrm{Y}(Q)$ is null and Q is simple. Moreover Q is pinned by any row of the chosen J-layer which has 1's in $M_{1}(J)$.

A nodal sequence ($L_{1}, L_{2}, L_{3}, L_{4}$) is shown diagrammatically in Figure 5. It is pinned by I. The (J, L_{i})-fragments are shown. In the case illustrated each of these, except Y_{3} and Y_{4}, consists of a single block of consecutive columns. The heart of the enfolding set in these four J-layers is $\left\{Y_{2}, Y_{3}, Y_{4}\right\}$.

Suppose M is transformed into M^{\prime} by a column-clearing operation. Any sequence P of submatrices of M will be said to transform into the sequence P^{\prime}

Figure 5
of submatrices of M^{\prime} obtained by replacing each term of P by the corresponding submatrix of M^{\prime}.
(8.1) Let Q be a nodal sequence of J in M, pinned by a row I. Let M be transformed into $M^{\prime} \in \Lambda(M)$ by a column-clearing operation which does not alter I or J. Then Q is transformed into a nodal sequence Q^{\prime} of J in M^{\prime}, the members of $Y(Q)$ being transformed into the members of $Y\left(Q^{\prime}\right)$. Moreover Q^{\prime} is pinned by I.

This theorem is a consequence of (6.4).
(8.2) Let Q be a nodal sequence of J. Let its last term be U. Let K be a row of a J-layer $H \notin Q$. If Q has more than one term, let K have a 1 in Y_{H}. Let U_{1} be the K-layer of M containing U; see (7.2). Let Q_{1} be derived from Q by replacing U by U_{1}. Then Q_{1} is a nodal sequence of K in M.

Moreover Q_{1} is simple if Q is simple, and if Q is pinned by a row I having a 1 in $M_{1}(K)$, then Q_{1} is pinned by I.
Proof. We may suppose Q to have more than one term since otherwise the theorem is trivially true.

Suppose $E \in A(Q, U)$. Then the zero (J, E)-fragment covers all the 0 's of K in $M_{1}(J)$, by (7.1). Hence, by (7.2), E is a K-layer of M. Moreover the nonzero (J, E)-fragments are the non-zero (K, E)-fragments and they are covered by both $M_{1}(J)$ and $M_{1}(K)$; see (7.4).

Let L be any K-layer of M other than the first term of Q.
Case 1. L is of the first kind (with respect to J). This case arises, for example, whenever $L \in A(Q, U)$.

We define a (K, L)-fragment T_{L} as follows. If Y_{L} is non-zero, then $T_{L}=Y_{L}$; see (7.4). If Y_{L} is zero, then T_{L} is the zero (K, L)-fragment. In each case T_{L} covers all the columns of Y_{L} in $M_{1}(K)$, by (7.4).

It follows that if Q is pinned by I, then T_{L} covers all the 1's of I in $M_{1}(K)$. Moreover, if $F \in A(Q, L)$ any non-zero ($K, F)$-fragment which is covered by Y_{L} is covered also by T_{L}.

Suppose Y_{L} covers the zero (J, F)-fragment (Fig. 6). Then Y_{L} and T_{L} are zero matrices, by (7.1). Outside $M_{1}(J) T_{L}$ covers the same columns of M

Figure 6
as does the zero (K, F)-fragment, namely those covered by $M_{1}(K)$. Inside $M_{1}(J) \cap M_{1}(K)$ the zero (J, F)-fragment and the zero (K, F)-fragment coincide. Hence T_{L} covers the zero (K, F)-fragment; see (7.4).

We deduce that T_{L} covers all but one of the (K, F)-fragments.
If Q is simple T_{L} consists of 1 's only. For since Y_{L} is then nonzero we have $T_{L}=Y_{L}$.

Case 2. L is of the second kind.
Let C be the set of all J-layers E of M, other than H, such that some non-zero (J, E)-fragment covers a zero of K in $M_{1}(J)$. Let D be the set of all K-layers G of $I I$ such that G has a 1 which is in $M_{1}(J)$ but not $M_{1}(K)$. By (7.2) and (7.3) L is made up of J, the members of C, and the members of D.

Let S be the set of all columns X of L such that X is covered by $M_{1}(J)$, $M_{1}(K), Y_{H}$, and each Y_{E} such that $E \in C$. Clearly any two members of S are equal.

