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On the rate of growth of random analytic
functions, with an application to linear
dynamics∗
Kevin Agneessens and Karl-G. Grosse-Erdmann

Abstract. We obtain Wiman-Valiron type inequalities for random entire functions and for random
analytic functions on the unit disk that improve a classical result of Erdős andRényi and recent results
of Kuryliak and Skaskiv. Our results are then applied to linear dynamics: we obtain rates of growth,
outside some exceptional set, for analytic functions that are frequently hypercyclic for an arbitrary
chaotic weighted backward shift.

1 Introduction

We are interested in what might be called the probabilistic Wiman-Valiron theory. Our
investigation leads to an extension of a classical result of Erdős and Rényi, and to an
improvement of recent results of Kuryliak and Skaskiv, see Theorems 1.1 and 1.2 below.
We also present an application of our work to linear dynamics.

Let us start by explaining the background.

1.1 Wiman-Valiron theory

The classical theory of Wiman and Valiron studies the relationship between the maxi-
mummodulus and the maximum term of an entire function. More precisely, let 𝑓 (𝑧) =∑∞

𝑛=0 𝑎𝑛𝑧
𝑛, 𝑧 ∈ C, be a non-constant entire function. Denoting, as usual, by

𝑀 𝑓 (𝑟) = max
|𝑧 |=𝑟

| 𝑓 (𝑧) | and 𝜇 𝑓 (𝑟) = max
𝑛≥0

|𝑎𝑛 |𝑟𝑛 (1.1)

the maximum modulus and the maximum term of 𝑓 for 𝑟 ≥ 0, respectively, then one
of the main results of the Wiman-Valiron theory states that, for any 𝛿 > 0, there is a
(measurable) set 𝐸 ⊂ [0,∞) of finite logarithmic measure and some𝐶 > 0 such that

𝑀 𝑓 (𝑟) ≤ 𝐶𝜇 𝑓 (𝑟)
(
log 𝜇 𝑓 (𝑟)

) 1
2+𝛿 , 𝑟 ∉ 𝐸, (1.2)

see Wiman [37] and Valiron [34], [35], [36, p. 106]; recall that 𝐸 is of finite logarithmic
measure if

∫
𝐸∩[1,∞)

1
𝑟
d𝑟 < ∞. Inequality (1.2) was later improved by Rosenbloom [28]
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2 K. Agneessens and K.-G. Grosse-Erdmann

who showed that, for any 𝛿 > 0, there is a set 𝐸 ⊂ [0,∞) of finite logarithmic measure
and some𝐶 > 0 such that

𝑀 𝑓 (𝑟) ≤ 𝐶𝜇 𝑓 (𝑟)
(
log 𝜇 𝑓 (𝑟)

) 1
2
(
log log 𝜇 𝑓 (𝑟)

)1+𝛿
, 𝑟 ∉ 𝐸. (1.3)

Further strengthenings can be found in [28], [11] and [12, Theorem 6.23]; see also [9] for
a survey.

For introductions to theWiman-Valiron theory we refer to [11], [12, Section 6.5] and
[13].

1.2 Probabilistic Wiman-Valiron theory

A probabilistic variant of inequality (1.2) was first considered by Lévy [23], see also [6,
p. 55]. Let (𝑋𝑛)𝑛≥0 be an independent sequence of Steinhaus random variables defined
on a probability space (Ω,A, P); recall that a complex random variable is Steinhaus if it
is uniformly distributed on the unit circle T. For an entire function 𝑓 (𝑧) = ∑∞

𝑛=0 𝑎𝑛𝑧
𝑛,

let us consider
∞∑︁
𝑛=0

𝑎𝑛𝑋𝑛 (𝜔)𝑧𝑛, 𝑧 ∈ C, 𝜔 ∈ Ω.

This defines a random entire function. Then Lévy showed the following, under some
regularity assumptions on the coefficients 𝑎𝑛: for any 𝛿 > 0 there exists almost surely a
set 𝐸 ⊂ [0,∞) of finite logarithmic measure and some𝐶 > 0 such that

max
|𝑧 |=𝑟

��� ∞∑︁
𝑛=0

𝑎𝑛𝑋𝑛𝑧
𝑛
��� ≤ 𝐶𝜇 𝑓 (𝑟)

(
log 𝜇 𝑓 (𝑟)

) 1
4+𝛿 , 𝑟 ∉ 𝐸. (1.4)

In other words, randomizing the coefficients allows to lower the exponent 1
2 in (1.2) to

1
4

in (1.4); in the recent literature, this is referred to as Lévy’s phenomenon, see for example
[22] and [17].

Erdős and Rényi [6] showed that (1.4) holds for any non-constant entire function 𝑓 if
the 𝑋𝑛 are independent Rademacher random variables, that is, if they are uniformly±1-
distributed. More importantly, they also obtained the same improvement for inequality
(1.3): for any 𝛿 > 0 there exists almost surely a set 𝐸 ⊂ [0,∞) of finite logarithmic
measure and some𝐶 > 0 such that

max
|𝑧 |=𝑟

��� ∞∑︁
𝑛=0

𝑎𝑛𝑋𝑛𝑧
𝑛
��� ≤ 𝐶𝜇 𝑓 (𝑟)

(
log 𝜇 𝑓 (𝑟)

) 1
4
(
log log 𝜇 𝑓 (𝑟)

)1+𝛿
, 𝑟 ∉ 𝐸. (1.5)

For our intended applications to the theory of linear dynamics these results are,
however, not good enough: we need to consider complex random variables 𝑋𝑛 of full
support, for example complex Gaussian random variables; see Section 6. It turned out
that a similar problem had already been posed by O. B. Skaskiv who had asked whether
Lévy’s phenomenon also holds for unbounded randomvariables, see [17, p. 12]. Kuryliak
[17, Theorem 3, Corollary 1] has obtained a positive answer for an independent centred
subgaussian sequence of random variables (see Definition 2.1), however with exponent
3
2 + 𝛿 instead of 1 + 𝛿 in (1.5).

Our firstmain result confirmsLévy’s phenomenon for independent centred subgaus-
sian sequences of random variables.
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Rate of growth of random analytic functions 3

Theorem 1.1 Let 𝑓 (𝑧) =
∑∞

𝑛=0 𝑎𝑛𝑧
𝑛 be a non-constant entire function and (𝑋𝑛)𝑛≥0 an

independent centred subgaussian sequence. Then
∑∞

𝑛=0 𝑎𝑛𝑋𝑛𝑧
𝑛 defines almost surely an entire

function.Moreover, for every 𝛿 > 0, there exists a set 𝐸 ⊂ [0,∞) of finite logarithmicmeasure
and a constant 𝐶 > 0 such that, almost surely, there exists 𝑟0 > 0 such that

max
|𝑧 |=𝑟

��� ∞∑︁
𝑛=0

𝑎𝑛𝑋𝑛𝑧
𝑛
��� ≤ 𝐶𝜇 𝑓 (𝑟)

(
log 𝜇 𝑓 (𝑟)

) 1
4
(
log log 𝜇 𝑓 (𝑟)

)1+𝛿
for every 𝑟 ≥ 𝑟0, 𝑟 ∉ 𝐸 .

Note that the exceptional set and the constant are independent of 𝜔 ∈ Ω.
This theorem contains the result of Erdős and Rényi as a special case, and it improves

that of Kuryliak.

1.3 Wiman-Valiron theory in the disk

The Wiman-Valiron theory in the unit disk D was initiated by Kövári [16]. Let 𝑓 (𝑧) =∑∞
𝑛=0 𝑎𝑛𝑧

𝑛, 𝑧 ∈ D, be a non-constant analytic function in D. The maximum modulus
and maximum term functions are defined as in (1.1). Unlike for the plane, there does
not seem to be a canonical version of theWiman-Valiron inequality (1.2): the place of an
additional term 1

1−𝑟 and the way the exceptional set is measured vary in the literature,
see [16, Theorem 1], [33], [7, Theorem 2], [31, Theorem 1]; see also [9] for a survey.

Our starting point was a special case of a Wiman-Valiron inequality established by
Suleı̆manov [33], see also [20, p. 83] and [9]: for any 𝛿 > 0, there is a set 𝐸 ⊂ [0, 1) of
finite logarithmic measure and some𝐶 > 0 such that

𝑀 𝑓 (𝑟) ≤ 𝐶
𝜇 𝑓 (𝑟)

(1 − 𝑟)1+𝛿
(
log

𝜇 𝑓 (𝑟)
1 − 𝑟

) 1
2+𝛿

, 𝑟 ∉ 𝐸 ;

here, 𝐸 is said to be of finite logarithmic measure if
∫
𝐸

1
1−𝑟 d𝑟 < ∞.

This was recently improved by Skaskiv and Kuryliak [31] who essentially showed
that one even has that

𝑀 𝑓 (𝑟) ≤ 𝐶
𝜇 𝑓 (𝑟)
1 − 𝑟

(
log

1
1 − 𝑟

) 1
2+𝛿 ( log 𝜇 𝑓 (𝑟)

1 − 𝑟

) 1
2
(
log log

𝜇 𝑓 (𝑟)
1 − 𝑟

)1+𝛿
, 𝑟 ∉ 𝐸 ; (1.6)

see Theorem 5.2 below for more details.

1.4 Probabilistic Wiman-Valiron theory in the disk

Kuryliak, Skaskiv and Skaskiv have shown that variants of the Lévy phenomenon also
hold in the unit disk, see [21, Theorem 2.3], [18, Theorem 2, Corollary 2], and [19,
Theorem 1, Corollary 1]. The first two results concern centred bounded random vari-
ables. In [19], centred subgaussian random variables are considered, however under an
additional assumption (see Remark 4.6). In our second main result, using a different
proof, we obtain an improved inequality, and we show that the additional assumption
in [19] can be dropped.
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4 K. Agneessens and K.-G. Grosse-Erdmann

Theorem 1.2 Let 𝑓 (𝑧) =
∑∞

𝑛=0 𝑎𝑛𝑧
𝑛 be a non-constant analytic function in D and

(𝑋𝑛)𝑛≥0 an independent centred subgaussian sequence. Then
∑∞

𝑛=0 𝑎𝑛𝑋𝑛𝑧
𝑛 defines almost

surely an analytic function in D. Moreover, for every 𝛿 > 0, there exists a set 𝐸 ⊂ [0, 1)
of finite logarithmic measure and a constant 𝐶 > 0 such that, almost surely, there exists
𝑟0 ∈ (0, 1) such that

max
|𝑧 |=𝑟

��� ∞∑︁
𝑛=0

𝑎𝑛𝑋𝑛𝑧
𝑛
��� ≤ 𝐶 𝜇 𝑓 (𝑟)

(1 − 𝑟) 1
2

(
log

1
1 − 𝑟

) 3
4+𝛿 ( log 𝜇 𝑓 (𝑟)

1 − 𝑟

) 1
4
(
log log

𝜇 𝑓 (𝑟)
1 − 𝑟

)1+𝛿
for 𝑟0 ≤ 𝑟 < 1, 𝑟 ∉ 𝐸 .

