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LOCAL ENERGY DECAYS FOR WAVE EQUATIONS
WITH TIME-DEPENDENT COEFFICIENTS
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§0. Introduction

We consider the decay of the local energy for the following equa-
tion in three dimension:

Uy + bU, — du =0

0.1)
#(0,2) = f(x) and %,00,v) = g(x) .

Here we make the following assumption on b = b(t, x):

ASSUMPTION (A). (i) b(¢t,x) is a bounded smooth function. (i)
b(t, ) is non-negative. (iii) For each ¢ > 0,

the support of b(¢,x) is contained in {z||z| < ¢ + P},

0.2
0.2) 0<a<l,r>1.

(Throughout this paper the constants « and y are used with the mean-
ing ascribed here.)

The condition 0 < « <1 means that the support of b(f,x) expands
at a speed strictly less than the wave speed. Therefore, it is expected
that the local energy for solutions of problem (0.1) with initial data of
compact support decays rapidly as ¢ — oco. The purpose of this paper
is to give a partial answer to this problem.

The problem of the decay of the local energy for wave equations
with time-dependent coefficients or with moving obstacles has been
studied in Bloom and Kazarinoff [1], Cooper [2] and Cooper and Strauss
[3], ete. In their works it has been assumed that coefficients are
asymptotically stationary or that obstacles remain in a fixed bounded
region for ¢ > 0.

Now we shall state the main theorem.
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MAIN THEOREM. Suppose that Assumption (A) is satisfied and that
0<a<i. Let u be a smooth solution of problem (0.1) with the initial
data f and g (e Co(R%) such that the support of f and g is contained
i |x| <y Then, there exist constants 6 and 5,0 < <1, such that
the local energy for the solution u decays at the rate of exp (—0t®) as

t———>OO.

The explicit expression of the constant g will be given in the proof
of this theorem (§2).

Remark. The above result is valid for a weak solution with
f e H(R® and g e LX(R?.

Next we consider the exterior problem with Dirichlet boundary
conditions. Let & be a domain exterior to a star-shaped bounded do-
main with smooth boundary and let # be a solution of the following
equation :

0.3) U + U, — du = 0 in (0,0) X &
0.4) u(t,x) =0 on (0,00) X 36, 06 being the boundary of & .
(0.5) (0, x) = f(x), (0, 2) = g(x) .

Here b(t,x) satisfies Assumption (A). Then the same result as Main
Theorem holds. Since the proof for the exterior problem is done with
a slight modification of the proof for the whole space problem, we con-
sider only the whole space problem in this paper. The method presented
here will be useful for the problem with expanding obstacles with time
and details will be discussed in the next papere.

The proof of Main Theorem is done by a generalization of the
method used in Morawetz [5]. In §1 we show the uniform decay of
order ¢~*, > 0, and in §2 we prove Main Theorem. In §3 we show
that our method can be applied to wave equations with potentials of a
special form.

Finally we note the following facts: (a) The symbols C,C,,C,, -
are used to denote (unessential) positive constants which are not neces-
sarily the same. (b) Integration with no domain attached is taken
over the whole space. (¢) We use the summation convention. (d) All
the functions considered here are real-valued.
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§1. Uniform decay

Let s> 0 be fixed and let v(t; s) be a smooth solution of the equa-
tion

1.1 v, + bt 8)v, — vy, =0

with the initial data »(0;s) and 2,(0;s) of compact support, where
v;; = 4v, b(t; 8) = b(t + s, x), b(t, x) being the function in equation (0.1),

and by (0.2)
(1.2) the support of b(¢;s) is contained in {z||z| < (& + s + )} for
™ each t > 0.

It is convenient to introduce the following notation:

B mT,0) = [ QodT3 9P + IPo(T; 9)P)da
for 0 < & < co.
LEMMA 1.1. Let v(t;s) be a solution of problem (1.1). Then,
1.3) E®; ©,T,8) <EW; ,0,s)

for each T > 0, and
(1.4) r f bt 8) |0t 9F dadt < AE®; 00,0, 5) .
0

Proof. We multiply the equation (1.1) by v,. Then we have
(), + 0(@; v — (), + §(), = 0.

