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Abstract. Low-order models of nonlinear dynamos can be used to investigate generic properties of 
more realistic mean field dynamos. Reducing the partial differential equations to a set of ordinary 
differential equations makes it possible to explore the bifurcation structure in considerable detail 
and to compute unstable solutions as well as ones that are stable. Complicated time-dependent 
behaviour is typically associated with a homoclinic or heteroclinic bifurcation. Destruction of 
periodic orbits at saddles or saddle-foci gives rise to Lorenz-like or Sliil'nikov-like chaotic oscilla-
tions, while destruction of a quasiperiodic orbit leads to aperiodically modulated cycles. Changes 
in spatial symmetry can also be investigated. The interaction between solutions (steady or pe-
riodic) with dipole and quadrupole symmetry gives rise to a complicated bifurcation structure, 
with several recognizably different mixed-mode solutions; similar behaviour has also been found 
in spherical dynamo models. These results have implications for the expected behaviour of stellar 
dynamos. 

1. Introduction 

The remarkable advances in nonlinear dynamics over the past two decades have 
revealed various systematic patterns of behaviour that recur in many different non-
linear problems. My aim in this review is to show how detailed studies of simple 
truncated models can be used to clarify aspects of nonlinear behavour in more real-
istic - and therefore more complicated - models of planetary and stellar dynamos. 
Thus I shall be concerned here with certain technical aspects of dynamo theory 
rather than with relating theory to observations. 

The relationship between properties of toy models and those of the full partial 
differential equations is not always obvious. So why study such simple systems? The 
motivation for this approach is to demonstrate generic behaviour, although specific 
models lack predictive power. For example, chaos may appear as a consequence of 
an unjustifiable truncation - yet similar mechanisms do lead to chaos in accurate 
calculations. The discussion here will focus on two specific issues: first, the connec-
tion between chaotic behaviour and global (homoclinic or heteroclinic) bifurcations 
and, secondly, the breaking of spatio-temporal symmetries. 

2. Temporal chaos 

It is worth recalling that dynamo theory provided one of the earliest examples 
of chaotic behavour in a dissipative system (Bullard 1978; Krause and Roberts 
1981; Guckenheimer 1981). Allan (1958) noted that coupled disc dynamos exhibit, 
aperiodic reversals. At that time it was widely believed that, for such a system, 
trajectories would be attracted to a fixed point, a limit cycle or a torus; the exis-
tence of structurally stable chaotic motion did not become generally accepted until 
the late '60s, after the key papers of Smale (1963, 1967) and Lorenz (1963) had 
appeared. Allan was fortunate in being advised by P. Swinnerton-Dyer, who was 
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(a) (b) 

Fig. 1. Homoclinic and heteroclinic orbits, (a) Sketch showing a symmetrical pair of lio-
moclinic connections to a saddle-point at the origin, as in the Lorenz system, (b) Sketch 
showing a heteroclinic connection between a symmetrical pair of saddle-foci. 

familiar with Cartwright and Littlewood's (1945) study of the forced van der Pol 
equation, and the chaotic oscillations of coupled disc dynamos were therefore in-
vestigated in some detail (Allan 1962; Cook and Roberts 1970). Subsequently it 
was realized that similar behaviour occurred for a single dynamo with a shunt and 
series impedance (Malleus 1972). That model is actually described by the Lorenz 
equations (Robbins 1977; Knobloch 1981), which provide a paradigm for the study 
of temporal chaos. 

When chaotic behaviour appears in such a system it is important to distinguish 
between the mechanism that causes chaos, which is typically associated with a 
homoclinic or heteroclinic bifurcation, and the actual route to chaos, which often 
involves a cascade of period-doubling bifurcations. Consider, for example, the third-
order Lorenz system 

x = a(y-x), 

y = rx — y — xz, 

ζ = -uz -f xy, 
where x^y^z are real variables and ?*, ι/, σ are real parameters. For 0 < ν < σ — 1 
chaos is caused by a homoclinic explosion (Sparrow 1982), when a symmetrical pair 
of unstable periodic orbits become homoclinic to the origin, as sketched in Figure 
1(a). Aperiodic motion on the.Lorenz attractor has been used not only to represent 
reversals of the geomagnetic field but also to model stellar dynamos (ZePdovich, 
Ruzmaikin and Sokoloif 1983; Schmalz and Stix 1991). 