Kuryliak and Skaskiv seem to conjecture in [18, p. 755] that the optimal exponent of
log 1

1−𝑟 should be 1
4 + 𝛿, at least for certain random variables.

1.5 Notation and organisation

We will use 𝑎 ≲ 𝑏 to indicate an inequality up to a multiplicative constant that is inde-
pendent of the running variable in the expressions 𝑎 and 𝑏. The notation 𝑎 ≍ 𝑏 means
𝑎 ≲ 𝑏 and 𝑏 ≲ 𝑎.

In inequalities like (1.2) one can omit the constant 𝐶 , which is often done in the
literature. For the sake of coherence we prefer to state all results with a constant𝐶 .

The paper is organised as follows. We start with some results that do not distinguish
between the plane and the disk.We then deduce Lévy phenomena in the plane, including
Theorem 1.1 (Section 3), and in the disk, including Theorem 1.2 (Section 4). Section 5
unifies the previous results. Section 6 presents applications to linear dynamics.

Remark 1.3 In the probabilistic Wiman-Valiron results of Sections 1 to 5 we demand
for brevity that the sequence (𝑋𝑛)𝑛 of complex random variables is independent. Of
course, it would in each case suffice to demand that both the real parts (Re 𝑋𝑛)𝑛 and
the imaginary parts (Im 𝑋𝑛)𝑛 are independent, as is done in the work of Kuryliak and
Skaskiv. To see this, it suffices to apply the results to these two sequences separately.

2 Some preliminary results

We introduce briefly the objects of our study. Throughout, all (real or complex) random
variables are defined on a probability space (Ω,A, P).

Definition 2.1 A random variable 𝑋 is subgaussian if there exist constants 𝐾, 𝜏 > 0
such that P( |𝑋 | > 𝑡) ≤ 𝐾𝑒−𝑡2/𝜏2 for all 𝑡 ≥ 0.

A sequence (𝑋𝑛)𝑛≥0 of random variables is subgaussian if each 𝑋𝑛, 𝑛 ≥ 0, is
subgaussian with the same constants 𝐾 and 𝜏.

Note that a real random variable 𝑋 is centred subgaussian if and only if there is some
𝜎 > 0 such that, for all 𝜆 ∈ R,

E(𝑒𝜆𝑋) ≤ 𝑒𝜎2𝜆2 , (2.1)
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see [14, pp. 4-6] and [15, Exercice 10, p. 82]; see also [2]. Thus a centred complex
subgaussian random variable is one for which the real and imaginary parts satisfy (2.1).

Subgaussian random variables have been considered by Kahane [14], [15], who takes
(2.1) as definition and therefore demands that they are centred. Of course, any Gaussian
random variable and any bounded random variable is subgaussian.

We call the sequence (𝑋𝑛)𝑛≥0 centred if each 𝑋𝑛 is centred. The following result on
centred subgaussian sequences is crucial for our work; it is proved in Kahane [15, Chap-
ter 6, Theorem 2]. For any complex trigonometric polynomial 𝑞(𝑡) =

∑𝑁
𝑛=−𝑁 𝑎𝑛𝑒

𝑖𝑛𝑡

we write ∥𝑞∥∞ = max𝑡∈[0,2𝜋 ] |𝑞(𝑡) |.

Lemma 2.2 (Kahane) Let (𝑋𝑛)𝑛≥0 be an independent centred subgaussian sequence. Then
there exists a constant𝐶 > 0 such that, for any positive integers 𝑀, 𝑁 ≥ 1, and any sequence
(𝑞𝑛)𝑀𝑛=0 of complex trigonometric polynomials of degree less than or equal to 𝑁 ,

P

(



 𝑀∑︁
𝑛=0

𝑋𝑛𝑞𝑛






∞
≥ 𝐶

√︁
log 𝑁

( 𝑀∑︁
𝑛=0

∥𝑞𝑛∥2∞
) 1

2

)
≤ 𝐶

𝑁2 .

Note that the constant 𝐶 may only depend on the constants 𝐾, 𝜏 > 0 of the
subgaussian sequence.

We now consider functions 𝑓 (𝑧) =
∑∞

𝑛=0 𝑎𝑛𝑧
𝑛 that are analytic for |𝑧 | < 𝑅, 0 <

𝑅 ≤ ∞. Let (𝑋𝑛)𝑛≥ be a sequence of complex random variables. If they are uniformly
bounded, then, for every 𝜔 ∈ Ω,

∑∞
𝑛=0 𝑎𝑛𝑋𝑛 (𝜔)𝑧𝑛 also has radius of convergence at

least 𝑅. This is also almost surely true if (𝑋𝑛)𝑛≥0 is subgaussian, as we will now see.

Proposition 2.3 Let 0 < 𝑅 ≤ ∞, and let 𝑓 (𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧

𝑛 be analytic for |𝑧 | < 𝑅. Let
(𝑋𝑛)𝑛≥0 be a subgaussian sequence. Then the random series

∑∞
𝑛=0 𝑎𝑛𝑋𝑛𝑧

𝑛 has almost surely
radius of convergence at least 𝑅.

Proof By assumption we have that lim sup𝑛→∞ |𝑎𝑛 |1/𝑛 ≤ 1/𝑅. Thus, for every 0 <
𝑟 < 𝑅, there exist 0 < 𝜌 < 1 and 𝑛0 ≥ 1 such that, for every 𝑛 ≥ 𝑛0,

√︁
log 𝑛 |𝑎𝑛 |𝑟𝑛 ≤ 𝜌𝑛.

This implies that
∑∞

𝑛=1
√︁
log 𝑛 𝑎𝑛𝑧𝑛 has radius of convergence at least 𝑅.

It suffices to prove the claim for real subgaussian sequences (𝑋𝑛)𝑛≥0. Fix 𝑐 > 0, and
let 𝐾 > 0 and 𝜏 > 0 be constants associated to this sequence. Then we have that

∞∑︁
𝑛=1

P
(
|𝑋𝑛 | > 𝑐

√︁
log 𝑛

)
≤ 𝐾

∞∑︁
𝑛=1

𝑒−𝑐
2 (log 𝑛)/𝜏2 =

∞∑︁
𝑛=1

𝐾

𝑛𝑐
2/𝜏2 .

If 𝑐2 > 𝜏2 then
∑∞

𝑛=1 P( |𝑋𝑛 | > 𝑐
√︁
log 𝑛) converges. It follows from the Borel-

Cantelli lemma that, almost surely, |𝑋𝑛 | ≤ 𝑐
√︁
log 𝑛 for 𝑛 large enough. Therefore also∑∞

𝑛=0 𝑎𝑛𝑋𝑛𝑧
𝑛 has almost surely radius of convergence at least 𝑅. ■

In particular, for any subgaussian sequence (𝑋𝑛)𝑛≥0 and any function 𝑓 (𝑧) =∑∞
𝑛=0 𝑎𝑛𝑧

𝑛 that is analytic inC or inD, the (formal) series
∑∞

𝑛=0 𝑎𝑛𝑋𝑛𝑧
𝑛 is almost surely

well-defined and analytic in C or D, respectively. This proves the first assertions in
Theorems 1.1 and 1.2.
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6 K. Agneessens and K.-G. Grosse-Erdmann

We now prepare the proofs of the main parts of these theorems by some lemmas that
do not depend on the radius of convergence. The first two lemmas are inspired by [12,
Lemma 6.15], [20, Lemma 1] and [21, Lemma 3.2 and p. 143].

Lemma 2.4 Let 0 ≤ 𝜌 < 𝑅 ≤ ∞. Let 𝑔 : [𝜌, 𝑅) → [0,∞) be a continuously differentiable
increasing functionwith lim𝑟→𝑅 𝑔(𝑟) > 1 and ℎ : [𝜌, 𝑅) → [0,∞) a continuous increasing
function. Then, for every 𝛿 > 0, there exists an open set 𝐸 ⊂ [0, 𝑅) with

∫
𝐸∩[𝜌,𝑅)

ℎ (𝑟 )
𝑟

d𝑟 <
∞ such that, for every 𝑟 > 𝜌, 𝑟 ∉ 𝐸 ,

d
d𝑟

log 𝑔(𝑟) ≤ ℎ(𝑟)
𝑟

(
log 𝑔(𝑟)

)1+𝛿
.

Proof By assumption on 𝑔we can assume 𝜌 so large that 𝑔(𝑟) ≥ 𝜂 for some 𝜂 > 1 and
all 𝑟 ≥ 𝜌. Let 𝐸 ⊂ (𝜌, 𝑅) be the set where the inequality of the lemma does not hold.
Since both sides of the inequality are continuous, the set 𝐸 is open. Using the change of
variables 𝑥 = log 𝑔(𝑟) (note that log 𝑔 need not be strictly increasing, see [29, p. 156])
we obtain that∫

𝐸

ℎ(𝑟)
𝑟

d𝑟 ≤
∫
𝐸

d
d𝑟 log 𝑔(𝑟)(
log 𝑔(𝑟)

)1+𝛿 d𝑟 ≤ ∫ ∞

log 𝜂

1
𝑥1+𝛿

d𝑥 < ∞,

which gives the desired restriction for 𝐸 . ■

Lemma 2.5 Let 0 < 𝑅 ≤ ∞. Let the real power series 𝑔(𝑟) =
∑∞

𝑛=0 𝑎𝑛𝑟
𝑛, with 𝑎𝑛 ≥ 0

for all 𝑛 ≥ 0, have radius of convergence at least 𝑅, and suppose that lim𝑟→𝑅 𝑔(𝑟) > 1. Let
ℎ : [𝜌, 𝑅) → [0,∞) be a continuous increasing function, where 𝜌 ∈ [0, 𝑅). Then, for every
𝛿 > 0, there exists an open set 𝐸 ⊂ [0, 𝑅) with

∫
𝐸∩[𝜌,𝑅)

ℎ (𝑟 )
𝑟

d𝑟 < ∞ such that, for every
𝑟 > 𝜌, 𝑟 ∉ 𝐸 ,

∞∑︁
𝑛=0

𝑛𝑎𝑛𝑟
𝑛 ≤ ℎ(𝑟)𝑔(𝑟)

(
log 𝑔(𝑟)

)1+𝛿
.