Integrating this identity over R® x (0,T), we easily obtain the conclu-
sion.
We use the next identities.

LEMMA 1.2 (cf. Strauss [6], Lemma 1). Let {(r) be a smooth func-
Ly
-

tion of r = |z| and let y, = &(r) Then the equation

1.5) (e, + bu, — uy )@y + xuw) = X(u t) + V-Y(w) + Z(w)”
holds, where
D Xyu; t)= %X(u; t) and Y(u) = (Y1(u), Yau), Ys(w)). The same notation will be

used in what follows.

https://doi.org/10.1017/5S002776300002167X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002167X

110 HIDEO TAMURA

X(u; t) = w,Cyu; + xs0%)
Yj(u) = "‘uj(ZXiui + Xiiu) + Xj('VuIZ - u?) + ’é‘xiuuz
Z(u) = 2Xiju¢uj —_ %xii”uz + 2bu,xiui + butxuu .
LEMMA 1.3 (c¢f. Lax and Phillips [4], Appendix 3). The equation

(e + buy, — uy )@ + Ou, + 2tru, + 2tw)

(1.6) =F,u;t) + V-Gw) + Hw)

holds, where

F(u; t) = 30 + O(Vulf + u) + 2tru,w, + 2tuu
+ ¥ + YT u-v)u + 347
G,(w) = —u,((r* + tOu, + 2tru, + 2tw) + 2 E(Vuf — u})
— 3r7¥((* + U,
Hw) = (* + tHbu} + 2trdbu,u, + 2tbu,u ,

and x = (x,, x,, X;) 1S a position vector.

LEMMA 1.4. Let 0<6<1 and let v(t;s) be a solution of problem
(1.1). Then, there exists a constant C independent of T and s such that

for T >1,
r j A + 7)1 0,3 ) dwdt + rja + P |o(E; s dadt
0 0
< C(T + 8)**"*"EW; 00,0,8),
where the constant C depends on 6 and the bound of b(t,x).

Proof. We lise Lemma 1.2 with () =1 — (1 + 7)~°. Then we note
the following facts:

a.m () >0 and () <or forr<1.
1.8) XegViV; = %Q(IVvIZ —v7) + L(v; = 61 + )7
.9) Kuas = (Cn(r) + 200 — Ezg(r))ﬂ _
r r r
(1'10) Xiiji = C'r'rr(’r) + %CM(T) < —-—5(1 + 5)(1 + 7')—3—5 .

We integrate the identity (1.5) with v =v(t;s) and b = b(t;s) over
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{zll@| =€ X (0,T),e,¢ > 0, being arbitrary (small enough), we have
JW X@;T) — X(v; 0)da + j: Ll:‘ (Y (v)-n,)dSdt
T
+[]  zwawat=o,

where 7 = (n,n,,7n,;) denotes the unit exterior normal to the domain
{x||z| > ¢}. By virtue of (1.7) and (1.9), the second term tends to zero
as ¢ — 0, and taking account of (1.8) and (1.10), we obtain

j " 951 + r)inrdadt + %j: f 31 + o)L + 1) widudt
< f \X(v; T)| dw + f 1X(v; 0)| dw — 2IT f b(t; )L, dwdt

— LT f b(t; s)(C,(r) + %C('r))vtvdxdt )

since yv; = C(@)v, and y,; =L0) + —Z—C(r). Furthermore, since |y
7

< C@A+ 7t for some C, by (1.7, we make use of Lemma 1.1 and
Poincaré’s inequality to obtain

IIX(v; Dide < C,EW; 00,0,5)

with C, independent of T, s and v. And the last two terms are dealt
with by the Schwarz inequality, so that

T T
'[ f(l + )" idadt + f f(l + )i dxdt
@iy *° °
T
< C.E®, 0,0,s) + C, j f (A + )bt ; syvidadt .
0

By (1.2),
(1 + 7.)1+a S Cﬁ(T + s)a(1+a) , T 2 1 ,

on the support of b(t,s), 0 <t <T. Hence, combining (1.11) with Lemma
1.1, we conclude the proof.
The next lemma gives the uniform decay of the local energy.