Suppose S is non-null. Then there is a (K, L)-fragment T_{L} which contains every member of S. If Q is pinned by I, then by the definition of S, T_{L} covers all the 1 's of I in $M_{1}(K)$. Moreover if Q is simple each member of S is a column of 1's only, and therefore T_{L} consists entirely of 1's.

Suppose $F \in A(Q, U)$. We know that each of $M_{1}(J)$ and $M_{1}(K)$ covers all the non-zero (J, F)-fragments. But these are also covered by Y_{H}, by (7.1), since Y_{H} is non-zero. They are also covered by each Y_{E} such that $E \in C$. For suppose this is not true for some $E \in C$. Then, since $E \notin A(Q, U), Y_{E}$ covers the zero (J, F)-fragment, which itself covers all the zeros of K in $M_{1}(J)$. This implies that Y_{E} is zero, by (7.1), and the definition of C is contradicted.

We deduce, since $A(Q, U)$ is non-null, that S is non-null. Hence T_{L} is defined and T_{L} covers all the non-zero (K, F)-fragments for each $F \in A(Q, U)$.

Case 3. L is of the third kind.
Since $A(Q, U)$ is non-null and Y_{H} covers all the non-zero (J, F)-fragments, for each $F \in A(Q, U)$, it follows that Y_{H} covers at least one column of $M_{1}(K)$.

Hence there is a uniquely defined (K, L)-fragment T_{L} covering all the columns of Y_{H} in $M_{1}(K)$. Accordingly T_{L}, like Y_{H}, covers all the non-zero (K, F)-fragments for each $F \in A(Q, U)$. Moreover, if Q is pinned by I, then T_{L} covers all the 1's of I in $M_{1}(K)$. If Q is simple, Y_{H} consists entirely of 1's and therefore T_{L} consists entirely of 1 's.

The foregoing analysis shows that Q_{1} is a nodal sequence of K in M, with the enfolding set $\left\{T_{L}\right\}$. If Q is simple we have seen that each matrix T_{L} consists entirely of 1 's, so that Q_{1} is also simple. If Q is pinned by a row I having a 1 in $M_{1}(K)$ we have seen that each matrix T_{L} covers all the 1's of I in $M_{1}(K)$, so that Q_{1} is also pinned by I.
9. Nodal rows. Let M be a connected central matrix. A nodal sequence of a row J of M is complete if it includes all the J-layers of M. If J has a complete nodal sequence we call it a nodal row of M.

Consider a sequence Q of $q \geqslant 1$ submatrices of M. A second sequence Q_{1} of q submatrices of M is an improvement of Q in M if it differs from Q only in the q th term, and if the q th term of Q_{1} has more rows than the q th term of Q.

A sequence formed from Q by adjoining a new submatrix of M as a $(q+1)$ th term is an extension of Q in M.

Suppose M is transformed into $M^{\prime} \in \Lambda(M)$ by a sequence of columnclearing operations. Then Q is transformed into a sequence Q^{\prime} of q submatrices of M^{\prime}. Any improvement or extension of Q^{\prime} in M^{\prime} will be called an improvement or extension of Q respectively in M^{\prime}.
(9.1) Let Q be a simple nodal sequence of a row J of M. Then if Q is not complete, we can find a simple nodal sequence Q_{1} of a row K of M, so that Q_{1} is either an improvement or an extension of Q in M.

Proof. Let the last term of Q be U. Since Q is not complete, there are J-layers of M not in Q.

Suppose first that there is a row K of one such J-layer H such that one zero of K is covered by a non-zero (J, U)-fragment of M. By (7.2), there is a K-layer U_{1} of M which contains both U and J. The sequence Q_{1} obtained from Q by replacing U by U_{1} is thus an improvement of Q.

If Q has more than one term, then Y_{H} is defined and consists entirely of 1's. Hence K has a 1 in Y_{H}. It follows, by (8.2), that Q_{1} is a simple nodal sequence of K, whether Q has one term or more.

In the remaining case each J-layer H not in Q has a (J, H)-fragment T_{H} which covers all the non-zero (J, U)-fragments and consists entirely of 1 's. We adjoin one such J-layer, H_{1} say, to Q to form an extension Q_{1} of Q in M.