Proof First notice that, for every 𝑟 ∈ (0, 𝑅), one has d
d𝑟 𝑔(𝑟) = 𝑟−1

∑∞
𝑛=0 𝑛𝑎𝑛𝑟

𝑛 and
thus

∞∑︁
𝑛=0

𝑛𝑎𝑛𝑟
𝑛 = 𝑟

d
d𝑟
𝑔(𝑟) = 𝑟𝑔(𝑟) d

d𝑟
log 𝑔(𝑟)

for 𝑟 sufficiently large. Then the result follows from Lemma 2.4. ■

We note that the two lemmas are only non-trivial if
∫ 𝑅

𝜌

ℎ (𝑟 )
𝑟

d𝑟 = ∞. In our
applications, the latter condition will be satisfied.

3 Lévy’s phenomenon in the plane

We first study the rate of growth for random power series on C with subgaussian
coefficients. Our aim here is to give a proof of Theorem 1.1.
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The main ideas in this section come from Erdős and Rényi [6], Steele [32], Kuryliak
[17], and Kuryliak, Skaskiv and Skaskiv [21].

Let 𝑓 (𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧

𝑛 be an entire function. We have already defined its maximum
term 𝜇 𝑓 (𝑟), 𝑟 ≥ 0. In addition, we will need the expressions

𝑆 𝑓 (𝑟) =
( ∞∑︁
𝑛=0

|𝑎𝑛 |2𝑟2𝑛
) 1

2 and𝐺 𝑓 (𝑟) =
∞∑︁
𝑛=0

|𝑎𝑛 |𝑟𝑛.

Note that 𝜇 𝑓 (𝑟) ≤ 𝑆 𝑓 (𝑟) ≤ 𝐺 𝑓 (𝑟). It might also be of interest that, by Parseval’s
identity,

𝑆 𝑓 (𝑟) =
( 1
2𝜋

∫ 2𝜋

0
| 𝑓 (𝑟𝑒𝑖𝑡 ) |2d𝑡

) 1
2
,

which is also denoted as𝑀2 ( 𝑓 , 𝑟). In the present context, the function 𝑆 𝑓 (𝑟) has already
appeared in Erdős and Rényi [6] and Steele [32].

All three functions are continuous in 𝑟 (see [13, Satz 4.2] for 𝜇 𝑓 ), and if 𝑓 is non-
constant then they tend to infinity as 𝑟 → ∞.

Recall also that a (measurable) set 𝐸 ⊂ [0,∞) is of finite logarithmic measure if∫
𝐸∩[1,∞)

1
𝑟
d𝑟 < ∞. Obviously, in order to show that some property holds outside a set of

finite logarithmicmeasure, it suffices to prove that there exists a set of finite logarithmic
measure such that the property holds outside this set and for 𝑟 sufficiently large.

Applying the Rosenbloom inequality (1.3) to the entire function 𝑧 → ∑∞
𝑛=0 |𝑎𝑛 |𝑧𝑛 we

obtain the following; note that its maximal modulus function is 𝐺 𝑓 and its maximum
term is 𝜇 𝑓 .

Lemma 3.1 Let 𝑓 (𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧

𝑛 be a non-constant entire function. Then, for every 𝛿 >
0, there is an open set 𝐸 ⊂ [0,∞) of finite logarithmic measure and a constant 𝐶 > 0 such
that, for any 𝑟 ∉ 𝐸 ,

𝐺 𝑓 (𝑟) ≤ 𝐶𝜇 𝑓 (𝑟)
(
log 𝜇 𝑓 (𝑟)

) 1
2
(
log log 𝜇 𝑓 (𝑟)

)1+𝛿
.

Here, 𝐸 can be chosen to be open because both sides of the inequality are continuous.
In the sequel, for ease of writing, we use the notation

∥ 𝑓 ∥𝑟 = 𝑀 𝑓 (𝑟) = max
|𝑧 |=𝑟

| 𝑓 (𝑧) |.

Lemma 3.2 Let 𝑓 (𝑧) =
∑∞

𝑛=0 𝑎𝑛𝑧
𝑛 be a non-constant entire function and (𝑋𝑛)𝑛≥0 an

independent centred subgaussian sequence. Then
∑∞

𝑛=0 𝑎𝑛𝑋𝑛𝑧
𝑛 defines almost surely an entire

function. Moreover, for any 𝛼 > 1 and 𝛿 > 0, there exists a constant 𝐶 > 0 and an open set
𝐸 ⊂ [0,∞) of finite logarithmic measure such that, for any 𝑟 ∉ 𝐸 ,

P

(



 ∞∑︁
𝑛=0

𝑎𝑛𝑋𝑛𝑧
𝑛






𝑟

≥ 𝐶
√︁
log 𝑁𝑆 𝑓 (𝑟)

)
≤ 𝐶

𝑁2𝛼

whenever 𝑁 ≥
(
log 𝜇 𝑓 (𝑟)

) 3
2+𝛿 .

Proof The first assertion is given by Proposition 2.3.

2025/04/29 16:57

https://doi.org/10.4153/S0008414X25101491 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101491


8 K. Agneessens and K.-G. Grosse-Erdmann

Next, let 𝛿 > 0. We then apply Lemma 2.5 to the power series𝐺 𝑓 (𝑟) =
∑∞

𝑛=0 |𝑎𝑛 |𝑟𝑛,
to the function ℎ(𝑟) = 1, 𝑟 ≥ 0, and to 𝛿/2; note that the exceptional set is then of finite
logarithmic measure. Let 𝐸 ⊂ [0,∞) be the open set of finite logarithmic measure that
is the union of the open sets in that lemma and in Lemma 3.1, also applied for 𝛿/2. Then
we have, for any 𝑟 ∉ 𝐸 sufficiently large,

∞∑︁
𝑛=0

𝑛|𝑎𝑛 |𝑟𝑛 ≤ 𝐺 𝑓 (𝑟)
(
log𝐺 𝑓 (𝑟)

)1+ 𝛿
2 (3.1)

and
𝐺 𝑓 (𝑟) ≲ 𝜇 𝑓 (𝑟)

(
log 𝜇 𝑓 (𝑟)

) 1
2
(
log log 𝜇 𝑓 (𝑟)

)1+ 𝛿
2 . (3.2)

Let 𝛼 > 1. We define 𝐵𝑛 := {|𝑋𝑛 | > 𝑛1−1/𝛼} ⊂ Ω for 𝑛 ≥ 1. Since (𝑋𝑛)𝑛 is
subgaussian there is some 𝜏 > 0 such that, for 𝑛 ≥ 1,

P(𝐵𝑛) ≲ 𝑒−𝑛
2−2/𝛼/𝜏2 ≲

1
𝑛3
.

For any real 𝑁 ≥ 1, define 𝐵(𝑁) := ⋃
𝑛>𝑁 𝛼 𝐵𝑛. Then

P(𝐵(𝑁)) ≤
∑︁

𝑛>𝑁 𝛼

P(𝐵𝑛) ≲
∑︁

𝑛>𝑁 𝛼

1
𝑛3

≲
1
𝑁2𝛼 .

On the complement of 𝐵(𝑁) ⊂ Ω we get for 𝑟 ≥ 0 that


 ∑︁
𝑛>𝑁 𝛼

𝑎𝑛𝑋𝑛𝑧
𝑛




𝑟
≤

∑︁
𝑛>𝑁 𝛼

|𝑋𝑛 | |𝑎𝑛 |𝑟𝑛 ≤
∑︁

𝑛>𝑁 𝛼

𝑛1−1/𝛼 |𝑎𝑛 |𝑟𝑛 ≤ 𝑁−1
∑︁

𝑛>𝑁 𝛼

𝑛|𝑎𝑛 |𝑟𝑛.

Now let 𝑟0 > 0 satisfy 𝜇 𝑓 (𝑟0) > 𝑒. Let 𝑟 ≥ 𝑟0, 𝑟 ∉ 𝐸 , and let 𝑁 ≥
(
log 𝜇 𝑓 (𝑟)

) 3
2+𝛿 >

1 be a real number. Then we have on the complement of 𝐵(𝑁), with (3.1) and (3.2),


 ∑︁
𝑛>𝑁 𝛼

𝑎𝑛𝑋𝑛𝑧
𝑛




𝑟
≤ 𝑁−1𝐺 𝑓 (𝑟)

(
log𝐺 𝑓 (𝑟)

)1+ 𝛿
2

≲ 𝑁−1𝜇 𝑓 (𝑟)
(
log 𝜇 𝑓 (𝑟)

) 1
2
(
log log 𝜇 𝑓 (𝑟)

)1+ 𝛿
2
(
log 𝜇 𝑓 (𝑟)

)1+ 𝛿
2

≲ 𝑁−1𝜇 𝑓 (𝑟)
(
log 𝜇 𝑓 (𝑟)

) 3
2+𝛿 ≤ 𝜇 𝑓 (𝑟) ≤ 𝑆 𝑓 (𝑟).

Therefore there is a constant𝐶1 > 0 such that, if 𝑟 ≥ 𝑟0, 𝑟 ∉ 𝐸 and𝑁 ≥
(
log 𝜇 𝑓 (𝑟)

) 3
2+𝛿 ,

then

P
(


 ∑︁

𝑛>𝑁 𝛼

𝑎𝑛𝑋𝑛𝑧
𝑛




𝑟
> 𝐶1𝑆 𝑓 (𝑟)

)
≤ P(𝐵(𝑁)) ≲ 1

𝑁2𝛼 .

By Lemma 2.2 applied to 𝑞𝑛 (𝑡) = 𝑎𝑛𝑟𝑛𝑒𝑖𝑛𝑡 , 𝑡 ∈ [0, 2𝜋] , 𝑛 ≥ 0, with 𝑀 and 𝑁 given
by ⌊𝑁𝛼⌋ , we have on the other hand that there is a constant𝐶2 > 0 such that

P
(


 ∑︁

0≤𝑛≤𝑁 𝛼

𝑎𝑛𝑋𝑛𝑧
𝑛




𝑟
≥ 𝐶2

√︁
log 𝑁𝑆 𝑓 (𝑟)

)
≲

1
⌊𝑁𝛼⌋2 .