This is not the only mechanism that leads to chaos in the Lorenz system. In 
other applications (e.g. thermosolutal convection) the parameter σ may be negative; 
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for r > 1 there is a Hopf bifurcation from the trivial solution at σ = —1, giving rise 
to a periodic orbit which is destroyed in a heteroclinic bifurcation (where there is an 
orbit of infinite period connecting a symmetric pair of saddle-points). The saddles 
may develop into saddle-foci, so that the heteroclinic orbit takes the form shown 
in Figure 1(b). Behaviour then depends on the leading eigenvalues λ,— ρ dt ιω at 
the saddle-foci: if λ > ρ > 0 the heteroclinic bifurcation leads to chaos (ShiPnikov 
1965; Wiggins 1988). This mechanism, which is associated with cascades of period-
doubling bifurcations, produces chaotic oscillations about the origin in the Lorenz 
system (e.g. Knobloch, Proctor and Weiss 1992). 

Quasiperiodic solutions, with trajectories that lie on tori in phase space, exhibit 
more complicated behaviour. There are few unambiguous examples of chaos asso-
ciated with the Ruelle-Takens mechanism, which relies on the structural instability 
of quasiperiodic orbits on ?i-tori with η > 3, although it is frequently invoked. Typ-
ically, the route to chaos proceeds via frequency-locking which gives rise to periodic 
orbits. Chaos is then caused by homoclinic or heteroclinic bifurcations such as those 
that have been described above. This pattern is illustrated by a complex general-
ization of the Lorenz equation, advanced as a model of nonlinear stellar dynamos 
(Jones, Weiss and Cattaneo 1985). The system 

y — i rx — y — x*z, 

ζ = -uz 4- xy, 

where the variables ζ are now complex, has a symmetry which allows it to be 
reduced to the fifth-order system 

s = s(u -f- u*) — 2as, 

ù = 1(7* — v) — u2 -f (σ — 1 )u, 

ν = —2isu — v(u — u*) + uv, 

where ti, ν are complex but s is real. For a — 1, u = 0.5 there is a stationary 
bifurcation from the trivial solution at 7* = 1, which is followed by two Hopf bi-
furcations at r = 2.07,3.47, giving rise to quasiperiodic motion on a two-torus. 
Frequency-locking leads to periodic solutions for finite intervals in r and, eventually, 
to a period-doubling cascade that is followed by chaotically modulated oscillations. 
Similar behaviour has been found in other simple dynamo models (Schmalz and 
Stix 1991; Feudel, Jansen and Kurths 1992). 

The destruction of tori at heteroclinic bifurcations turns out to be a very com-
plicated process. Kirk (1991, 1993) has studied the third-order system 

s = Λ s 4- asz -f cs2 ζ cos φ, 

φ = ω — csz sin φ} 

ζ - μ- ζ1 - s2 + bz3, 
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where (s, ή>% ζ) may be regarded as cylindrical polar co-ordinates, Λ and μ are control 
parameters, and u>,a,6,c, are constants. When c = 0 the system is axisymmetric 
and we may restrict our attention to the dynamics in meridional planes. In the 
parameter range of interest there are two saddle-points on the z-axis, together with 
a symmetrical pair of foci, each of which undergoes a Hopf bifurcation at Λ = 0, 
shedding a limit cycle, as sketched in Figure 2a. Each limit cycle swells until it 
forms a heteroclinic connection between a pair of saddle-points on the 2-axis and 
is destroyed in a heteroclinic bifurcation, as shown in Figure 2b (Guckenheimer 
and Holmes 1983). In three dimensions the focus becomes a limit cycle and the 
periodic orbit becomes a torus but the dynamics is unaltered. Breaking axial sym-
metry by setting c φ 0 introduces richer dynamical behaviour (cf. Langford 1983). 
The degeneracy of the heteroclinic bifurcations is broken: now there is a region in 
parameter space that is bounded by curves on which there are heteroclinic tangen-
cies, as indicated in Figure 2c. Within this region there is a heteroclinic tangle that 
leads to chaotic behaviour, associated with frequency-locking in many overlapping 
tongues. 