If Q has more than one term, the matrices Y_{H} are defined for $H \notin Q$, and
$Y_{H}=T_{H}$ since Y_{H} consists entirely of 1's. Hence Q_{1} is a simple nodal sequence of J in M, with $Y\left(Q_{1}\right)=Y(Q)$ or $Y\left(Q_{1}\right)=\left\{T_{H}\right\}$.
(9.2) Suppose M has more than one row. Then if I is any row of M we can find a nodal row J of M other than I. Moreover we can choose J to have a nodal sequence which is both simple and complete.

Proof. Choose a row K of M other than I and let U be the K-layer of M which includes I. Starting with the simple nodal sequence (U) of K we repeatedly construct improvements and extensions in M by the method of (9.1). Since each step increases the total number of rows appearing in the members of the nodal sequence the process must terminate. When it does we have a simple complete nodal sequence Q of some row J of M. But I is a row of the first member of Q and is therefore distinct from J.

We can use Figure 2 to provide some rather trivial exercises on the method of (9.1) and (9.2). Let us denote the i th row by J_{i}. To find a nodal row it seems reasonable to start with the nodal sequence $\left(L_{2}\right)$ of J, since L_{2} is the J-layer with the greatest number of rows. We observe that J_{3} has a 0 in a column of $M_{1}(J)$ having a 1 in L_{2}. We can therefore improve L_{2} by replacing it by the nodal sequence $\left(L_{3}\right)$ of J_{3}, where L_{3} is the J_{3}-layer of M containing J and L_{2}. We see from the second column that L_{3} also contains J_{2}. Hence J_{3} is a nodal row, with a complete nodal sequence $\left(L_{3}\right)$.

If the 0 's in the second, third, fourth, and fifth columns of L_{2} are replaced by 1's, then $\left(L_{1}, L_{2}\right)$ becomes a simple and complete nodal sequence of J in the altered matrix.
(9.3) Let Q be a nodal sequence, pinned by a row I, of some row J of M. Then if Q is not complete, we can find a nodal sequence Q_{1}, pinned by I, of a row K of some $M^{\prime} \in \Lambda(M)$, such that Q_{1} is either an improvement or an extension of Q in M^{\prime}.

Proof. Let the last term of Q be U. Since Q is not complete, there are J-layers of M not in Q. A row K of such a J-layer will be called a weak row of M if it has a 1 common to $M_{1}(I)$ and $M_{1}(J)$ and a 0 covered by a non-zero (J, U) fragment.

Suppose K is a weak row of M in a J-layer H. By (7.2) there is a K-layer U_{1} of M which contains both U and J. Replacing U by U_{1} in Q we obtain an improvement Q_{1} of Q in M.

If Q has more than one term, then Y_{H} is defined and covers all the 1's of I in $M_{1}(J)$. Hence K has a 1 in Y_{H}. Using (8.2) we deduce that Q_{1} is a nodal sequence of K, pinned by I. The enfolding set $Y\left(Q_{1}\right)$ can be obtained from $Y(Q)$ by the definitions set out in the proof of (8.2).

We deduce that the theorem is true if M has a weak row.
In the remaining case if U is the only term of Q, then all the 1 's of I in $M_{1}(J)$ are covered by a single (J, H)-fragment Y_{H}, for each $H \notin Q$. If Q has more than
one term we already know this to be true, with $Y_{H} \in Y(Q)$. In either case we continue the argument as follows.

Suppose first that there is a J-layer $H \notin Q$ such that Y_{H} leaves two distinct (J, U)-fragments of M, Z_{1}, and Z_{2} say, uncovered. Let X_{1} and X_{2} be columns of M, with 1's in J, which meet Z_{1} and Z_{2} respectively, but do not meet Y_{H} (Fig. 7).

Figure 7
We clear X_{1} with J. Since the 1's of I in $M_{1}(J)$ are all covered by Y_{H} this operation does not alter the rows I and J. By (8.1) it transforms Q into a nodal sequence Q^{\prime}, pinned by I, of J in the new matrix. The members of $Y(Q)$ transform into the members of $Y\left(Q^{\prime}\right)$. If Q has only one term we apply (6.4) to the matrices Y_{H}. We thus reduce our problem to the case in which Z_{1} is a zero matrix.