Altogether there is some constant𝐶 > 0 such that

P
(


 ∞∑︁

𝑛=0
𝑎𝑛𝑋𝑛𝑧

𝑛




𝑟
≥ 𝐶

√︁
log 𝑁𝑆 𝑓 (𝑟)

)
≲

1
𝑁2𝛼 + 1

𝑁2𝛼
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Rate of growth of random analytic functions 9

if 𝑟 ≥ 𝑟0, 𝑟 ∉ 𝐸 and 𝑁 ≥
(
log 𝜇 𝑓 (𝑟)

) 3
2+𝛿 . This completes the proof. ■

We next need a lemma, versions of which seem to appear in every proof of Lévy’s
phenomenon; see, for example, Erdős-Rényi [6, p. 49], Steele [32, p. 555] or Kuryliak
[17, Lemma 8].

Lemma 3.3 Let 𝜑 : [𝜌,∞) → [1,∞) be a continuous increasing function such that
lim𝑟→∞ 𝜑(𝑟) = ∞, where 𝜌 ≥ 0. Let 𝐸 ⊂ (𝜌,∞) be an open set of unbounded comple-
ment. Then there exists an infinite set 𝐽 ⊂ N and an increasing sequence (𝑟𝑘)𝑘∈𝐽 in [𝜌,∞)
such that, for every 𝑘 ∈ 𝐽 ,

(i) 𝑟𝑘 ∉ 𝐸 ,
(ii) 𝜑(𝑟𝑘) ≥ 𝑘 ,
(iii) for any 𝑟 ≥ 𝜌 with 𝑟 ∉ 𝐸 there exists 𝑘 ∈ 𝐽 such that 𝑟 ≤ 𝑟𝑘 and 𝜑(𝑟𝑘) ≤ 𝜑(𝑟) + 1.

Proof Define for each 𝑘 ≥ 1 the possibly empty set

𝑈𝑘 :=
{
𝑟 ≥ 𝜌 : 𝑘 ≤ 𝜑(𝑟) ≤ 𝑘 + 1

}
.

These sets are closed since 𝜑 is continuous, and bounded since lim𝑟→∞ 𝜑(𝑟) = ∞, and
thus they are compact. Define 𝐽 := {𝑘 ∈ N : 𝑈𝑘 \ 𝐸 ≠ ∅}. For each 𝑘 ∈ 𝐽 , there exists
𝑟𝑘 ∈ 𝑈𝑘 \ 𝐸 such that 𝑟𝑘 = sup(𝑈𝑘 \ 𝐸). This gives (i) and (ii). Since lim𝑟→∞ 𝜑(𝑟) = ∞
and 𝐸 is of unbounded complement, the set 𝐽 is infinite.

Let 𝑟 ≥ 𝜌. Since 𝜑(𝜌) ≥ 1, there exists 𝑘 ∈ N such that 𝑘 ≤ 𝜑(𝑟) ≤ 𝑘 + 1. If
𝑟 ∉ 𝐸 then 𝑘 ∈ 𝐽 , and 𝑟 ≤ 𝑟𝑘 by definition of 𝑟𝑘 . By definition of 𝑈𝑘 , we also have
𝜑(𝑟𝑘) ≤ 𝜑(𝑟) + 1. This gives (iii). ■

We can now prove the main result of this section, which is stronger than Theorem
1.1. First, thanks to the Borel-Cantelli lemma, we will prove the desired inequality for a
suitable sequence (𝑟𝑘)𝑘≥1 chosen with Lemma 3.3. The properties of this sequence and
the Maximum Principle will then conclude the proof.

Theorem 3.4 Let 𝑓 (𝑧) =
∑∞

𝑛=0 𝑎𝑛𝑧
𝑛 be a non-constant entire function and (𝑋𝑛)𝑛≥0 an

independent centred subgaussian sequence. Then
∑∞

𝑛=0 𝑎𝑛𝑋𝑛𝑧
𝑛 defines almost surely an entire

function. Moreover, there exists an open set 𝐸 ⊂ [0,∞) of finite logarithmic measure and a
constant 𝐶 > 0 such that, almost surely, there exists 𝑟0 > 0 such that

max
|𝑧 |=𝑟

��� ∞∑︁
𝑛=0

𝑎𝑛𝑋𝑛𝑧
𝑛
��� ≤ 𝐶√︃

log log 𝜇 𝑓 (𝑟)𝑆 𝑓 (𝑟)

for every 𝑟 ≥ 𝑟0, 𝑟 ∉ 𝐸 .

Proof The first assertion is given by Proposition 2.3.
Now let 𝐸 ⊂ [0,∞) be the open set of finite logarithmicmeasure that is the union of

the open set in Lemma 3.2, taken for some 𝛼 > 1 and 𝛿 > 0, and the open set in Lemma
3.1 for the same 𝛿. Note that 𝐸 has an unbounded complement.
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10 K. Agneessens and K.-G. Grosse-Erdmann

By Lemma 3.3 applied to 𝜑 = log 𝑆 𝑓 and 𝜌 ≥ 0 so large that log 𝜇 𝑓 (𝜌) > 1 and
hence log 𝑆 𝑓 (𝜌) > 1, we get an infinite set 𝐽 ⊂ N and an increasing sequence (𝑟𝑘)𝑘∈𝐽
in [𝜌,∞) converging to∞ and satisfying assertions (i), (ii) and (iii) of the lemma.

Define for each 𝑘 ∈ 𝐽 the real number

𝑁𝑘 :=
(
log 𝜇 𝑓 (𝑟𝑘)

) 3
2+𝛿 ≥ 1

and the set

𝐴𝑘 :=
{


 ∞∑︁

𝑛=0
𝑎𝑛𝑋𝑛𝑧

𝑛




𝑟𝑘

≥ 𝐶
√︁
log 𝑁𝑘𝑆 𝑓 (𝑟𝑘)

}
,

where 𝐶 > 0 is the constant of Lemma 3.2. Then (i) of Lemma 3.3, Lemma 3.2 and the
definition of 𝑁𝑘 imply that∑︁

𝑘∈𝐽
P(𝐴𝑘) ≲

∑︁
𝑘∈𝐽

1
𝑁2𝛼
𝑘

=
∑︁
𝑘∈𝐽

1(
log 𝜇 𝑓 (𝑟𝑘)

)𝛼(3+2𝛿 ) .

By Lemma 3.1 we have, for every 𝑟 ∉ 𝐸 , that

𝜇 𝑓 (𝑟) ≤ 𝑆 𝑓 (𝑟) ≤ 𝐺 𝑓 (𝑟) ≲ 𝜇 𝑓 (𝑟)
(
log 𝜇 𝑓 (𝑟)

) 1
2
(
log log 𝜇 𝑓 (𝑟)

)1+𝛿
.

This implies that

log 𝑆 𝑓 (𝑟) ≍ log 𝜇 𝑓 (𝑟) for 𝑟 ∉ 𝐸 . (3.3)

Therefore, using (i) and (ii) of Lemma 3.3, we have that∑︁
𝑘∈𝐽

P(𝐴𝑘) ≲
∑︁
𝑘∈𝐽

1(
log 𝑆 𝑓 (𝑟𝑘)

)𝛼(3+2𝛿 ) ≲
∞∑︁
𝑘=1

1
𝑘𝛼(3+2𝛿 ) < ∞.

This in turn implies by the Borel-Cantelli lemma that, for almost every 𝜔 ∈ Ω, there
exists 𝑘0 (𝜔) ∈ 𝐽 such that, for every 𝑘 ∈ 𝐽 with 𝑘 ≥ 𝑘0 (𝜔),


 ∞∑︁

𝑛=0
𝑎𝑛𝑋𝑛 (𝜔)𝑧𝑛





𝑟𝑘

≤ 𝐶
√︁
log 𝑁𝑘𝑆 𝑓 (𝑟𝑘). (3.4)

Let 𝑟 > 𝑟𝑘0 (𝜔) with 𝑟 ∉ 𝐸 . By (iii) of Lemma 3.3 there is some 𝑘 ∈ 𝐽 with 𝑘 >
𝑘0 (𝜔) such that 𝑟 ≤ 𝑟𝑘 and log 𝑆 𝑓 (𝑟𝑘) ≤ log 𝑆 𝑓 (𝑟) + 1, hence 𝑆 𝑓 (𝑟𝑘) ≤ 𝑒𝑆 𝑓 (𝑟). The
Maximum Principle, (3.3) and (3.4) yield


 ∞∑︁

𝑛=0
𝑎𝑛𝑋𝑛 (𝜔)𝑧𝑛





𝑟
≤




 ∞∑︁
𝑛=0

𝑎𝑛𝑋𝑛 (𝜔)𝑧𝑛




𝑟𝑘

≤ 𝐶
√︁
log 𝑁𝑘𝑆 𝑓 (𝑟𝑘)

≍
√︃
log log 𝜇 𝑓 (𝑟𝑘)𝑆 𝑓 (𝑟𝑘) ≤

√︃
log log 𝑆 𝑓 (𝑟𝑘)𝑆 𝑓 (𝑟𝑘)

≲
√︃
log log 𝑆 𝑓 (𝑟)𝑆 𝑓 (𝑟) ≍

√︃
log log 𝜇 𝑓 (𝑟)𝑆 𝑓 (𝑟),

which completes the proof. ■

In Kuryliak [17], the sequence (𝑟𝑘)𝑘≥1 was constructed from the maximum term 𝜇 𝑓 .
The idea of constructing this sequence from 𝑆 𝑓 instead comes from [6] and [32].
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Theorem 3.4 generalizes Theorem 2 of Erdős and Rényi [6], who use Rademacher
random variables. Indeed, every bounded random variable is subgaussian. In their main
result, Theorem 1, Erdős and Rényi obtain a rate of growth written in terms of the
maximum term. We obtain Theorem 1.1 in the same way.

Proof of Theorem 1.1 This result is a direct consequence of Theorem 3.4 and the
Wiman-Valiron inequality in the form of Rosenbloom. Indeed, let 𝛿 > 0, and let 𝐸 be
the union of the sets given by Lemma 3.1 and Theorem 3.4. By Lemma 3.1 we have for
𝑟 ∉ 𝐸

𝑆2𝑓 (𝑟) ≤ 𝜇 𝑓 (𝑟)𝐺 𝑓 (𝑟) ≲ 𝜇 𝑓 (𝑟)2
(
log 𝜇 𝑓 (𝑟)

) 1
2
(
log log 𝜇 𝑓 (𝑟)

)1+𝛿
.

