
A THEORY OF CONVERGENCE 

E. J. McSHANE 

The literature already contains several theories of limits which have great 
generality (10; 12; 1; 5; 6; 13; 3; 14; 4, p. 34). Nevertheless, the intrinsic 
importance and frequent use of the concept may justify the publication of 
another variant, provided that it has advantages in ease of application without 
sacrifice of generality. The theory of convergence studied in this note includes 
the other theories and their applications in a smooth way, without artifice. 

1. Definition. If / is a function on a topological space D to a topological 
space R> and a Ç D and b £ R, the standard definition of 

lim f(x) = b 
x —> a 

can be phrased thus. Let 91 be the family of all neighborhoods of a and g) the 
family of all neighborhoods of b ; to each F £ g) corresponds N Ç 9Ï such that 
if x £ N then f(x) Ç F. Similarly, if the domain D of / is directed by > , so that 
/ , > is a net of points of S, the convergence of this net to b Ç S can be thus 
expressed. Each n 6 D defines a "final section" D[> n] of D, where D[> n] 
means the set {m\ m £ D &m > n}. Let 91 consist of all final sections of Dy 

and let §) consist of all neighborhoods of b. Then 

lim f(n) = b 
n, > 

if and only if to each Y Ç g) corresponds a final section D[ > n] € 9Î such that 
ii m £ D[> n] then f(m) 6 §). These definitions and others too have the com
mon form that we have given a function/, a family 9Î of subsets of the domain 
Df of / , and another family §) of sets, and the convergence of the function 
takes place if to each set Y Ç §) corresponds a set iV € 91 such that if x Ç N 
then/(x) Ç F. Under these circumstances we shall say that uf converges over 
91 into §)," or "/(#) converges into §) as x converges into 91." 

Some theorems can be proved with no further assumptions. However, we 
prefer to devote most of our attention to families 91 having properties which 
will enable us to prove a few of the most elementary theorems concerning 
limits of real-valued functions. Specifically, let 91 be a family of subsets of 
some set D. We wish to find the weakest hypotheses on 91 that will enable us 
to prove the following three statements. 
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(i) Some real-valued function on D converges over SSI to some real number. 
(ii) Some real-valued function on D does not converge over SSI to every real number. 

(iii) If f\ and f2 are real-valued functions on D, both of which converge over SSI 
to 1, then ji + /2 converges over SSI to 2. 

It is easily seen that (i) is satisfied if and only if SSI is non-empty, and (ii) is 
satisfied if and only if each N Ç Sfl is non-empty. To investigate the effect of 
(iii), we let Ni and N2 be any members of SSI, and le t / i and/2 be their respective 
characteristic functions; then/i(x) and/2(x) converge over 91 to 1. If (iii) holds, 
their sum converges to 2; therefore there exists N% in Sfl such that if x Ç iV ,̂ 
then 

\fi(x) + f2(x) - 2 | < 1 . 

But this last statement holds on the intersection Ni C\ N2 and nowhere else* 
Hence iV3 C iVi P\ N2. Conversely, if Ni C\ N2 contains a member of SSI, f\ + f2 

converges over SSI to 2, and (iii) holds. 
In the terminology of H. Cartan [5], a family 21 of sets is a filter-base if 

and only if 21 is a non-empty family of non-empty sets such that if A and B 
are in 21, there exists a set C of 21 which is contained in A and in B. Therefore 
the results of the preceding paragraph may be summarized thus: in order 
that (i), (ii), and (iii) be satisfied, it is necessary and sufficient that SSI be a filter-base. 

If SSI is a filter-base in the domain Df of a function/, the range of/ (structure
less in itself) is organized or systematized by classifying its points into the 
images of the various N of SSI. Since avvra^Ls means " putting together in 
order, arranging, . . . ; system, arrangement, organization, . . . " (Liddell and 
Scott, Greek-English Lexicon), we adopt the following definition. 

(1) DEFINITION. A syntax is a system (/ ; SSI) in which f is a function and 
SSI is a filter-base in the domain Df of f. When (f; SSI) is a syntax and the values 
of f are in a set 5, ( / ; SSI) is a syntax of points of S. 

