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A NEW COHOMOLOGICAL CRITERION
FOR THE p-NILPOTENCE OF GROUPS

MAURIZIO BRUNETTI

ABSTRACT. Let G be a finite group, H a copy of its p-Sylow subgroup, and K(n)Ł(�)
the n-th Morava K-theory at p. In this paper we prove that the existence of an iso-
morphism between K(n)Ł(BG) and K(n)Ł(BH) is a sufficient condition for G to be
p-nilpotent.

1. Introduction and statement of results. Let p be any prime number. A finite
group G is said to be p-nilpotent if the elements of order prime to p form a (normal)
subgroup N. In this case the quotient GÛN is obviously isomorphic to a p-Sylow subgroup
H of G. Let hŁ(�) be any mod p or p-local cohomology theory. For any group G the
restriction homomorphism

hŁ(Bi): hŁ(BG) ! hŁ(BH)

is injective, and it is additionally surjective if G is p-nilpotent.
In the past, several people were interested in results going in the other direction.

Tate proved in [11] that if H1(BG;ZÛp) and H1(BH;ZÛp) are isomorphic, then G is
p-nilpotent. On the other hand a theorem by Atiyah whose proof is sketched in [8]
states that the existence of an isomorphism between Hi(BG;ZÛp) and Hi(BH;ZÛp) for
all sufficiently large i is also a sufficient condition for G to be p-nilpotent. Finally, by
arguments related to the celebrated Atiyah’s description of KŁ(BG), the complex K-
theory of the classifying space of a group G in terms of its complex representation ring
[1], it is not hard to prove that G is p-nilpotent if and only if KŁ(BG) ≤ KŁ(BH).

Let n be a positive integer, and K(n)Ł(�) the n-th Morava K-theory at p. It is now
well known that the rank of K(n)Ł(BG) as K(n)Ł-module is finite [9], and it is possible to
introduce a K(n)Ł-Euler characteristic for BG. By its group theoretical significance we
prove the following theorem.

THEOREM 1.1. A finite group G is p-nilpotent if and only if, for some n, the restriction
map

K(n)Ł(BG) �! K(n)Ł(BH)

is an isomorphism, where H is a p-Sylow subgroup of G.
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This result confirms the special role played by Morava K-theories among all complex
oriented cohomology theories, and induces to guess the answer to the following natural
question. Let f : G1 ! G2 be a homomorphism between two finite groups. It is known that
if K(n)Ł(Bf ) is an isomorphism for all n ½ 0 then BG1 and BG2 are stably p-homotopy
equivalent. This result follows by [10], once you know that

P
1 BG is harmonic (see

Lemma 5.5 in [7]); you can also use the fact that a map between spaces which induces an
isomorphism in all Morava K-theories is a homology equivalence (see [2]). Is it possible
in the statement above to replace “for all n” with “at least one n”? A positive answer
should allow us to include Morava K-theories in a family of functors which is the p-
local analogue of that one introduced in [6], where the author finds sufficient conditions
for a functor F from the category of finite groups to the category of (graded) abelian
groups to satisfy the following property: any homomorphism of finite groups inducing
an isomorphism of F is itself an isomorphism.

The author would like to thank Nick Kuhn who turned author’s attention on [6], and
on the harmonicity of classifying spaces of finite groups in the sense explained in [10].

2. Proof of the theorem. Throughout all this section, groups will be finite. Follow-
ing notations introduced in the previous section, we start to recall that the difference
between the ranks respectively of K(n)even(BG) and K(n)odd(BG) as K(n)Ł-modules is
called K(n)Ł-Euler characteristic of BG, and it is denoted by ünÒp(G).

LEMMA 2.1. The numberünÒp(G) is equal to the cardinality of the set GnÒp of conjugacy
classes of n-tuples of commuting elements of G whose order is a power of the prime p.

PROOF. See [3].

PROPOSITION 2.2. Denoting by H a p-Sylow subgroup of a group G, K(1)Ł(BG) and
K(1)Ł(BH) are isomorphic if and only if the group G is p-nilpotent.

PROOF. If G is p-nilpotent, hŁ(BG) and hŁ(BH) are isomorphic for any cohomology
theory hŁ(�) whose coefficients ring is p-local (i.e. a local ring with residual characteristic
p) or mod p (i.e. when ht(pt) is an Fp-vector space for every integer t).

Suppose now K(1)Ł(BG) and K(1)Ł(BH) isomorphic; then ü1Òp(G) = ü1Òp(H). In other
words, using the group theoretical significance of this number found for the first time in
[5], and one of Sylow’s elementary theorems, if two elements of H are conjugate in G,
then they are conjugated in particular by an element of H. This fact actually implies the
p-nilpotence of G (see [4, IV, 4.9]).

We can finally approach what Proposition 2.2 leaves still to prove of Theorem 1.1.
Given an integer n Ù 1, suppose K(n)Ł(BG) and K(n)Ł(BH) isomorphic, and never-

theless G is not p-nilpotent. In this case, by Proposition 2.2, ü1Òp(G) is strictly less than
ü1Òp(H). Therefore there exist at least two elements in H having order a power of p, say
h and k, such that they are conjugate in G but not in H. Notice now that every element
in the set GnÒp has the form

[(g1Ò    Ò gn)]Ò
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and, by definition, all of the elements g1Ò    Ò gn are contained in the same p-Sylow
subgroup, therefore each class in GnÒp can be represented by an n-tuple

(h1Ò    Ò hn)

where all the hi’s are in H. It follows that the n-tuples

(hÒ hÒ    Ò h) and (kÒ kÒ    Ò k)

represent the same class in GnÒp but not in HnÒp, hence ünÒp(G) Ú ünÒp(H), and an
isomorphism between two free modules with different ranks cannot exist.
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