LEMMA 1.5. Let v(t; s) be a solution of problem (1.1). Then, there
exists a constant C independent of T and s such that for T > 1,
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E@; 3T, T,s) < C(T*d@O0; 8))* + T(T + )***"E@W; ,0,s),

where d(u) denotes the radius of the ball with center at the origin con-
taining the support of wu.

Proof. We make use of Lemma 1.3 with u = v(¢; s) and b = b(¢; s).
Integrating the identity (1.6) over R® x (0,7T), we have

[Foim s + [ [ B@dsdt = [ Fo; 0z
Since b(t; s)(r* + tHv2 > 0, and since
JF(v; 0)dz < C,dw(0; 8))*E(v; 0,0, 8)
by Poincaré’s inequality, it follows that
IF('I); T)dz < C,dw(0; 8)YE®; 0,0, 5)
-2 J?I to(t; s)(rv,w, + vv)dzdt .

By use of the fact that (1 + ) < Cy(T + s)*°, T > 1, on the support of
b(t;s),0<t<T, the last term is majorized by

CT(T + ) j j (@ + P& ; 90 + A + 172 + (1 + 1) )dadt .
0
Hence, in view of Lemma 1.4, we have
JF('U; Tydx < C(dw(0; 8))? + T(T + 8)**NE(w; ,0,8) .

On the other hand, we obtain that F(v; T) is non-negative and that
F(v; T) > 3T} + [P} + (r~*’xy),)

for || < :‘;—1 (see pp. 264, [4]), so that

JF(@; T)dz > jms F(; Tz > %T"E('v ; -;_T, T, s) .

T/!

Thus, we conclude the proof.

§2. Proof of Main Theorem
Let 0<a<$ and 6,0 <6< 1, be so small that «(2 + 6) < 1. Let
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2.1 P>+ )1 -2+,

so that p > a2 + d)(p + 1).
Let {T};-, be the sequence defined by

T, = k*T,

T being large enough (determined below, Lemma 2.2), and let

k

Sk = ZOTm .

9(®)

t = Sey + b
Ty + @ — bes i / .
Fig. 1
Obviously,
2.2) Sy < C kT, k>0,
for C, independent of k. We put g(¢) = (¢ + )*, y > 1, and define {a,}i-o
a, > 1, by
2.3) o =90S),  @=7".

Furthermore we define the sequence {b;}i-,, b, > 0, as follows:
(2.4) b, is a (unique) root of the equation ¢t — a, = gt + Sy

LEMMA 2.1. There exists o constant M independent of k such that
for >0

ay < by < May, .
Proof. The conclusion readily follows from Fig. 1.

LEMMA 2.2. Let Ti,Si,a; and b, be as above. Then, there exists
a constant T (large enough) independent of k > 1 such that
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(2.5) ay + 20y, < 3Ty — by-y)
(2.6) Qpoy + biy < Th + @y — by
2.7 T < T, — b, .

Proof. For the proof of (2.5), in virtue of Lemma 2.1 and the
monotone increasingness of a,, it suffices to show that T, > (6M + 2)a,.
By 2.2) and (2.8), a, < Ck*?*T+ for C, independent of & > 1. Since
a(p + 1) <p by (2.1), we can choose T independently of £ > 1 so that
k*T > C,(5M + 2)k=?*VT=  This implies (2.5). (2.6) and (2.7) are proved
similarly.

Now, we shall prove Main Theorem. To this end we prepare
several lemmas.

LEMMA 2.3. Let u be the solution of problem (0.1) with the initial
data f and g (€ Cy(R®) such that the support of f and g is contained
in || < r*. Then, the solution v may be written as

u=R,+ Fy,
where F, is the free space solution with the same initial data as u and
Fo=0  for ||t —a,

while Ry has compact support of at most |x| < a, + b, at t = b,, and is
a solution of problem (0.1) for t > b,.
Furthermore, we have

E(R,; o0,t,0) < 4E(%; 00, 0,0) , t>0.

Here ay and b, are the number defined by (2.3) and (2.4), respectively,
and E(;,,,) is the notation introduced in §1.