Thus, for example, if SSI consists of all neighborhoods of the number x, the 
syntax (sin; SSI) is an appropriate tool in the study of the behavior of the 
sine-function near w. To study its behavior near some other point x0 we 
would need to replace Sfl by the family of neighborhoods of x0, producing a 
different syntax. 

Not all our theorems require the full strength of definition (1). Definitions 
and theorems (2) to (12), except for (8) and with (12 ii) removed, are still 
valid if in (1) we replace the words "filter-base in" by "family of subsets of." 
Moreover, (8) and (12) in full hold if SSI is assumed to be a family of subsets 
of Df such that each pair of sets in N has a non-empty intersection. However, 
there does not appear to be enough advantage in this extra generality to 
warrant giving it any further attention. 

(2) DEFINITION. If (/ ; Sfl) is a syntax and g) is a family of sets, (/; SSI) 
converges into §) if and only if to each set Y Ç §) corresponds a set N Ç SSI such 
that ifx£N, then f(x) 6 Y. 
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Alternative wordings for " ( / ; 51) converges into §) " are " / converges over 
51 into §) " and uf(x) converges into §) as x converges into -K. " 

In many applications there is a unique point common to the sets F in §). 
This point, determined by £), we could designate by [§)]. Even when the family 
§) does not determine such a unique point, it still may be regarded as defining 
an ideal point [§)] in some space of sets. A similar statement holds for 5L 
Accordingly, the sentence " ( / ; 51) converges into §) " can be symbolized in 
any one of the following three ways: 

/(*) -> W\ as x -* [51] , (f;M)-+W], 

lim f(x) = W] . 
x->W] 

(For this suggestion, I owe thanks to the referee.) 

Remark 1. If we wish to discuss multiple-valued functions / , we could 
correspondingly change Definition 2, replacing the final "f(x) G F " by 
"all values of f(x) are in F." This would furnish a generalization of a 
mode of convergence of multiple-valued functions which has occasionally 
been used. 

Remark 2. We can conveniently adapt Halmos's terminology, saying that 
a statement concerning f(x) is "eventually" true if it is true of f(x) for all x in 
some set N 6 5Ï. Thus (2) becomes "(f; 51) —» [£)] if and only if for each 
Y£ d,f(x) is eventually in F." 

Remark 3. If a syntax (/; 51) converges into §), we may assume without 
loss of generality that $ is a filter-base, since the set §)' of all intersections of 
finite subfamilies of §) is then a filter-base and (f; 9t) —> [?)'] . 

It is easy to see that the usual theorems on limits of sums, products, etc., 
of real functions can be established in the customary manner. If S is a set 
partially ordered by >, let D[> a] denote the s e t { s | s Ç , S & s > a } . Such 
sets will be called "final sections" of S. If we wish to avoid adjoining oo to 
the reals, we can notice that "f(x) —> °°" is the same as uf(x) converges into 
the final sections of the real number system." The final sections of S form a 
filter-base if and only if S is directed by > , so convergence of nets is a special 
case of convergence of syntaxes. The convergence defined by Bennett (1) 
is similarly covered. If / is on a topological space Df to the extended real 
numbers, it is lower semi-continuous at a if and only if as x —» a,f(x) converges 
into the family §) of open sets containing {y \ y > f(a)} . 

2. Subsyntaxes. In order to define the concept of subsyntax it is convenient 
first to define the relation "finer than." 

(3) DEFINITION. Let SDÎ, 5Î be families of sets. Then 9JÎ is finer than 51 if 
and only if each N Ç 51 contains a set M Ç 5DÎ. 
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(4) DEFINITION. Let f be a function, and let 3)1, 91 be filter-bases in the 
domain of f. Then (f; 3)1) is a subsyntax of (f; 31) if and only if 3)1 is finer 
than 31. 

(5) COROLLARY. If (J; 31") is a subsyntax of (f; 31'), and the latter is a 
subsyntax of {/; 31), then (J; 31") is a subsyntax of (/; 31) . 

(6) COROLLARY. If {/; 3)1) is a subsyntax of (J; 31), and §) is a family of 
sets j and f converges over 31 into §), then f also converges over 3Jt into g). 