It remains to apply Theorem 3.4. ■

4 Lévy’s phenomenon in the disk

We now study the rate of growth for random power series onDwith subgaussian coef-
ficients. Our aim is to prove Theorem 1.2. The proof is very similar to that of Theorem
1.1, with a slight complication arising from the presence of an additional term 1

1−𝑟 .
Recall that a (measurable) set 𝐸 ⊂ [0, 1) is of finite logarithmic measure if

∫
𝐸

1
1−𝑟 d𝑟 <

∞. Again, it will always suffice to show that a property holds outside a set of finite
logarithmic measure and for all 𝑟 close enough to 1.

The maximum modulus 𝑀 𝑓 of an analytic function 𝑓 on D, its maximum term 𝜇 𝑓

and the functions 𝑆 𝑓 and𝐺 𝑓 are defined exactly in the sameway as for entire functions.
Applying theWiman-Valiron inequality of Skaskiv andKuryliak [31], see (1.6), to 𝑧 →∑∞

𝑛=0 |𝑎𝑛 |𝑧𝑛, we have the following.

Lemma 4.1 Let 𝑓 (𝑧) =
∑∞

𝑛=0 𝑎𝑛𝑧
𝑛 be a non-constant analytic function on D. Then, for

every 𝛿 > 0, there is an open set 𝐸 ⊂ [0, 1) of finite logarithmic measure and a constant
𝐶 > 0 such that, for any 𝑟 ∈ [0, 1), 𝑟 ∉ 𝐸 ,

𝐺 𝑓 (𝑟) ≤ 𝐶
𝜇 𝑓 (𝑟)
1 − 𝑟

(
log

1
1 − 𝑟

) 1
2+𝛿 ( log 𝜇 𝑓 (𝑟)

1 − 𝑟

) 1
2
(
log log

𝜇 𝑓 (𝑟)
1 − 𝑟

)1+𝛿
.

Again,𝐸 can be chosen to be openbecause both sides of the inequality are continuous.
And we will continue to write ∥ 𝑓 ∥𝑟 = 𝑀 𝑓 (𝑟) = max |𝑧 |=𝑟 | 𝑓 (𝑧) |.

Lemma 4.2 Let 𝑓 (𝑧) =
∑∞

𝑛=0 𝑎𝑛𝑧
𝑛 be a non-constant analytic function on D so that

lim𝑟→1 𝜇 𝑓 (𝑟) > 𝑒, and let (𝑋𝑛)𝑛≥0 be an independent centred subgaussian sequence. Let
𝛼 > 1 and 𝛿 > 0. Then

∑∞
𝑛=0 𝑎𝑛𝑋𝑛𝑧

𝑛 defines almost surely an analytic function on D, and
there exists a constant 𝐶 > 0 and an open set 𝐸 ⊂ [0, 1) of finite logarithmic measure such
that, for any 𝑟 ∉ 𝐸 ,

P
(


 ∞∑︁

𝑛=0
𝑎𝑛𝑋𝑛𝑧

𝑛




𝑟
≥ 𝐶

√︁
log 𝑁𝑆 𝑓 (𝑟)

)
≤ 𝐶

𝑁2𝛼

whenever 𝑁 ≥ 1
(1−𝑟 )2

(
log 𝜇 𝑓 (𝑟 )

1−𝑟
)2+𝛿 .
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12 K. Agneessens and K.-G. Grosse-Erdmann

Proof The first assertion follows from Proposition 2.3.
We next apply Lemma 2.5 to the power series𝐺 𝑓 (𝑟) =

∑∞
𝑛=0 |𝑎𝑛 |𝑟𝑛, to the function

ℎ(𝑟) = 1
1−𝑟 , and to 𝛿/2; then the exceptional set is of finite logarithmic measure. Let

𝐸 ⊂ [0, 1) be the open set of finite logarithmic measure that is the union of the open
sets in this lemma and in Lemma 4.1, applied for 𝛿/4. Then we have, for any 𝑟 ∉ 𝐸

sufficiently large,

∞∑︁
𝑛=0

𝑛|𝑎𝑛 |𝑟𝑛 ≤ 1
1 − 𝑟 𝐺 𝑓 (𝑟)

(
log𝐺 𝑓 (𝑟)

)1+ 𝛿
2 (4.1)

and

𝐺 𝑓 (𝑟) ≲
𝜇 𝑓 (𝑟)
1 − 𝑟

(
log

1
1 − 𝑟

) 1
2+

𝛿
4
(
log

𝜇 𝑓 (𝑟)
1 − 𝑟

) 1
2
(
log log

𝜇 𝑓 (𝑟)
1 − 𝑟

)1+ 𝛿
4

≲
𝜇 𝑓 (𝑟)
1 − 𝑟

(
log

𝜇 𝑓 (𝑟)
1 − 𝑟

)1+ 𝛿
2
≲

( 𝜇 𝑓 (𝑟)
1 − 𝑟

)1+𝛿
,

(4.2)

where we have used that 𝜇 𝑓 (𝑟) ≥ 1 for large 𝑟 .
Let 𝛼 > 1. Define 𝐵𝑛 := {|𝑋𝑛 | > 𝑛1−1/𝛼} ⊂ Ω for 𝑛 ≥ 1 and 𝐵(𝑁) := ⋃

𝑛>𝑁 𝛼 𝐵𝑛

for any real 𝑁 ≥ 1. Then the argument in the proof of Lemma 3.2 shows that

P(𝐵(𝑁)) ≲ 1
𝑁2𝛼

and that we have on the complement of 𝐵(𝑁) for 𝑟 ≥ 0


 ∑︁
𝑛>𝑁 𝛼

𝑎𝑛𝑋𝑛𝑧
𝑛




𝑟
≤ 1
𝑁

∑︁
𝑛>𝑁 𝛼

𝑛|𝑎𝑛 |𝑟𝑛.

Let 𝑟0 > 0 satisfy 𝜇 𝑓 (𝑟0) > 𝑒. Let 𝑟 ≥ 𝑟0, 𝑟 ∉ 𝐸 , and let𝑁 ≥ 1
(1−𝑟 )2

(
log 𝜇 𝑓 (𝑟 )

1−𝑟
)2+𝛿

>

1. Note that the hypothesis on 𝜇 𝑓 implies that lim𝑟→1𝐺 𝑓 (𝑟) > 1. By (4.1) and (4.2), we
get on the complement of 𝐵(𝑁) that


 ∑︁

𝑛>𝑁 𝛼

𝑎𝑛𝑋𝑛𝑧
𝑛




𝑟
≤ 1
𝑁

1
1 − 𝑟 𝐺 𝑓 (𝑟)

(
log𝐺 𝑓 (𝑟)

)1+ 𝛿
2

≲
1
𝑁

𝜇 𝑓 (𝑟)
(1 − 𝑟)2

(
log

𝜇 𝑓 (𝑟)
1 − 𝑟

)1+ 𝛿
2
(
log

𝜇 𝑓 (𝑟)
1 − 𝑟

)1+ 𝛿
2

=
1
𝑁

𝜇 𝑓 (𝑟)
(1 − 𝑟)2

(
log

𝜇 𝑓 (𝑟)
1 − 𝑟

)2+𝛿
≤ 𝜇 𝑓 (𝑟) ≤ 𝑆 𝑓 (𝑟).

Therefore there is a constant 𝐶1 > 0 such that if 𝑟 ≥ 𝑟0, 𝑟 ∉ 𝐸 , and 𝑁 ≥
1

(1−𝑟 )2
(
log 𝜇 𝑓 (𝑟 )

1−𝑟
)2+𝛿 then

P
(


 ∑︁

𝑛>𝑁 𝛼

𝑎𝑛𝑋𝑛𝑧
𝑛




𝑟
> 𝐶1𝑆 𝑓 (𝑟)

)
≤ P(𝐵(𝑁)) ≲ 1

𝑁2𝛼 .
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By Lemma 2.2 applied to 𝑞𝑛 (𝑡) = 𝑎𝑛𝑟𝑛𝑒𝑖𝑛𝑡 , 𝑡 ∈ [0, 2𝜋] , 𝑛 ≥ 0, with 𝑀 and 𝑁 given
by ⌊𝑁𝛼⌋ , we have on the other hand that there is a constant𝐶2 > 0 such that

P
(


 ∑︁

0≤𝑛≤𝑁 𝛼

𝑎𝑛𝑋𝑛𝑧
𝑛




𝑟
≥ 𝐶2

√︁
log 𝑁𝑆 𝑓 (𝑟)

)
≲

1
𝑁2𝛼 .

Altogether there is some constant𝐶 > 0 such that

P
(


 ∞∑︁

𝑛=0
𝑎𝑛𝑋𝑛𝑧

𝑛




𝑟
≥ 𝐶

√︁
log 𝑁𝑆 𝑓 (𝑟)

)
≲

1
𝑁2𝛼 + 1

𝑁2𝛼

for 𝑟 ≥ 𝑟0, 𝑟 ∉ 𝐸 , and 𝑁 ≥ 1
(1−𝑟 )2

(
log 𝜇 𝑓 (𝑟 )

1−𝑟
)2+𝛿 . This completes the proof. ■

Due to the additional term 1
1−𝑟 wewill now need amore elaborate version of Lemma

3.3. In view of Section 5 we formulate it here for arbitrary 𝑅 > 0.

Lemma 4.3 Let 0 < 𝑅 ≤ ∞. Let 𝜑, 𝜓1, 𝜓2 : [𝜌, 𝑅) → [1,∞) be continuous increasing
functions such that lim𝑟→𝑅 𝜑(𝑟) = ∞, where 𝜌 ∈ [0, 𝑅). Let 𝐸 ⊂ (𝜌, 𝑅) be an open set
whose complement has 𝑅 as limit point. Then there exists an infinite set 𝐽 ⊂ N3 and a family
(𝑟𝑙,𝑘, 𝑗 ) (𝑙,𝑘, 𝑗 ) ∈𝐽 in [𝜌, 𝑅) such that

(i) for any (𝑙, 𝑘, 𝑗) ∈ 𝐽 , 𝑟𝑙,𝑘, 𝑗 ∉ 𝐸 ,
(ii) for any (𝑙, 𝑘, 𝑗) ∈ 𝐽 , 𝑙 ≤ 𝜑(𝑟𝑙,𝑘, 𝑗 ) ≤ 𝑙 + 1, 𝑘 ≤ 𝜓1 (𝑟𝑙,𝑘, 𝑗 ) ≤ 𝑘 + 1 and 𝑗 ≤

𝜓2 (𝑟𝑙,𝑘, 𝑗 ) ≤ 𝑗 + 1,
(iii) for any 𝑟 ∈ [𝜌, 𝑅) with 𝑟 ∉ 𝐸 there exists (𝑙, 𝑘, 𝑗) ∈ 𝐽 such that 𝑟 ≤ 𝑟𝑙,𝑘, 𝑗 ,

𝜑(𝑟𝑙,𝑘, 𝑗 ) ≤ 𝜑(𝑟) + 1, 𝜓1 (𝑟𝑙,𝑘, 𝑗 ) ≤ 𝜓1 (𝑟) + 1 and 𝜓2 (𝑟𝑙,𝑘, 𝑗 ) ≤ 𝜓2 (𝑟) + 1.