Proof. 1Itis clear that F, = 0 for || <t — a, (a, = 7*) by Huyghen’s
principle. Hence, by the definition of b,, it follows that for ¢ > b,, F,
=0 in {z||z| < g(®)}, 9(t) = (¢ + p)*, so that F, is a solution of problem
(0.1) for £ > b,. Since u is a solution of problem (0.1), R, is also a
solution for ¢ > b,. Furthermore, by the argument of the dependence
of domain®, it is easily seen that R, has compact support of at most
| < ay + b, at t = b,. Finally we have

» The equation g(tf) =t + y* has no root in ¢ >0 since y > 1. This means that
the forward cone with bottom {0} X {x ||| <7<} does not intersect the support of b(t,x).
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E(Ry; 0,t,0) < 2(E(u; ,t,0) + E(F,; «,t,0)) < 4E(u; ,0,0),

since F, is the free space solution with the same initial data as u and
since E(#; «,t,0) < E(u; «,0,0).

LEMMA 2.4. Let {T:}oo {Silieo {@r}izo and {b };, be the sequences
defined above and let B, and F, be as in Lemma 2.3. Then, we can
construct {R.}r., and {F}y., with the following properties:

(@) Riy,=RE,+Fy, for t > Sy;
(b) F, is the free space solution with the same initial dota as RB,_, at
t=3=S,, and

F,=0 for |z| <t — 8, —a;;

(¢) R, is a solution of problem (0.1) for t > S, + b,, and has compact
support of at most |z| < a, + b, at t =S, + b;.
(d E@®;; 00,0,8; + b)) <4AER;_;; ap + 204, Ty — byry Sy + biy).

Proof. First, we consider the case of ¥ = 1. Let F, be the free
space solution with the same initial data as R, at ¢ = S(S, =T,). We
continue F, as F, = R, for t < S,. Then, [JF, = 0 in the domain exterior
to {({,2)|0 <t < 8,,|z| < g(®)}. We apply Huyghen’s principle to F, in
this domain. Let (¢,x) be a point with |¢| <% — S, — @, Then, the
backward cone with vertex at (¢, ) does not intersect {(¢,2)]|0 <t < S,
2| < g(®)}, and intersect the plane ¢ = b, outside the sphere |z| =S,
+a, — by (=T, + a, — by) (see Fig. 1). By (2.6) in Lemma 2.2, T, 4 a,
— by > a, + b, and the support of R, at ¢ = b, is contained in |z]| < q,
4 by by Lemma 2.3. Thus, we conclude that F', = 0 for |¢| <t — S, — a,.
Therefore, by the definition of b, F;, =0 in |x| < g(f) for t > S, + b,.
This implies that R, is a solution of problem (0.1) for ¢ > S, + b,.
Similarly to the proof of Lemma 2.3, it is easily seen by the argument
of the dependence of domain that R, has compact support of at most
2| < a, + b, at t =8, + b,.

It remains to prove the property (d). By property (¢) and the
standard method of energy estimate®, we obtain

ER,; ,0,8,+ b) = E(R,; a, + 1,0, S; + by
< 2(E(F;0,+ 0,0,8, + b) + E(Ry; 0, + b,,0,8, + b))
< 4E(Ry; a; + 20, T, — by, by)

3 It is readily proved that E(Fi(Ro); a1 + b1,0,8;1 + b)) < E(F1(Ro); a1 + 2by, 0, Sy).
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where the last inequality follows from the fact that R, is a solution of
problem (0.1) for ¢ > b,. Following the above procedure and noting
(2.6) in Lemma 2.2, we can construct ¥, and R, by induction on k.

THEOREM 2.1. Suppose that Assumption (A) is satisfied and that
0<a<i$. Letubethe smooth solution of problem (0.1) with the initial
data f and g (e Cy(R®) such that the support of f and g is contained
m x| <y r>1, and let h,h >0, be fired. Then, there exist constants
6 and B such that

E(u; h,t,0) < 4exp (—60tH)E(w) ,
where B = (p + 1, p being the constant defined by (2.1), and

Efw) = [(7P + loPda
Proof. According to Lemma 2.4, we can write

w=>F,+R, fort>35,,

Jj=0

where

(2.8) F,=0 for || <t —S; —a;

and

(2.9) R, is a solution of problem (0.1) for ¢t > S, + b,.