It is tempting to relate these simple models to the observed modulation of the 
solar cycle (Weiss, Cattaneo and Jones 1984). Recurrent grand minima in the 14C 
record have a characteristic form and a well-defined mean period of around 200 
yr, though they are not strictly periodic. Chaotic modulation of this kind can be 
ascribed to the "ghost" of a torus that influences the behaviour of a system. In this 
way, studying a toy model can clarify the dynamics of a much more complicated 
process. 

3. Symmetry breaking 

In models of planetary and stellar dynamos the azimuthally averaged magnetic 
field may possess a symmetry with respect to reflection about the equatorial plane. 
For fields with dipole symmetry the azimuthal (toroidal) component of the field 
is antisymmetric about the equator, while the azimuthal component of the vector 
potential is symmetric; for fields with quadrupole symmetry the azimuthal compo-
nent of the field is symmetric and the vector potential is antisymmetric. The solar 
magnetic field has approximate dipole symmetry but significant deviations persist 
for many cycles. At the end of the Maunder minimum the lack of symmetry was 
much more conspicuous: of 54 sunspots recorded between 1671 and 1713 only two 
were in the northern hemisphere. 

Axisymmetric mean-field dynamos have an α-eflect that is antisymmetric, while 
the angular velocity is symmetric. The linear (kinematic) problem yields eigenfunc-
tions corresponding either to dipole or to quadrupole solutions, with eigenvalues 
that may be real (associated with monotonically growing or decaying solutions) 
or complex (associated with oscillatory solutions). In the nonlinear regime there 
are steady or periodic solutions with pure dipole or quadrupole symmetry, lying on 
branches that bifurcate from the trivial (field-free) solution. Numerical studies have 
also revealed stable mixed-mode solutions on branches that emerge from symmetry-
breaking bifurcations (e.g. Brandenburg et al. 1989; Schmitt and Schüssler 1989; 
Moss, Tuominen and Brandenburg 1990; Rädler ei al. 1990). These asymmetric 
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(a) 

θ 
(c) 

Fig. 2. Destruction of tori at heteroclinic bifurcations, (a) Limit cycles enclosing a sym-
metrical pair of unstable foci in the sz-phase plane, (b) Symmetrical pair of heteroclinic 
connections, (c) Bifurcations in the λμ-parameter space: within the tongue bounded by 
curves of first and last heteroclinic tangencies there are at least two heteroclinic orbits 
(after Kirk 1991). 

https://doi.org/10.1017/S0074180900174169 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900174169


224 

mixed-mode solutions may persist indefinitely as the dynamo number is increased 
but they also provide a means of transferring stability from one branch of pure 
solutions to another. In order to investigate the underlying bifurcation structure it 
is essential to follow branches with unstable solutions as well as those with solu-
tions that are stable. This, however, is only feasible for a low-order system. Ilence 
it becomes necessary to construct a simplified model that captures the essential 
features of the full problem. 

An obvious approach is to begin with an axisymmetric dynamo operating in a 
spherical shell (Schmitt and Schüssler 1989) and to reduce it to a plane model, with 
a toroidal field B(xyt) and a vector potential A(x,t) for the poloidal field such that 
A = Β = 0 at the poles, where the colatitude χ = 0, π (cf. Stix 1972). Now consider 
the particular choice of nonlinear saturation mechanisms given by the dimensionless 
equations 

dA _ D cos χ d'2A 
dt ~~ 1 + τΒ'2 + dx2 ' 

dB sin x cPB -
dt ~ 1 + KB2 + dx2 

(Jennings 1991; Jennings and Weiss 1991). Here D is the dynamo number, and 
a - quenching, u/-quenching and buoyancy losses are parametrized by r, κ and A, 
respectively. 