Proof Define for each 𝑙, 𝑘, 𝑗 ≥ 1 the possibly empty set

𝑈𝑙,𝑘, 𝑗 :=
{
𝜌 ≤ 𝑟 < 𝑅 : 𝑙 ≤ 𝜑(𝑟) ≤ 𝑙 + 1, 𝑘 ≤ 𝜓1 (𝑟) ≤ 𝑘 + 1 and 𝑗 ≤ 𝜓2 (𝑟) ≤ 𝑗 + 1

}
.

These sets are closed in [0, 𝑅) since 𝜑, 𝜓1 and 𝜓2 are continuous, and bounded away
from 𝑅 since lim𝑟→𝑅 𝜑(𝑟) = ∞, and thus they are compact. Define 𝐽 := {(𝑙, 𝑘, 𝑗) ∈
N3 : 𝑈𝑙,𝑘, 𝑗 \ 𝐸 ≠ ∅}. For each (𝑙, 𝑘, 𝑗) ∈ 𝐽 , there exists 𝑟𝑙,𝑘, 𝑗 ∈ 𝑈𝑙,𝑘, 𝑗 \ 𝐸 such
that 𝑟𝑙,𝑘, 𝑗 = sup(𝑈𝑙,𝑘, 𝑗 \ 𝐸). This shows (i) and (ii). Since lim𝑟→𝑅 𝜑(𝑟) = ∞ and the
complement of 𝐸 has 𝑅 as limit point, 𝐽 is an infinite set.

Let 𝜌 ≤ 𝑟 < 𝑅. Since 𝜑(𝜌) ≥ 1,𝜓1 (𝜌) ≥ 1 and𝜓2 (𝜌) ≥ 1, there exists (𝑙, 𝑘, 𝑗) ∈ N3

such that 𝑙 ≤ 𝜑(𝑟) ≤ 𝑙 + 1, 𝑘 ≤ 𝜓1 (𝑟) ≤ 𝑘 + 1 and 𝑗 ≤ 𝜓2 (𝑟) ≤ 𝑗 + 1. If 𝑟 ∉ 𝐸 then
(𝑙, 𝑘, 𝑗) ∈ 𝐽 , and 𝑟 ≤ 𝑟𝑙,𝑘, 𝑗 by definition of 𝑟𝑙,𝑘, 𝑗 . By definition of𝑈𝑙,𝑘, 𝑗 , we also have
𝜑(𝑟𝑙,𝑘, 𝑗 ) ≤ 𝜑(𝑟) + 1, 𝜓1 (𝑟𝑙,𝑘, 𝑗 ) ≤ 𝜓1 (𝑟) + 1 and 𝜓2 (𝑟𝑙,𝑘, 𝑗 ) ≤ 𝜓2 (𝑟) + 1. ■

Remark 4.4 For a possible future application let us note that the previous lemma can
obviously be extended to any number of functions 𝜓1, . . . , 𝜓𝑛, 𝑛 ≥ 2.

The next theorem is the main result of this section.

Theorem 4.5 Let 𝑓 (𝑧) =
∑∞

𝑛=0 𝑎𝑛𝑧
𝑛 be a non-constant analytic function on D and

(𝑋𝑛)𝑛≥0 an independent centred subgaussian sequence. Then
∑∞

𝑛=0 𝑎𝑛𝑋𝑛𝑧
𝑛 defines almost
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14 K. Agneessens and K.-G. Grosse-Erdmann

surely an analytic function onD. Moreover, there exists an open set 𝐸 ⊂ [0, 1) of finite loga-
rithmic measure and a constant 𝐶 > 0 such that, almost surely, there exists some 𝑟0 ∈ (0, 1)
such that

max
|𝑧 |=𝑟

��� ∞∑︁
𝑛=0

𝑎𝑛𝑋𝑛𝑧
𝑛
��� ≤ 𝐶√︂

log
( 1
1 − 𝑟 log

𝜇 𝑓 (𝑟)
1 − 𝑟

)
𝑆 𝑓 (𝑟)

for 𝑟0 ≤ 𝑟 < 1, 𝑟 ∉ 𝐸 .

Proof After multiplying 𝑓 by a constant, if necessary, we may assume that
lim𝑟→1 𝜇 𝑓 (𝑟) > 𝑒.

Now let 𝐸 ⊂ [0, 1) be the open set of finite logarithmic measure that is the union of
the open set in Lemma 4.2, taken for some 𝛼 > 1 and 𝛿 > 0, and the open set in Lemma
4.1 for the same 𝛿. Note that the complement of 𝐸 has 1 as limit point.

We apply Lemma 4.3 to 𝑅 = 1, 𝜑(𝑟) = log 1
1−𝑟 , 𝜓1 = log 𝜇 𝑓 and 𝜓2 = log 𝑆 𝑓 with

0 < 𝜌 < 1 so large that 𝜑(𝜌) ≥ 1, 𝜓1 (𝜌) ≥ 1 and 𝜓2 (𝜌) ≥ 1. Let (𝑟𝑙,𝑘, 𝑗 ) (𝑙,𝑘, 𝑗 ) ∈𝐽 be the
family given by the lemma.

By (4.2) we have that, for any 𝑟 ≥ 𝜌 and 𝑟 ∉ 𝐸 ,

𝑆 𝑓 (𝑟) ≤ 𝐺 𝑓 (𝑟) ≲
( 𝜇 𝑓 (𝑟)
1 − 𝑟

)1+𝛿
.

Then we have by (i) and (ii) of Lemma 4.3 that, for any (𝑙, 𝑘, 𝑗) ∈ 𝐽 , 𝑒 𝑗 ≲
𝑒 (1+𝛿 ) (𝑘+1)𝑒 (1+𝛿 ) (𝑙+1) and hence

𝑗 ≲ 𝑙 + 𝑘. (4.3)

Define for each (𝑙, 𝑘, 𝑗) ∈ 𝐽 the real number

𝑁𝑙,𝑘, 𝑗 :=
1

(1 − 𝑟𝑙,𝑘, 𝑗 )2
(
log

𝜇 𝑓 (𝑟𝑙,𝑘, 𝑗 )
1 − 𝑟𝑙,𝑘, 𝑗

)2+𝛿
≥ 1

and the set

𝐴𝑙,𝑘, 𝑗 :=
{


 ∞∑︁

𝑛=0
𝑎𝑛𝑋𝑛𝑧

𝑛




𝑟𝑙,𝑘, 𝑗

≥ 𝐶
√︁
log 𝑁𝑙,𝑘, 𝑗𝑆 𝑓 (𝑟𝑙,𝑘, 𝑗 )

}
,

where 𝐶 > 0 is the constant of Lemma 4.2. Then (i) of Lemma 4.3, Lemma 4.2, the
definition of 𝑁𝑙,𝑘, 𝑗 , (ii) of Lemma 4.3 and (4.3) imply that∑︁

(𝑙,𝑘,𝑙) ∈𝐽
P(𝐴𝑙,𝑘, 𝑗 ) ≲

∑︁
(𝑙,𝑘, 𝑗 ) ∈𝐽

1
𝑁2𝛼
𝑙,𝑘, 𝑗

=
∑︁

(𝑙,𝑘, 𝑗 ) ∈𝐽

(1 − 𝑟𝑙,𝑘, 𝑗 )4𝛼(
log 𝜇 𝑓 (𝑟𝑙,𝑘, 𝑗 )

1−𝑟𝑙,𝑘, 𝑗
)2𝛼(2+𝛿 )

≤
∑︁

(𝑙,𝑘, 𝑗 ) ∈𝐽

1
𝑒𝑙4𝛼 (𝑙 + 𝑘)2𝛼(2+𝛿 )

≲
∑︁
𝑙,𝑘≥1

𝑙 + 𝑘
𝑒𝑙4𝛼 (𝑙 + 𝑘)2𝛼(2+𝛿 ) < ∞.