We can now find a column X_{3} of M, with 1's in both I and J, which meets Y_{H}. Since Y_{H} must now be non-zero we can find a row K_{1} of H with a 1 in X_{3}. Since X_{2} and X_{3} are covered by different (J, H)-fragments we can find a row K_{2} of H whose elements in X_{2} and X_{3} are different. But we may assume that no row of H can be chosen as both K_{1} and K_{2}. Such a row would be a weak row of M and would lead to a verification of the theorem.

Let B be the layer of $M_{0}(J)$ corresponding to H. Let W_{1} and W_{2} be the parts of K_{1} and K_{2} respectively in B. Using the construction of $\S 4$ we form a geodesic path $P=\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ from $W_{1}=V_{1}$ to $W_{2}=V_{k}$ in B. Let J_{i} be the row of M containing $V_{i}(1 \leqslant i \leqslant k)$. If we find that some J_{t}, where $1<t<k$, has either a 1 in X_{3} or unequal elements in X_{2} and X_{3} we can obviously make a new choice of K_{1} and K_{2} so as to obtain a shorter path P. We can therefore arrange that each J_{i} other than J_{1} has a 0 in X_{3} and that each J_{i} other than J_{k} has equal elements in X_{2} and X_{3}.

By the procedure of (5.4) we can transform M into a matrix $M^{\prime} \in \Lambda(M)$
having the sum $K=J_{1}+J_{2}+\ldots J_{k}$ as a row, effecting this transformation by clearing $k-1$ columns with 0 's in J and 1's in H. This sequence of operations preserves I and J. We thus reduce, by (8.1), to the case in which M has a weak row, for the sum K has a 1 in X_{3} and 0 's in both X_{1} and X_{2}. We can now verify the theorem.

In the remaining case we find on inspection that, for each J-layer $H \not \ddagger Q, Y_{H}$ covers all but one of the (J, U)-fragments. We then adjoin one such J-layer, H_{1} say, to Q to form an extension Q_{1} of Q in M. It is clear that Q_{1} is a nodal sequence of J in M, pinned by I, with $Y\left(Q_{1}\right)=Y(Q)$ if Q has more than one term, and $Y\left(Q_{1}\right)=\left\{Y_{H}\right\}$ otherwise.
(9.4) Suppose M has more than one row. Then if I is any row of M we can find a nodal row J of some $M^{\prime} \in \Lambda(M)$ such that J has a complete nodal sequence pinned by I.

Proof. Since M is connected we can find a row K of M having a 1 in $M_{1}(I)$, but distinct from I. Let U be the K-layer of M containing I. Starting with the nodal sequence (U) of K, which is pinned by I, we repeatedly construct improvements and extensions by the method of (9.3). When the process terminates we have a nodal row J of some $M^{\prime} \in \Lambda(M)$, with a complete nodal sequence pinned by I.

Consider again the matrix of Figure 2. Let its i th row be denoted by J_{i}, as before. We construct a complete nodal sequence, pinned by J_{3}.

We begin with the nodal sequence $\left(L_{1}\right)$ of J. The (J, L_{2})-fragment, Y_{2} say, occupying the third, fourth, and fifth columns covers all the 1's of J_{3} in $M_{1}(J)$. But it leaves two $\left(J, L_{1}\right)$-fragments, represented by the first and second columns of L_{1}, uncovered. We can take the first, second, and third columns of M as the X_{1}, X_{2}, and X_{3} respectively of (9.3).

We must now take J_{4} and J_{5} as the K_{1} and K_{2} of (9.3). The sequence (J_{4}, J_{5}) corresponds to a geodesic path in the part of L_{2} in $M_{0}(J)$. We therefore clear the thirteenth column with J_{4}, thus transforming M into the matrix M^{\prime} of Figure 8.

The row $K=J_{4}+J_{5}$ of M^{\prime} has two K-layers, L_{4} corresponding to the first four rows and L_{5} corresponding to the last two. We find that (L_{4}, L_{5}) is a complete nodal sequence of K, pinned by J_{3}.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
J_{2}	0	1	0	0	1	1	0	1	0	0	0	0	0	0	0
J_{3}	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0
J_{4}	0	1	1	1	1	0	0	0	1	0	0	0	1	0	0
$J_{4}+J_{5}$	0	0	1	1	1	0	0	0	1	1	0	0	0	1	0
J_{6}	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
J_{7}	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1

Figure 8
10. Nodal rows in graphic matrices. Let M be a connected, central, graphic matrix, and let J be a row of M.
(10.1) If M has not more than one J-layer, and if N is any nodal matrix equivalent to M, then J is either a row of N or the sum of all the rows of N.