As a special case, suppose that (/; 31) is a syntax and A is a subset of Df 
such that A P\ N is non-empty for every N G 31. We define 3JI to be the family 
of all such intersections A r\ N; then 3)1 is easily seen to be a filter-base 
which is finer than 31. Hence ( / ; 3)1) is a subsyntax of (/ ; 31). When Df is 
the set of positive integers, and A is an infinite subset {n\, ni . . . } of Df, the 
subsyntax (f; 3)1) does not differ in any essential way from the traditional 
subsequence 

A similar statement holds if Df is directed by a relation > and A is a cofinal 
subset. But this method of constructing subsyntaxes is by no means the only 
one possible, as we shall see in several later theorems (e.g., Theorems (11) and 
(14)). 

3. Cluster-points. Our next definition generalizes the concept of cluster-
point of a sequence. 

(7) DEFINITION. Let (J; 31) be a syntax and §) a family of sets. Then (J; 31) 
clusters at [§)] if and only if for each N £ 31 and each Y Ç §) there exists 
x Ç N such that f{x) € Y. 

In particular, when §) is the family of neighborhoods of a point p in a 
topological space and {/; 31) clusters at [§)] we say that p is a cluster-point of 

if; K) • 
(8) COROLLARY. / / §) is a family of sets and (J; 31) a syntax which converges 

into §), then (f; 31) clusters at [§)] . 

For if N e 31 and Y € §), there exists N' 6 31 such that f(Nf) C Y; N and 
N' have a point x in common, for which x Ç N and /(x) 6 F. 

(9) COROLLARY. If (/; 3)1) is a subsyntax of (f; 31), and (/; 3)1) clusters at 
[®], so does (f;3l). 

For let Y G §) and iV Ç 91. Then ./V contains a set M of the family 2ft, and 
there exists x £ M such that /(x) G Y. 

The following rather obvious statement is needed in several proofs. 

(10) LEMMA. Let §1 and 93 be filter-bases such that for all A Ç 21 awd 5 6 93 
/&e intersection A C\B is non-empty. Let 6 consist of all sets of the form A C\B, 
A £ % and B £ $8. Then 6, S U (£ a»d « U SB U 6 are filter-bases. 
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(11) THEOREM. / / (f;%l) is a syntax and g) is a filter-base and (f; 9Î) 
clusters at [§)], there exists a sub syntax (/; 99?) of (f; 31) which converges into g). 

Proof. Let 5DÎ consist of all intersections NHf'^Y) with N ^ 31 and 
F £ g). By (10) this is a filter-base, and it is obviously finer than 31; and for 
each F in g), for all x in i V n / - 1 ( F ) ( iV an arbitrary fixed member of 31 ) 
we find /(x) in Y. 

Remark 1. Under the hypotheses of (11) there exists a net (g(a) \ a € ^4), 
> of points of Df such that g, > converges into 9? and (f(g(oc)) \ aÇ A), > 
converges into g). For we can choose A to be the family 3JI of intersections 
and for each a£ A choose g (a) Ç a. 

Remark 2. Still under the hypotheses of (11), if 9? and g) have countable 
subsets {Ni | i = 1, 2, . . . } and { F* | i = 1, 2, . . . } which are finer than 9? 
and g) respectively, there is a sequence (g(m) | ^ = 1 , 2 , . . . ) of points Df 
such that as m —> °°, g(ra) converges into 9? and f(g(m)) into g). For we can 
choose 

£ ( w ) € X w r V - K F m ) , m = 1,2, . . . . 

4. Uniqueness. Let us first dispose of the somewhat trivial question of 
the convergence of syntaxes (/; 9? ) such that / has a constant value p on some 
set N of the family 9?. It is evident that such a syntax converges into the sets 
of a family g) if and only if p is in every set F of g). In particular, if g) is the 
family of all neighborhoods of a point g in a topological space 5, this syntax 
{// W ) converges to q if and only if p is in every neighborhood of q. Thus if p 
is in a topological space 5, and (/; 9? ) is a syntax, and / is constantly equal to 
p on some set N of 9?, then (/; 9?) converges to p; and it converges to p alone 
if 5 is a jTi-space. 

In the next theorem and several others we need to make use of the identity-
function, which at each x in the universe of discourse has the functional 
value x. For this function we shall use the name id ; thus id x = x for all x. 

(12) THEOREM. Let g), g)' be filter-bases. The following conditions are equivalent. 
(i) For every Y £ g) and every Y' £ g), Y C\ Y' is non-empty. 