By the Borel-Cantelli lemma, we have that, for almost every𝜔 ∈ Ω, there exist 𝑙0 (𝜔),
𝑘0 (𝜔), 𝑗0 (𝜔) ≥ 1 such that, for every (𝑙, 𝑘, 𝑗) ∈ 𝐽 , whenever 𝑙 > 𝑙0 (𝜔) or 𝑘 > 𝑘0 (𝜔)
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or 𝑗 > 𝑗0 (𝜔) then


 ∞∑︁
𝑛=0

𝑎𝑛𝑋𝑛 (𝜔)𝑧𝑛




𝑟𝑙,𝑘, 𝑗

≤ 𝐶
√︁
log 𝑁𝑙,𝑘, 𝑗𝑆 𝑓 (𝑟𝑙,𝑘, 𝑗 ). (4.4)

We set 𝑟0 (𝜔) := max𝑙≤𝑙0 (𝜔) ,𝑘≤𝑘0 (𝜔) , 𝑗≤ 𝑗0 (𝜔) 𝑟𝑙,𝑘, 𝑗 . Let 𝑟 > 𝑟0 (𝜔) with 𝑟 ∉ 𝐸 . By
(iii) of Lemma 4.3, there exists (𝑙, 𝑘, 𝑗) ∈ 𝐽 such that 𝑟 ≤ 𝑟𝑙,𝑘, 𝑗 , 𝜑(𝑟𝑙,𝑘, 𝑗 ) ≤ 𝜑(𝑟) + 1,
𝜓1 (𝑟𝑙,𝑘, 𝑗 ) ≤ 𝜓1 (𝑟) +1 and𝜓2 (𝑟𝑙,𝑘, 𝑗 ) ≤ 𝜓2 (𝑟) +1. Since 𝑟 > 𝑟0 (𝜔) wemust have either
𝑙 > 𝑙0 (𝜔) or 𝑘 > 𝑘0 (𝜔) or 𝑗 > 𝑗0 (𝜔), hence (4.4) holds. The Maximum Principle then
implies that


 ∞∑︁

𝑛=0
𝑎𝑛𝑋𝑛 (𝜔)𝑧𝑛





𝑟
≤




 ∞∑︁
𝑛=0

𝑎𝑛𝑋𝑛 (𝜔)𝑧𝑛




𝑟𝑙,𝑘, 𝑗

≲
√︁
log 𝑁𝑙,𝑘, 𝑗𝑆 𝑓 (𝑟𝑙,𝑘, 𝑗 )

≲

√︄
log

( 1
1 − 𝑟𝑙,𝑘, 𝑗

log
𝜇 𝑓 (𝑟𝑙,𝑘, 𝑗 )
1 − 𝑟𝑙,𝑘, 𝑗

)
𝑆 𝑓 (𝑟𝑙,𝑘, 𝑗 )

≲

√︂
log

( 1
1 − 𝑟 log

𝜇 𝑓 (𝑟)
1 − 𝑟

)
𝑆 𝑓 (𝑟),

which completes the proof. ■

We can now prove Theorem 1.2 exactly as we proved Theorem 1.1 at the end
of the previous section. For this, we estimate log

( 1
1−𝑟 log

𝜇 𝑓 (𝑟 )
1−𝑟

)
for large 𝑟 by(

log 1
1−𝑟

) (
log 𝜇 𝑓 (𝑟 )

1−𝑟
) 𝛿 .

Remark 4.6 Kuryliak and Skaskiv [19, Theorem 1, Corollary 1] obtain a weaker ver-
sion of Theorem 1.2 under the additional assumption that, for some 𝛽 > 0 and some
𝑁 ≥ 0, sup𝑛≥𝑁 𝐸

(
|𝑋𝑛 |−𝛽

)
< ∞, see [19, (7)]; the authors take the infimum instead

of the supremum, but the proof of [19, Proposition 1] shows that this is a misprint. This
additional assumption is not satisfied, for example, for the centred subgaussian sequence
(𝑋𝑛)𝑛 where 𝑋𝑛 is uniformly distributed on [− 1

𝑛+1 ,
1

𝑛+1 ] , 𝑛 ≥ 0.

5 A unified result

In this brief sectionwe unify the results in the previous two sections and generalize them
to other notions of exceptional sets. The results concern any analytic function in a disk
|𝑧 | < 𝑅, 0 < 𝑅 ≤ ∞. The growth-related functions 𝑀 𝑓 , 𝜇 𝑓 , 𝑆 𝑓 , 𝐺 𝑓 are defined as
before.

Definition 5.1 Let 0 < 𝑅 ≤ ∞. Let ℎ : [𝜌, 𝑅) → [0,∞) be a continuous increasing
function with

∫ 𝑅

𝜌

ℎ (𝑟 )
𝑟

d𝑟 = ∞ for some 𝜌 ∈ [0, 𝑅). Then a set 𝐸 ⊂ [0, 𝑅) is said to be
of finite ℎ-logarithmic measure if∫

𝐸∩[𝜌,𝑅)

ℎ(𝑟)
𝑟

d𝑟 < ∞.
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16 K. Agneessens and K.-G. Grosse-Erdmann

See [31] and [19] for this notion; the name seems to derive from the fact that ℎ (𝑟 )
𝑟

d𝑟 =
ℎ(𝑟)d ln 𝑟 . This generalizes the notion of logarithmic measure for 𝑅 = ∞ (where ℎ is
constant) and for 𝑅 = 1 (where ℎ(𝑟) = 1

1−𝑟 ).
The following Wiman-Valiron inequality for an arbitrary 𝑅 ∈ (0,∞] is essentially

due to Skaskiv and Kuryliak [31]: see the penultimate inequality in the proof of their
Theorem 1 and note that, for any 𝜀 > 0, max(𝑎, 𝑏) ≲ 𝑎𝑏 if 𝑎, 𝑏 ≥ 𝜀. Another proof can
be given with [9, Theorem 2.1]: see Remark 2.4(c) and the discussion after Theorem 1.6
there.

Theorem 5.2 (Skaskiv, Kuryliak) Let 0 < 𝑅 ≤ ∞. Let 𝑓 (𝑧) =
∑∞

𝑛=0 𝑎𝑛𝑧
𝑛 be a non-

constant analytic function for |𝑧 | < 𝑅. Let ℎ : [𝜌, 𝑅) → [0,∞) be a continuous increasing
function with

∫ 𝑅

𝜌

ℎ (𝑟 )
𝑟

d𝑟 = ∞ for some 𝜌 ∈ [0, 𝑅); suppose that lim𝑟→𝑅 ℎ(𝑟) > 1 and
lim𝑟→𝑅 ℎ(𝑟)𝜇 𝑓 (𝑟) > 𝑒.

Then, for every 𝛿 > 0, there exists a constant 𝐶 > 0 and an open set 𝐸 ⊂ [0, 𝑅) of finite
ℎ-logarithmic measure such that

𝑀 𝑓 (𝑟) ≤ 𝐶 ℎ(𝑟)𝜇 𝑓 (𝑟)
(
log ℎ(𝑟)

) 1
2+𝛿 ( log(ℎ(𝑟)𝜇 𝑓 (𝑟))

) 1
2
(
log log(ℎ(𝑟)𝜇 𝑓 (𝑟))

)1+𝛿
for every 𝑟 ∈ (𝜌, 𝑅), 𝑟 ∉ 𝐸 .

The additional assumption on ℎ is only needed in order to make sure that the
inequality has a sense for large 𝑟 .

Then, based on the results in Section 2 and proceeding exactly as in the proofs in
Section 4, we obtain the following, which contains Theorems 3.4 and 4.5 as special cases.

Theorem 5.3 Let 0 < 𝑅 ≤ ∞. Let 𝑓 (𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧

𝑛 be a non-constant analytic function
for |𝑧 | < 𝑅. Let ℎ : [𝜌, 𝑅) → [0,∞) be a continuous increasing function with

∫ 𝑅

𝜌

ℎ (𝑟 )
𝑟

d𝑟 =
∞ for some 𝜌 ∈ [0, 𝑅); suppose that lim𝑟→𝑅 ℎ(𝑟) > 1 and lim𝑟→𝑅 ℎ(𝑟)𝜇 𝑓 (𝑟) > 𝑒. Let
(𝑋𝑛)𝑛≥0 be an independent centred subgaussian sequence.

Then
∑∞

𝑛=0 𝑎𝑛𝑋𝑛𝑧
𝑛 defines almost surely an analytic function for |𝑧 | < 𝑅. Moreover,

there exists an open set 𝐸 ⊂ [0, 𝑅) of finite ℎ-logarithmic measure and a constant 𝐶 > 0
such that, almost surely, there exists some 𝑟0 ∈ (𝜌, 𝑅) such that

max
|𝑧 |=𝑟

��� ∞∑︁
𝑛=0

𝑎𝑛𝑋𝑛𝑧
𝑛
��� ≤ 𝐶√︃

log
(
ℎ(𝑟) log(ℎ(𝑟)𝜇 𝑓 (𝑟))

)
𝑆 𝑓 (𝑟)

for 𝑟0 ≤ 𝑟 < 𝑅, 𝑟 ∉ 𝐸 .

With the usual procedure we then obtain the following, which contains Theorems
1.1 and 1.2 as special cases.

Theorem 5.4 Let 0 < 𝑅 ≤ ∞. Let 𝑓 (𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧

𝑛 be a non-constant analytic function
for |𝑧 | < 𝑅. Let ℎ : [𝜌, 𝑅) → [0,∞) be a continuous increasing function with

∫ 𝑅

𝜌

ℎ (𝑟 )
𝑟

d𝑟 =
∞ for some 𝜌 ∈ [0, 𝑅); suppose that lim𝑟→𝑅 ℎ(𝑟) > 1 and lim𝑟→𝑅 ℎ(𝑟)𝜇 𝑓 (𝑟) > 1. Let
(𝑋𝑛)𝑛≥0 be an independent centred subgaussian sequence.
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Then
∑∞

𝑛=0 𝑎𝑛𝑋𝑛𝑧
𝑛 defines almost surely an analytic function for |𝑧 | < 𝑅. Moreover,

for every 𝛿 > 0, there exists an open set 𝐸 ⊂ [0, 𝑅) of finite ℎ-logarithmic measure and a
constant 𝐶 > 0 such that, almost surely, there exists some 𝑟0 ∈ (𝜌, 𝑅) such that

max
|𝑧 |=𝑟

��� ∞∑︁
𝑛=0

𝑎𝑛𝑋𝑛𝑧
𝑛
��� ≤ 𝐶 ℎ(𝑟) 1

2 𝜇 𝑓 (𝑟)
(
log ℎ(𝑟)

) 3
4+𝛿 ( log(ℎ(𝑟)𝜇 𝑓 (𝑟))

) 1
4(

log log(ℎ(𝑟)𝜇 𝑓 (𝑟))
)1+𝛿

for 𝑟0 ≤ 𝑟 < 𝑅, 𝑟 ∉ 𝐸 .

6 An application to linear dynamics

Our results have an immediate application in linear dynamics, the study of dynami-
cal properties of linear operators. We briefly introduce the necessary background. We
consider the vector spaces X = 𝐻 (C) of entire functions and X = 𝐻 (D) of analytic
functions on the unit disk D, both endowed with the topology of uniform convergence
on compact sets. A (continuous and linear) operator 𝑇 : X → X is called hypercyclic if
it has a dense orbit, that is, if there is some function 𝑓 ∈ X whose orbit {𝑇𝑛 𝑓 : 𝑛 ≥ 0}
is dense in X; such a function 𝑓 is then called hypercyclic for 𝑇 . More restrictively, the
function 𝑓 is called frequently hypercyclic for 𝑇 if, for every non-empty open set𝑈 ⊂ X,
the set of return times to𝑈 has positive lower density, that is,

dens{𝑛 ≥ 0 : 𝑇𝑛 𝑓 ∈ 𝑈} > 0,

where dens 𝐴 = lim inf𝑁→∞
1

𝑁+1card{𝑛 ∈ 𝐴 : 0 ≤ 𝑛 ≤ 𝑁} for 𝐴 ⊂ N0. An opera-
tor that admits a frequently hypercyclic function is itself called frequently hypercyclic. A
related notion is that of chaos, where𝑇 is supposed to be hypercyclic and possess a dense
set of periodic points, that is, functions 𝑓 ∈ X such that 𝑇𝑛 𝑓 = 𝑓 for some 𝑛 ≥ 1. For
introductions to linear dynamics, see [4] and [10].