Proof. If J is the only row of M, then $M=N$ and the theorem is trivially true. We may now suppose that M has just one J-layer, L say. Let the part of L in $M_{0}(J)$ be L_{0}. Let N_{0} denote the submatrix of N made up of those columns whose corresponding columns in M have 0 's in J. Let R be a rowsubmatrix of N_{0} defined by a maximal set of linearly independent rows. Since M and N are equivalent it follows that L_{0} and R are equivalent.

Assume that the theorem fails. Then we can partition N into two non-null row-submatrices S and T such that S has at least two rows and the rows of S sum to J. Let the intersections with N_{0} of S and T be S_{0} and T_{0} respectively. Since N is nodal and the rows of S sum to J, no column of N_{0} can have a 1 in S_{0} and a 1 in T_{0}.

But each row of N has a 1 in N_{0}, since it is a sum of rows of the central matrix M and is not J; see (3.1). Since the rows of N_{0} are linear combinations of those of R it follows that the intersections with R of S_{0} and T_{0} are both non-null.

We deduce that R is not connected. But L_{0} is central, by (3.2) and (6.1), and equivalent to R. Hence L_{0} is not connected, by (5.1). But this is contrary to the definition of L as a J-layer. The theorem follows.

We call a row of M nodular if it is also a row of some nodal matrix N equivalent to M.
(10.2) Let J be a nodal row of M with a complete nodal sequence Q. Then there exists a nodal matrix N which is equivalent to M and has J as a row. Moreover, if Q is pinned by a nodular row I of M, then N can be chosen to have I also as one of its rows.

Proof. Let q be the number of terms of Q.
Suppose first that $q=1$. We can choose a nodal matrix N equivalent to M, and having I as a row if I is defined. By (2.3) and (10.1) we can arrange that N has J as a row.

Assume the theorem true whenever q is less than some integer $s>1$ and consider the case $q=s$. We write $Q=\left(L_{1}, L_{2}, \ldots, L_{s}\right)$ and denote the member of $Y(Q)$ in L_{i} by $Y_{i}(1<i \leqslant s)$.

Let R_{1} be the row-submatrix of M defined by J and all the J-layers L_{i} other than L_{s}. Let R_{2} be the row-submatrix defined by J and L_{s}. Then R_{1} and R_{2} are connected, central, and graphic, by (3.3) and (6.3).

By (6.3) J is a nodal row of R_{1} with a complete nodal sequence

$$
Q_{1}=\left(L_{1}, L_{2}, \ldots, L_{s-1}\right)
$$

where $Y\left(Q_{1}\right)=Y(Q)-\left\{Y_{s}\right\}$. If I is defined, it pins Q_{1}, and it is a nodular
row of R_{1} by (3.3). By the inductive hypothesis we can replace R_{1} in M by an equivalent nodal matrix N_{1} having J, and I too if it is defined, as a row. We thus transform M into an equivalent matrix M^{\prime}.

Now the columns of R_{1} which meet $M_{1}(J)$ and are not covered by Y_{s} in M are all equal, and if I is defined, they have 0 's in I. Using (2.3) we can therefore adjust N_{1} so that J is the only row of M^{\prime} having 1 's in the columns of N_{1} not covered by Y_{s}.

By (2.3), (6.3), and (10.1) we can replace R_{2} by an equivalent nodal matrix N_{2} having J as a row. We thus transform M^{\prime} into an equivalent matrix $M^{\prime \prime}$. But the columns of R_{2} covered by Y_{s} are all equal. We can therefore adjust N_{2}, using (2.3), so that J is the only row of $M^{\prime \prime}$ having 1 's in both N_{1} and N_{2}. Since N_{1} and N_{2} are nodal it follows that $M^{\prime \prime}$ is nodal.

The above argument shows that the theorem is true for $q=s$. By induction it is true for all values of q.
(10.3) Let I be a nodular row of M. Let J be a nodal row of M having a complete nodal sequence Q which is pinned by I. Then those columns of M which have 1's in both I and J are all equal.