Let t > S, + b, + h. Then, in view of (2.8) and the fact that b, > a,
(see, Lemma 2.1), v = R, in |z| < h, so that by (2.9) and Lemma 2.4,

E(’LL, h,t,O) S E(Rn; OO’t - Sn - bmSn + bn) S E(Rn; O0,0,S,, + bn)
S 4E(Rn—z; (1% + me Tn - bn—-l’ Sn—l + bn—l) .

By (2.5) in Lemma 2.2, a, + 2b, < (T, — b,_,). Hence, we can apply
Lemma 2.5 to E(R,_,; a, + 2b,,T, — b,_,,Ss_1 + b,_,) to obtain

E(Rn-l;a'n + an’ Tn - bn—u Sn—l + bn—l)
S C((Tn - bn—l)_zd(Rn-l)z
+ (Tn — by ) 'SEH ) E(R 15 00,0, 8,1 + basd) s

where d(R,_,) denotes the radius of the ball with center at the origin
containing the support of R,_, at ¢t = S,_, + b,_; and satisfies
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dR,.)<a,,+ b,y <M+ Da,_, < Cn<?*VT

by (¢) in Lemma 2.4 and Lemma 2.1. Furthermore, making use of (2.7)
in Lemma 2.4 and recalling the definition of p given by (2.1), we have

E(Rn—l; [42% + 2bm Tn - bn~17 Sn—x + bn—l)
< CT P E(R, 15 00,0, 8, + byy)

for C independent of n. We repeat this procedure and using Lemma
2.8, we finally have

2.10) E(u; h,t,0) < (CT*")"E(R,; 0, 0,b) < 4 exp (—nd)E(w) ,

where we take 7T, noting that «@ + 8 <1, so large that —4 =
log (CT*®**»-1) < (0. Thus, for given ¢ > 0, we choose the maximal inte-
ger n such that ¢t > S, + b, + k. Then, there exists a constant C(T)
such that » > C(T)t*, g = (p + 1™'. This, together with (2.10), completes
the proof.

Remark. 1f, in addition to (i) ~ (iii) in Assumption (A), we assume
that

b, @) < CQA + [z, >0,
then Theorem 2.1 holds for « <1 with =@+ DL p>al —a)'. In
fact, in this case we have
J': f (A + P E; P dedt + j: f (A + 1ot ; s dudt
< CEM®; ,0,8)
instead of Lemma 1.4, so that Lemma 1.5 holds with «(2 + §) replaced
by «.
§3. Decays for wave equations with potentials
We consider the following equation in three dimension space R*:
3.1) Uy, — Au + g, 2)u = 0

with initial data #(0,2) = f(x) and %,(0,2) = g(x) of compact support.
Here we make the following assumptions on q(¢, x).

AssSumMPTION (B). (1) q(t,x) is a smooth function with bounded
derivatives. (ii) q(¢,x) is non-negative. (iii) For each ¢ > 0,
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(8.2) the support of q(¢,x) is contained in {z||z|] < ({# + )}, 0 <a <1,
y > 1

(iv) q,(t,2)<0foreach¢>0. (v) Thereexistsa constant 8, 0 <pg,<1,
such that for ¢t > ¢, and || > R,, {, and R, being large enough,

3.3 q:(t, ) + Boa.(t,2) < 0.
(vi) There exists a constant K such that for ¢ > ¢,

3.4) mmwggﬂ

The constants 5, ¢, B, and K are used with the meaning ascribed here
throughout this section.

As in §1, let s,s > 0, be fixed and we consider the following equa-
tion :

(8.5) Vet 8) — Aot 8) + q(t; St s) = 0

with initial data ¥(0; s) and v,(0; s) of compact support, where q(¢;s)
= q(t + s, x), and by (3.2)

(3.6) the support of ¢(f;s) is contained in {z||x| < (¢t + s + )*}. Fur-
thermore, by (3.4)

K

fort >t, —s.
t+ s

3.7 [q,(t;8)| <

We begin with the following identity.