(ii) There exists a syntax (f; 9?) which converges into g) and into g)', 
(iii) There exists a syntax (/; 9?) which converges into g) and clusters at [g)'j. 

Proo/. By (8), (ii) implies (iii). Let (iii) hold, and let FÇ g) and FÇ g)'. 
For some N Ç 9?, /(-iV) C F, and there exists x £ N such that /(x) Ç F', so 
f(x) Ç F H F , and (i) holds. If (i) holds, let 9? be the set of all intersections 
F Pi F with F <E g) and F ' Ç g)'. By (10), this is a filter-base; it is finer than g) 
and g)', so (id; 91) is a subsyntax of (id; g)) and (id; g)'). Since it is evident 
that these syntaxes converge into g) and g)' respectively, by (6) (id; 31) con
verges into g) and into g)'. Hence (i) implies (ii). 

In particular, if g) and g)' are the families of neighborhoods of points p, p' in 
a topological space, there exists a syntax (/; 9Î) converging to both p and p' 
(or converging to one and having the other as cluster-point) if and only if 
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every neighborhood of p meets every neighborhood of p'. This implies p = p' 
if and only if the space is a Hausdorfï space. 

5. Decided Syntaxes. We adapt to syntaxes an expressive phrase of 
Tukey's (14). If (/; 31) is a syntax and F a set, the syntax decides for Y if 
fix) is eventually in F, and decides against Y il fix) is eventually not in F; in 
either case, {/; 31) decides about F. A syntax will be called a decided syntax 
if it decides about every set F. 

(13) DEFINITION. A syntax (f; 31) is decided if to every set Y corresponds 
N Ç 31 having one of the following properties : 

(i) for all x£ N, fix) 6 F ; or 
(ii) for all x Ç N, fix) i F. 

The i'decided syntaxes" are the analogues of the "ultra-filters" of Cartan (4) 
and the "universal nets" of Kelley (7). 

Remark 1. Clearly (13) is unaltered if we consider only sets F contained 
in the range of/. 

Remark 2. The syntax (/; 31) is decided if and only if the images /(iV), 
N £ 31 form an ultra-filter. 

(14) THEOREM. Every syntax has a decided sub syntax. 

Let {/; 31) be a syntax. The collection $ of all filter-bases in Df which 
contain 9̂  is partially ordered by D . If $o is a linearly ordered subset of <£, 
the union U of all the members of <3>o is itself a member of $. By the Hausdorff 
maximal principle (Zorn's lemma) there exists a maximal member 9ft of $. 
Then {/; 9ft) is a syntax, and since each N G 31 contains (in fact, is) a member 
oîM, (f; 9ft) is a subsyntax of ( / ; 31). To prove it a decided syntax let F be 
any set. If there is no M Ç 9ft such that fiM) Pi F is empty, let S3 consist of 

f~1iY) alone. This is a filter-base, and for all M G 3ft and all B £ S3 we know 
that M r\ B is not empty. The set S of all such intersections is a filter-base by 
(10), and so is 2JÎ U S3 W 6. This contains the maximal filter-base 3ft, so it is 
identical with 3)1, and S3 C 9ft; that is, ^ ( F ) is a member M' of 9ft. Hence 
fiM') C F, which completes the proof. 

(15) THEOREM. If g) is a family of sets, and a decided syntax (f; 31) clusters 
at [§}], it converges into §). 

For each F 6 g), /(iV) Pi F is non-empty for all N £ 31, so by (13) there 
exists N e 31 such f(N) C F. 

6. Characterizations of Compactness. Syntaxes serve as well as nets or 
filters in characterizing compactness. 

(16) THEOREM. Let S be a topological space. Then the following statements 
are equivalent. 

(i) S is compact. 
(ii) Every syntax of points of S has a cluster point in S. 
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(iii) For every function f on S to S and every filter-base 31 in S, the syntax 
(f; 31 ) has a cluster point in S. 

(iv) For every filter-base 31 in S, the syntax (id ; 31) has a cluster-point in S. 
(v) For every basis 33 of closed sets in S and every filter-base 31 C 33, the 

syntax (id; 31) has a cluster-point in S. 
(vi) There exists a basis S3 of closed sets in S such that for every filter-base 

31 C 33, the syntax (id; 31) has a cluster-point in S. 
(vii) Every syntax {f; 31) of points of S has a subsyntax which converges to a 

point of S. 
(viii) Every decided syntax of points of S converges to a point of S. 