Proof. By (10.2) there is a nodal matrix N, equivalent to M, which has both I and J as rows. Since N is nodal the columns of N having l's in both I and J are all equal. The same result must hold for the equivalent matrix M.
(10.4) Let I and J be as in (10.3). Let M be transformed into $M^{\prime} \in \Lambda(M)$ by clearing with J a column X having 1's in both I and J. Let R be the rowsubmatrix of M^{\prime} made up of all rows other than J. Then $I+J$ is a nodular row of R.

Proof. By (10.2) there is a nodal matrix N, equivalent to M, which has both I and J as rows. We replace I in N by $I+J$, thus obtaining an equivalent matrix N^{\prime}. Let N_{1} be the submatrix of N^{\prime} made up of all rows other than J. Clearly N_{1}, though not necessarily N^{\prime}, is nodal.

Now the columns corresponding to X in M^{\prime} and N^{\prime} are central, and each has its 1 in J. It follows, by an argument like the one used in the proof of (3.3), that R and N_{1} are equivalent.

But $I+J$ is a row both of R and of the equivalent nodal matrix N_{1}. That is, $I+J$ is a nodular row of R.
11. The graphic algorithm. We are now in a position to explain the application of the algorithm to a given non-singular matrix M. We first replace M by an equivalent central matrix M_{1}, by the process described in $\S 2$. Then we determine the layers of M_{1}, as in $\S 4$.

Suppose first that M_{1} is found to be connected. We may assume it to have more than two rows since otherwise it is already in nodal form. As a preliminary operation we apply the method of (9.1) and (9.2) to find a nodal row I_{1} of M_{1}. We denote by N_{1} the matrix having I_{1} as its only row.

At the beginning of the i th stage of the algorithm we have two matrices M_{i} and N_{i}, and one row of M_{i} is distinguished by the symbol I_{i}. The following propositions hold.
(i) N_{i} has i rows and M_{i} has $r-i+1$, where r is the number of rows of M.
(ii) M_{i} is connected and central.
(iii) N_{i} is nodal.
(iv) If the j th column of N_{i} has two 1 's, then the j th column of M_{i} has zeros only.
(v) I_{i} is the sum of the rows of N_{i}.
(vi) The matrix T_{i} formed by adjoining to N_{i} all the rows of M_{i} except I_{i} is equivalent to M.
(vii) If M is graphic, then M_{i} is graphic and I_{i} is a nodular row of M_{i}.

In the case $i=1$ the first six of these propositions are trivially true, and the seventh follows from (10.2).

If $i<r$ we carry out the i th stage as follows. We apply the process of (9.3) and (9.4) to M_{i} and obtain a matrix $M_{i}{ }^{\prime} \in \Lambda\left(M_{i}\right)$ in which there is a row J_{i} having a complete nodal sequence pinned by I_{i}. We then examine the columns of $M_{i}{ }^{\prime}$ having 1 's in both I_{i} and J_{i}. If these columns are not all equal, we terminate the algorithm and assert that M is not graphic. This is justified by (vii) and (10.3). If they are equal we clear one of them, and therefore all of them, with J_{i}. This operation transforms $M_{i}{ }^{\prime}$ into $M_{i}{ }^{\prime \prime} \in \Lambda\left(M_{i}\right)$. It also replaces I_{i} by $I_{i}+J_{i}$, which we denote by I_{i+1}. We define M_{i+1} as the matrix obtained from $M_{i}{ }^{\prime \prime}$ by deleting the row J_{i} and N_{i+1} as the matrix obtained from N_{i} by adjoining J_{i} as a new row.

We must now verify that Propositions (i) to (vii) continue to hold when i is replaced by $i+1$. For (i) and (v) this is evident.

For (ii) we observe that $M_{i}{ }^{\prime \prime}$, like M_{i}, is connected and central. Hence M_{i+1} is central by (3.2). Any J_{i}-layer L of $M_{i}{ }^{\prime \prime}$ is connected, by definition. It has a 1 in a column X having another 1 in J_{i}, by (6.2). By the construction of $M_{i}{ }^{\prime \prime}$ the non-central column X must also have a 1 in I_{i+1}. Since M_{i+1} is the union of the J_{i}-layers of $M_{i}{ }^{\prime \prime}$ and has I_{i+1} as a row, it must be connected.