This system possesses the dipole symmetry 

d : ( « , * ) - ( π ( A , B ) - + { A , - B ) 

together with the quadrupole symmetry 

g : ( * , < ) ( Α , Β ) ^ ( - Α , Β ) 
and these two symmetries generate the group D2 of order four (which describes 
the symmetries of a rectangle). Solutions may possess one or more of these sym-
metries. The trivial solution possesses the full Di symmetry but dipole solutions, 
with dA/dx = Β = 0 at a: = π/2 (the equator), have the symmetry d only, while 
quadrupole solutions, with A = dB/dx = 0 at χ = π/2, have the symmetry q. 

This description can be extended to cover both steady and periodic solutions 
(Jennings and Weiss 1991). We consider solutions of period Ρ (where Ρ is arbitrary 
for steady solutions) and inspect them after an interval ^ Ρ . Then steady solutions 
have the symmetry 

*e :(*,*)-(*,*+!/>), (Α,Β)^(Α,Β). 

The symmetries {d} q,te} generate the group D^h of order eight (which describes 
the symmetries of a cuboid). This group includes three more spatiotemporal sym-
metries. Hopf bifurcations from the trivial solution yield oscillations with the sym-
metry 

ti : (M) - 0M+ \P), (AB) (-Λ-5); 
hence oscillatory dipole solutions possess the symmetry 

tq = dti : 0M) — (*-«,/+ \P), (A, B) (-Λ, Β), 
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(a) (b) 

Fig. 3. Butterfly diagrams for (a) pure dipole ((/) and (b) pure quadrupole (</) solutions. 
The toroidal field Β is contoured as a function of colatitude and time. 

while oscillatory quadrupole solutions possess the symmetry 

td = qti : (x,t) - (π - xyt + \P), (A, Β) (A, -Β). 

The trivial solution has the symmetry of the full group Z?2j», whose invariant 
subgroups describe the symmetries of different nontrivial solutions. Pure dipole and 
quadrupole solutions have D2 symmetry. Thus steady dipole (ds) solutions possess 
the symmetries {cf,ie«£<*}> while steady quadrupole (qs) solutions possess the sym-
metries {q}te)tq). However, steady mixed-mode (ms) solutions only have the 
symmetry te. Oscillatory dipole (d) and quadrupole (q) solutions have symmetries 
{dtte, tq} and {q,U,td} respectively. The symmetries of the toroidal field are il-
lustrated in Figure 3, which shows examples of butterfly diagrams for pure dipole 
and quadrupole solutions. Breaking one of these symmetries yields a mixed-mode 
periodic solution, of which there are three different types. The first, of type mi 
with symmetry is illustrated in Figure 4a; the second, of type mq with symme-
try tq, is illustrated in Figure 4b; the third is of type md with symmetry td. The 
next symmetry-breaking bifurcation leads to periodic solutions of type e with no 
non-trivial symmetry, as illustrated in Figure 4c. 

To solve the nonlinear equations it is convenient to represent A and Β as finite 
Fourier series of the form 

Ν Ν 
A = Αή(ί) sin nx, Β = Bn(t) sin nx. 

n=1 n=l 

Then solutions with dipole symmetry have An = 0 (η even) and Bn = 0 (n odd), 
while those with quadrupole symmetry have An = 0 (n odd) and Bn = 0 (η even). 
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Fig. 4. Butterfly diagrams for mixed-mode periodic solutions: (a) type mi with symmetry 
U; (b) type mq with symmetry ,tq; (c) type e with no non-trivial symmetry, (d) Develop-
ment of spatial structure at large \D\ in a solution of type q. (After Jennings and Weiss 
1991.) 
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In order to follow both stable and unstable solution branches and so to construct 
a bifurcation diagram, these series were severely truncated by taking Ν = 7. For 
D < 0 linear theory then gives bifurcations from the trivial solution at \D\ = 
9,102,246,273,474,1152,... to solutions of types qs, d, qs, qs and d, respectively. 