Proof, (i) —» (ii). Let (/; 31) be a syntax of points of a compact space S. 
The set of all images f(N), N G 31 has the finite intersection property, and 
therefore so has the set of closures f(N), N£31. Since 5 is compact, there 
exists a point p common to all these closures. For each N G 31, p G f(N), so 
for each neighborhood U of p the intersection U P\ f(N) is non-empty, and 
p is a cluster-point of (/; 31). 

(ii) —> (iii) —» (iv) —* (v) —•> (vi). Obvious. 
(vi) —> (i). Let §1 be a family of closed subsets of S having the finite inter

section property. Define SI' to be the family of all sets which are inter
sections of finitely many members of SI; this too has the finite intersection 
property. Let 31 consist of all members of the basis 33 which contain a set 
A' G 31'; this is a filter-base, and by (vi) the syntax (id; 31) has a cluster-point 
p in 5. For each N in 31, every neighborhood of p meets id N = N, so 
pe N = N. Thus p is in all sets N G 31. If A G 31, it is the intersection of all 
sets of 33 which contain A. But all these sets are in 31, hence contain p, and 
thus p G A. 

From (15), (ii) —> (viii); from (14), (viii) —» (vii). From (8) and (9), (vii) —> 
(ii). This completes the proof. 

Remark 1. While (ii) is a useful consequence of compactness, it is undesira
ble as a test for compactness, since the family of all syntaxes of points of S is 
as numerous as the class of all sets. This is the principal reason for including 
(iii), (iv), (v), and (vi) ; the cardinal number of syntaxes involved in these 
criteria can be estimated in terms of the cardinality of S, the last being the 
least. (Criteria (v) and (vi) were suggested by the referee.) 

7. TychonofFs Theorem. Let A be a non-empty set, and for each a£ A 
let Sa be a topological space. The cartesian product Yl<* Sa of these Sa is by 
definition the set of all functions </> on A such that for each a G A, <f)(a) G Sa. 
For each element <t> of _Qa Sa and each a£ A, the value of 0 at a is called the 
component of <j> in Sa and denoted by cf>a. The product is topologized by defining 
neighborhoods to be cartesian products JX* Ua in which for finitely many a, 
Ua is a neighborhood in Sa, and for all other a f i , Ua = Sa] the product thus 
topologized is the "topological product" of the Sa. 
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If (// 9Î) is a syntax of points of J j a Sa and for each a in A the component 
fa of / is understood to be the function (/«(#) | x € D/), then (/a; 9Î) is a syntax 
of points of 5 a . If (/; Sft ) is a decided syntax so is (fa; 9Î), as we now show. 
Let Ya be any set in the range of/«, and let Y be the cartesian product Yl$ Zfr 
where Za — Ya and Zp = Sp for /3 Ç ^4, 0 ^ a. Then /(x) Ç F if and only if 
/«(#) € Fa. There exists an N € 91 on which the statement/(x) Ç F is invariably 
true or invariably false; correspondingly the statement fa(x) £ F a is true for 
all x Ç -X" or false for all x f Z , and so (fa; 91) is a decided syntax. 

From this we obtain a proof of TychonofFs theorem which is essentially 
a copy of Cartan's (5). 

(17) THEOREM. If for each a £ A the set Sa is a compact topological space, 
the topological product of the Sa is also compact. 

Let {/; 91) be a decided syntax of points of the product space. For each 
a£ A, (fa; 9?) is a decided syntax of points of Sa, so by (16) it converges to a 
point pa of Sa. Let p = (pa | a Ç A) ; this is a point of Yla Sa. Now let U be a 
neighborhood JX, Ua of />, where for all a in a finite set B Q A the set Ua is a 
neighborhood of pa in 5«, and for all a£ A — B, Ua = 5 a . For a Ç ^ , there 
exists Na G 91 such that /«(iVa) C Z/a. Since 91 is a filter-base, there exists 
i^G 9Î which is contained in all the Na, a£ B. Then /a(iV) C Ua, a G -B, so 
/CAO C f̂ . This proves (/; 91) converges to p, and by (16) the topological 
product is compact. 
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