LEMMA 3.1 (cf. [3], Lemma 1). Let u(t, ) and &(r), r = |x|, be smooth
functions and let y,(x) = ¢(r) Li . Let B, B> 0, be a constant. Then,
r

e — g5 + qW2u, + 2Bgam; + Pract) = Xy(u; t) +V-Y(w) + Z(w) ,
where
X(u; t) = (u + |Vul + qu’) + u,2Bxsu; + Bsst)
Y,(w) = —u,;Qu, + 2Bs + Brat) + PL(Vuf — uf + qu?) + gmu’"}

Z(u) = 2By um; — —gxﬁ“uz — QU — By’ .
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Furthermore, using the notation

w; = {(ru; + l(Cr(r) + ZC(M)ffiu and w, = wj-ﬁ
2 r r

we can write X(u;t) as follows:
X(u;t) = S01(u) + S02(u) + Sos(u) + $04(u) + ?5(“) ’
where

o(u) = 1 — P; + [Ful) + qu?
e(w) = B — )|V uf
(W) = pu; + |w* + 2w,u,)

o) = —gr-(m)(c,(r) + %C(T))—fjuz)
o) = %(c,w + 2C(7“)<C"(r) + %c,(r)))uz .

Proof. The proof is elementary, so we omit it.

LEMMA 3.2. Let v(t) =v(t;s) be a smooth solution of problem
(8.5). Then, there exists constants C and t,, t, > t,, such that for s >1t,
and T > 0,

Ew; o0, T,s) < CE®; o0,0,5)
and
LT f A + M widedt < CEWw; 0,0, s)
where 0 < <1 and
Ew;h,T,s) = Jm@ WT; 8 + [Po(T; OF + a(T; Hv(T; 8))dx

for 0 < h < co.

Proof. Let B, be the constant introduced in Assumption (B) and
let =B, +¢6¢>0. We take ¢ so small that 0 <g<1. We use Lemma
31 with (M =1—-QA+77°%0<§<1,qg=q(t;s) and B defined above.
Then, following the same method as in the proof of Lemma 2.4, we have

(3.8) jX(v; Tydx + j: j Z(w)dedt = j X(v: 0)d .
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We claim that there exists constants C, and ¢, such that for
s>t =1,

3.9) gxim + q,(t;8) + L. (t;8) < —C\(L + 7r)*°2.

Indeed, by our choice of {(r) and the definition of B, pt(r) > B, for
r >R, > R,. Hence, this, together with (3.3) and the non-positivity of
q,(t;s) ((iv) of Assumption (B)), implies that for » > R,

(3.10) q,(t; 9 + pL(ra.(t; ) < q.(t;8) + Ba,(t;8) <0.

On the other hand, by (1.10) and (3.4) and again by the non-positivity
of ¢,

K
t+ s

’

-gixw, + ot 8) + B 9 < —ga(l A+ 4

so that for s > ¢, (large enough)

g—xm, + q,(t; 9) + L. (E;8) < —C,

in » < R,, which, together with (3.10) and (1.10), gives (38.9). Therefore,
by (8.9) and (1.8), we obtain

(3.11) f X(; Tde + CJ:I(I + ) ntdedt < f X(w; 0)da .

We recall the expression of X(v; T) in Lemma 38.1. Then, for our
choice of {(7), ps(v) > 0, so that by the condition 0 < <1 and 0 < ()
<1

(3.12) jX(v; T)dz > CEw; o, T, s)

for C; > 0. Furthermore, by the Poincaré inequality, it is] easily seen
that

IX(v; 0)dz < CE®: ©,0,s) .

This completes the proof.
We use the following identity similar to (1.6) for the proof of the
next lemma:
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(W — uy; + qu((r® + tDu, + 2tru, + 2tu)

(8.13) . ~ ~
=Fw;t)+V-Gw) + Hw) ,

where
Fust) = F(u; 8) + 30* + t)qu?
G,(w) = G,(w) + tqu,
Hw) = —G0* + t9q, + 2tq + trg)u

and F(u;t) and G,(u) are as in Lemma 1.3.