The nonlinear results obtained for κ = Λ = 1, τ = 0 are summarized in Figure 5. 
Details of this bifurcation diagram are of course sensitive to the many simplifying 
assumptions that were made in order to produce it. Nevertheless, it exhibits many 
qualitative features that are generic and might appear in any mean-field dynamo. 
Although the first mode to become unstable is of type qs the steady quadrupole 
solutions undergo a Hopf bifurcation and stability is transferred to oscillatory dipole 
solutions via a branch of mixed-mode solutions of type mq. Note that these solutions 
possess the symmetry tqj which is the only non-trivial symmetry shared by solutions 
of types qs and d. Similarly, the transfer of symmetry from pure dipole to pure 
quadrupole oscillations has to involve a branch of mixed-mode oscillations of type 
mi with the symmetry t{. 

The bifurcation diagram displays several typical features of nonlinear systems. 
The preferred solution does not necessarily lie on the first branch to bifurcate from 
the trivial solution. Indeed, there are several stable solutions for certain parameter 
ranges. In this system, on the other hand, most of the structure involves interactions 
between the two principal branches of periodic dipole and quadrupole solutions, 
corresponding to the linear modes with highest growth-rates. The periods of the 
nonlinear solutions decrease as the magnitude of the dynamo number is increased, 
while they gradually acquire more complicated spatial structures : for example, the 
quadrupole solution for \D\ = 225 , shown in Figure 4d, is more complex than 
that for |D| = 3500 in Figure 3b. These features are all likely to appear in any 
axisymmetric spherical dynamo. Moreover, the same approach can be extended to 
non-axisymmetric (m = 1) solutions (Gubbins and Zhang 1992). A systematic pro-
cedure for describing non-axisymmetric instabilities in rotating systems is outlined 
by Knobloch (1993). 

4. Conclusion 

The examples presented here show how highly simplified model problems can illu-
minate aspects of nonlinear behaviour in more realistic configurations. The art lies 
in formulating an appropriate model. In studies of thermal convection this can be 
achieved by following a systematic procedure which leads to normal form equations 
that are valid in some asymptotic limit. Sometimes the most interesting behaviour 
occurs outside this domain of validity - yet even if the bifurcations are a consé-
quence of severe truncation they may be relevant to the behaviour of the full system 
in some more extreme parameter regime. The Lorenz equations, for instance, are 
significant, not as an approximate representation of Rayleigh-Bénard convection 
but because of the rich behaviour they exhibit. 

The difficulty with stellar dynamos is that there is no reliable procedure for 
deriving model systems. Without some separation of scales it is impossible to justify 
mean field dynamo theory in a star. So we are reduced to constructing ad hoc 
model systems, guided by the observed behaviour of the large-scale field in the Sun. 
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^ ν 

\D\ 

Fig. 5. Bifurcation diagram for the truncated model problem. ( B 2 ) is plotted as a function 
of IJOI (not to scale) along different solution branches, labelled according to the solution 
type. Stable (unstable) solutions are denoted by full (broken) lines and full (hollow) circles 
indicate local (global) bifurcations. (After Jennings and Weiss 1992.) 

We infer from these models that cyclic dynamos are likely to have shorter mean 
periods and to generate magnetic fields with more complicated spatial structures 
in rapidly rotating stars. However, it is not clear how far we can use toy models to 
probe nonlinear saturation processes e.g. by calculating the variation of the cycle 
frequency with dynamo number (Noyes, Weiss and Vaughan 1984; Jennings and 
Weiss 1991). At present we can only hope that such semi-quantitative calculations 
will yield reliable predictions; otherwise we shall have to wait until it becomes 
feasible to compute a fully nonlinear three-dimensional model of a stellar dynamo. 
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