To prove that N_{i+1} is nodal we observe that by (iv) a column X of $M_{i}{ }^{\prime \prime}$ with a 1 in J_{i} corresponds to a central or zero column Y of N_{i}, the first alternative arising, by (v), only when X has a 1 in I_{i}. Since some non-central column of $M_{i}{ }^{\prime \prime}$ has a 1 in J_{i} we deduce that N_{i+1} is non-singular and has at most two 1 's in each column. It is thus nodal. Moreover the columns with two 1 's correspond to zero columns of $M_{i}{ }^{\prime \prime}$ or to columns of $M_{i}{ }^{\prime \prime}$ with 1 's in both I_{i} and J_{i}, that is to zero columns of M_{i+1}. Thus (iii) and (iv) continue to hold at the $(i+1)$ th stage.

Using (v) it is easy to verify that each row of T_{i} is a linear combination of rows of T_{i+1}, and each row of T_{i+1} is a linear combination of rows of T_{i}. Hence, since T_{i+1} has exactly r rows, it is equivalent to T_{i} and M.

If M is graphic, then $M_{i}{ }^{\prime \prime}$ is graphic and has I_{i+1} as a nodular row of the graphic row-submatrix M_{i+1}, by (10.4).

We have now verified our seven propositions with i replaced by $i+1$.
It follows that we can start with $i=1$ and carry out the algorithm stage by stage until either it terminates in the manner described above, M being non-graphic, or we complete the $(r-1)$ th stage and obtain the matrices M_{r} and N_{r}. Then M_{r} consists of the single row I_{r} by (i), and so $N_{r}=T_{r}$. Thus N_{τ} is a nodal matrix equivalent to M, by (iii) and (vi).

There remains the case in which M_{1} is not connected. We then apply the algorithm to each layer separately and use (5.3).

As an example we turn to Figure 8, derived from Figure 2 by operations belonging to the first stage of the algorithm. We change the notation to fit the present section, so that J_{3} becomes I_{1} and $J_{4}+J_{5}$ becomes J_{1}. Clearing with J_{1} the two equal columns with 1 's in both I_{1} and J_{1} we arrive at the matrix of Figure 9. Here N_{2} is shown above the horizontal division and M_{2} below it.
c
I_{1}
J_{1}

I_{2} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |

Figure 9
Short-circuiting the recommended application of (9.4) we observe that the third row of M_{2} is nodal, and acceptable as J_{2}. The columns having 1's in both I_{2} and J_{2} being equal, we carry out the next stage of the algorithm and obtain M_{3} as the matrix of Figure 10.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
I_{3}	0	1	0	0	0	1	1	0	1	1	0	0	0	1	0
	1	1	0	0	0	0	0	0	1	1	0	0	0	1	0
	0	1	0	0	0	0	0	0	0	1	0	0	1	1	0
	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
J_{3}	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1

Figure 10
In this matrix the last row may be taken as J_{3}. Its complete nodal sequence, pinned by I_{3}, has two terms, the second consisting of the fourth row only. We now determine M_{4} as the matrix of Figure 11.

I_{4}| 1 |
| :---: |
| J_{4} | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |

Figure 11

The fourth row of this matrix can be taken as J_{4}. We then obtain M_{5} as the matrix of Figure 12.

I_{5}| |
| :---: |
| J_{5} | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

Figure 12

Here the third row is acceptable as J_{5}, and the sum of the second and third must be taken as J_{6} in the last stage of the algorithm. We conclude that the matrices of Figures 2 and 8 are equivalent to the nodal matrix of Figure 13 .

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
I_{1}	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0
J_{1}	0	0	1	1	1	0	0	0	1	1	0	0	0	1	0
J_{2}	0	1	0	0	1	1	0	1	0	0	0	0	0	0	0
J_{3}	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
J_{4}	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
J_{5}	0	1	0	0	0	0	0	0	0	1	1	1	1	0	0
J_{6}	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0

Figure 13

Reference

1. S. Seshu and M. B. Reed, Linear graphs and electrical networks (Reading, Mass., 1961).

University of Waterloo, Waterloo, Ontario

[^0]: Received January 7, 1963.