Now, a weighted shift operator 𝐵𝑤 onX is an operator that maps the analytic function
𝑓 (𝑧) = ∑∞

𝑛=0 𝑎𝑛𝑧
𝑛 to

(𝐵𝑤 𝑓 ) (𝑧) =
∞∑︁
𝑛=0

𝑤𝑛+1𝑎𝑛+1𝑧
𝑛,

where 𝑤 = (𝑤𝑛)𝑛≥1 is a weight, that is a sequence of non-zero complex numbers. It is
well known that 𝐵𝑤 is chaotic onX = 𝐻 (C) or 𝐻 (D) if and only if

∞∑︁
𝑛=0

1∏𝑛
𝑘=1 𝑤𝑘

𝑧𝑛 ∈ X;

and in that case 𝐵𝑤 is frequently hypercyclic, see [10, Section 4.1 and Corollary 9.14].
The best known examples are the differentiation operator 𝐷 on 𝐻 (C), where 𝑤 =

(𝑛)𝑛, and the so-called Taylor shift 𝑇 on 𝐻 (D), where 𝑤 = (1)𝑛; in other words,

𝐷 𝑓 (𝑧) = 𝑓 ′ (𝑧) and 𝑇 𝑓 (𝑧) = 𝑓 (𝑧)− 𝑓 (0)
𝑧

(𝑧 ≠ 0), 𝑇 𝑓 (0) = 𝑓 ′ (0).

By the above criterion, both operators are frequently hypercyclic.
An interesting problem in this context is that of finding the least possible rate of

growth of functions 𝑓 that are hypercyclic or frequently hypercyclic for a givenweighted

2025/04/29 16:57

https://doi.org/10.4153/S0008414X25101491 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101491


18 K. Agneessens and K.-G. Grosse-Erdmann

shift 𝐵𝑤 . This line of research was initiated by the second author [8] and by Shkarin [30]
in the case of hypercyclic functions for the differentiation operator𝐷; they showed that,
for any function 𝜙 : (0,∞) → [1,∞) with lim𝑟→∞ 𝜙(𝑟) = ∞ there exists an entire
function 𝑓 that is hypercyclic for 𝐷 and a constant𝐶 > 0 such that

𝑀 𝑓 (𝑟) ≤ 𝐶𝜙(𝑟)
𝑒𝑟

𝑟
1
2

for every 𝑟 > 0. And this is optimal in the sense that 𝜙 cannot be dropped.
The corresponding result for frequent hypercyclicity is due to Drasin and Saksman

[5]; they have shown that there exists an entire function 𝑓 that is frequently hypercyclic
for 𝐷 and a constant𝐶 > 0 such that

𝑀 𝑓 (𝑟) ≤ 𝐶
𝑒𝑟

𝑟
1
4

for every 𝑟 > 0; this is again optimal in a certain sense.
Now, the latter result was considerablymore demanding than that for hypercyclicity.

ThismotivatedNikula [27] to use a probabilistic approach.He assumed 𝑋 to be a centred
subgaussian complex random variable of full support, that is, for any non-empty open
set𝑈 ⊂ Cwe have that P(𝑋 ∈ 𝑈) > 0. If (𝑋𝑛)𝑛≥0 is a sequence of i.i.d. copies of 𝑋 , then

𝑔(𝑧) :=
∞∑︁
𝑛=0

𝑋𝑛

𝑛!
𝑧𝑛

defines almost surely an entire function that is frequently hypercyclic for 𝐷 and for
which there exists 𝑟0 > 0 such that

∥𝑔∥𝑟 ≤ 𝐶
√︁
log 𝑟

𝑒𝑟

𝑟
1
4

for every 𝑟 ≥ 𝑟0. In otherwords, his probabilisticmethod led to an extra factor of
√︁
log 𝑟 ;

see also [27, Proposition 6].
Similar results for the Taylor shift on 𝐻 (D) are due to Mouze and Munnier [26]

(hypercyclic case), [25] (frequently hypercyclic case), and [24, p. 627] (frequently hyper-
cyclic case with a probabilistic approach), where the respective rates of growth are of the
form

𝐶𝜙(𝑟), 𝐶
1

√
1 − 𝑟

and 𝐶

√︂
log

1
1 − 𝑟

1
√
1 − 𝑟

.

For further results on otherweighted shift operators see [3] and the literature cited there.
In all of these results, the rate of growth holds for all sufficiently large 𝑟 . The question

of a rate of growthwith an exceptional set has not been addressed yet in linear dynamics.
We can deduce such results immediately from the work in this paper and the following
result of the first author [1, Theorem 4.4].

Theorem 6.1 Let𝑇 = 𝐵𝑤 be a chaotic weighted shift operator onX = 𝐻 (C) or 𝐻 (D) with
weight 𝑤 = (𝑤𝑛)𝑛≥1. Let 𝑋 be a subgaussian complex random variable of full support, and
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let (𝑋𝑛)𝑛≥0 be a sequence of i.i.d. copies of 𝑋 . Then

𝑔(𝑧) :=
∞∑︁
𝑛=0

𝑋𝑛∏𝑛
𝑘=1 𝑤𝑘

𝑧𝑛

defines almost surely a function from X that is frequently hypercyclic for 𝐵𝑤 .

Incidentally, the assumption of a full support is crucial. Otherwise there would be a
non-empty open set𝑈 ⊂ C so that

P(∃𝑛 ≥ 0 : (𝐵𝑛
𝑤𝑔) (0) ∈ 𝑈) = P(∃𝑛 ≥ 0 : 𝑋𝑛 ∈ 𝑈) = 0.

Hence, 𝑔 would almost surely not even be hypercyclic for 𝐵𝑤 .
Combining the result above with Theorem 3.4, we obtain the following.

Theorem 6.2 Let 𝑇 = 𝐵𝑤 be a chaotic weighted shift operator on 𝐻 (C) with weight 𝑤 =

(𝑤𝑛)𝑛≥1. Let 𝑋 be a centred subgaussian complex random variable of full support, and let
(𝑋𝑛)𝑛≥0 be a sequence of i.i.d. copies of 𝑋 . Then

𝑔(𝑧) :=
∞∑︁
𝑛=0

𝑋𝑛∏𝑛
𝑘=1 𝑤𝑘

𝑧𝑛

defines almost surely an entire function that is frequently hypercyclic for 𝐵𝑤 . Moreover, there
exists a set 𝐸 ⊂ [0,∞) of finite logarithmic measure and a constant 𝐶 > 0 such that, almost
surely, there exists 𝑟0 > 0 such that

∥𝑔∥𝑟 ≤ 𝐶
√︃
log log 𝜇 𝑓 (𝑟)𝑆 𝑓 (𝑟)

for every 𝑟 ≥ 𝑟0, 𝑟 ∉ 𝐸 ; here, 𝑓 is the entire function given by 𝑓 (𝑧) =
∑∞

𝑛=0
1∏𝑛

𝑘=1 𝑤𝑘
𝑧𝑛.

In the same way, we obtain the following with Theorem 4.5.

Theorem 6.3 Let 𝑇 = 𝐵𝑤 be a chaotic weighted shift operator on 𝐻 (D) with weight 𝑤 =

(𝑤𝑛)𝑛≥1. Let 𝑋 be a centred subgaussian complex random variable of full support, and let
(𝑋𝑛)𝑛≥0 be a sequence of i.i.d. copies of 𝑋 . Then

𝑔(𝑧) :=
∞∑︁
𝑛=0

𝑋𝑛∏𝑛
𝑘=1 𝑤𝑘

𝑧𝑛

defines almost surely an analytic function onD that is frequently hypercyclic for 𝐵𝑤 . Moreover,
there exists a set 𝐸 ⊂ [0, 1) of finite logarithmic measure and a constant 𝐶 > 0 such that,
almost surely, there exists 𝑟0 ∈ (0, 1) such that

∥𝑔∥𝑟 ≤ 𝐶
√︂
log

( 1
1 − 𝑟 log

𝜇 𝑓 (𝑟)
1 − 𝑟

)
𝑆 𝑓 (𝑟)

for 𝑟0 ≤ 𝑟 < 1, 𝑟 ∉ 𝐸 ; here, 𝑓 ∈ 𝐻 (D) is given by 𝑓 (𝑧) = ∑∞
𝑛=0

1∏𝑛
𝑘=1 𝑤𝑘

𝑧𝑛.

By way of an example, let us look again at the two operators mentioned above.
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20 K. Agneessens and K.-G. Grosse-Erdmann

For the differentiation operator 𝐷 on 𝐻 (C) we have that 𝑓 (𝑧) = 𝑒𝑧 , and it is well
known that 𝜇 𝑓 (𝑟) ≍ 𝑟−

1
2 𝑒𝑟 and 𝑆 𝑓 (𝑟) ≍ 𝑟−

1
4 𝑒𝑟 . Thus

∥𝑔∥𝑟 ≤ 𝐶
√︁
log 𝑟

𝑒𝑟

𝑟
1
4

almost surely, outside a set of finite logarithmic measure.
For the Taylor shift 𝑇 on 𝐻 (D) we have that 𝑓 (𝑧) = 1

1−𝑧 , so that 𝜇 𝑓 (𝑟) = 1 and
𝑆 𝑓 (𝑟) ≍ 1√

1−𝑟 . Thus

∥𝑔∥𝑟 ≤ 𝐶
√︂
log

1
1 − 𝑟

1
√
1 − 𝑟

almost surely, outside a set of finite logarithmic measure.
We see here that our results give less than those of Nikula, and of Mouze and

Munnier, who obtain the same inequalities for all large values of 𝑟 . But Theorems 6.2
and 6.3 above hold for all chaotic weighted shifts.

We refer to the forthcoming paper [3] for rate of growth results without exceptional
sets for large classes of chaotic weighted shifts.
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