LEMMA 3.3. Let v(t) = v(t; s) be a smooth solution of problem (8.5)
and let t, be as in Lemma 3.2. Let o« <4 and let 6 be so small that
a(@ + 0) < 1. Then there exists a constant C such that for s > t, and
T>1

Ew; T, T,s) < C(T-dw(0; 8))* + T-Y(T + 8)**)E(w; 0,0,s) ,

where d(v(0; s)) denotes the radius of the ball with center at the origin
containing the support of v(0; s) and E(;,,) is the notation introduced
wn Lemma 3.2.

Proof. Integrating the identity (3.13) with w=v(;s) and ¢
= q(t;s) and using (3.7) and Lemma 3.2, we obtain in the same way
as in the proof of Lemma 1.5 that

TE@w; 3T, T, s) < Cd@(0; 8))? + 8 + T(T + 8)***")E®; 0,0, 5) .
The conclusion easily follows from the above estimate.

LEMMA 8.4. Let u be the solution of problem (3.1) with the initial
data f and g (e Cy(R®) such that the support of f and g is contained
in |x) < y*. Then, the solution uw may be written as

’LL=R0+F0,

where R, and F, have the same properties as in Lemma 2.3. Further-
more,

E(R,; 00,t,0) < CHE(u; 00,0,0) .

Proof. The proof is the same as that of Lemma 2.3 and the last
assertion is easily verified.

LEMMA 3.5. Let {T.}-0, {Si}izor {@s}i=o and {b.}r-, be the sequences

https://doi.org/10.1017/5S002776300002167X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002167X

122 HIDEO TAMURA

defined in §2. Let R, and F, be as in Lemma 3.4. Then, we can con-
struct {R.}p., and {F .}, with properties (a), (b) and (¢) in Lemma 2.4
and (d") stated below.

@ ERy;00,0,8; + by) < 2ERy-; 0 + 206, T — bioyy Sy + bic)
+ ERe_y5a, + by T + by — by, Siem + bi0)

Proof. The construction of R, and F', with properties (a), (b) and
(c) is the same as in the proof of Lemma 2.4. We shall prove (d’). By
property (c), we have

ERy;2,0,8, + by) = E(Ry; ax + i, 0,8, + by)
< 2(E(Ry_,; 0 + b,0,S; + by)
+ E(Fy; a0 + ., 0,8, + b)) .
Since F';, is the free space solution for ¢ > S, with the same initial data

as R,_, at t = S; and since F, = 0 on the support of ¢(¢,z) at t =S,
+ by, (see (2.4),

E(Fk 50 + 04,0, 8 + bp) < E(Fk ;ar + 204, 0,S;)
= E(Rk—l 3@ + 20 Ty — by, Sy + biy) -
This completes the proof.

Let 0 <« <3} and let 6 be so small that (8 + d) <1. We fix p,
p >0, as follows:

(3.14) p=>a@B+ )1 — a8+

so that p > a(8 + d)(p + 1). Then, the main result of this section can
be stated as follows:

THEOREM 3.1. Suppose that Assumption (B) is satisfied and that
0<a<3 Let u be the solution of problem (3.1) with the initial data
f and g (e Cy(RY) such that the support of f and g is contained in
x| <y*. Let h,h>0, be fired. Then, there exist constants C,0 and B
such that

E(u; h,t,0) < Cexp (—0t)Ey(u) ,

1
+1

= j (0" + ISP + a(0, ») fHda.

where B = , D being the constant defined by (38.14), and Eo(u)
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Proof. The proof is done exactly in the same way as in the proof
of Theorem 2.1.

EXAMPLE. Let y(x) be a smooth function such that Cy* < y(x) < Cyr?,
r =|x|, and that y,(®) > Cyr and let ¢(s), 0 < s < oo, be a nonnegative
smooth function such that ¢(s) = 0 for s > 1 and that ¢,(s) < 0. Then,

consider the following function: q(¢,2) = go(?z:—’flf—x)—)—z—), 0<a<1,y>1.
7’ a

We can easily show that the function q(¢, x) satisfies Assumption (B).
Remark. If, in addition to Assumption (B), we assume that
q¢t, ) < CQA + 7r)?

for a constant C independent of ¢ and x, we easily see that the result
of Theorem 3.1 holds for 0 <« <1 with f=(p + 1), p = a1l — )"
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