LOCAL ENERGY DECAYS FOR WAVE EQUATIONS WITH TIME-DEPENDENT COEFFICIENTS

HIDEO TAMURA

§ 0. Introduction

We consider the decay of the local energy for the following equation in three dimension:

$$
\begin{gather*}
u_{t t}+b u_{t}-\Delta u=0 \tag{0.1}\\
u(0, x)=f(x) \quad \text { and } \quad u_{t}(0, x)=g(x) .
\end{gather*}
$$

Here we make the following assumption on $b=b(t, x)$:
ASSUMPTION (A). (i) $b(t, x)$ is a bounded smooth function. (ii) $b(t, x)$ is non-negative. (iii) For each $t \geq 0$,

$$
\begin{equation*}
\text { the support of } b(t, x) \text { is contained in }\left\{x \| x \mid \leq(t+\gamma)^{\alpha}\right\}, \tag{0.2}
\end{equation*}
$$

$$
0 \leq \alpha<1, \gamma>1
$$

(Throughout this paper the constants α and γ are used with the meaning ascribed here.)

The condition $0 \leq \alpha<1$ means that the support of $b(t, x)$ expands at a speed strictly less than the wave speed. Therefore, it is expected that the local energy for solutions of problem (0.1) with initial data of compact support decays rapidly as $t \rightarrow \infty$. The purpose of this paper is to give a partial answer to this problem.

The problem of the decay of the local energy for wave equations with time-dependent coefficients or with moving obstacles has been studied in Bloom and Kazarinoff [1], Cooper [2] and Cooper and Strauss [3], etc. In their works it has been assumed that coefficients are asymptotically stationary or that obstacles remain in a fixed bounded region for $t \geq 0$.

Now we shall state the main theorem.

Main Theorem. Suppose that Assumption (A) is satisfied and that $0 \leq \alpha<\frac{1}{2}$. Let u be a smooth solution of problem (0.1) with the initial data f and $g\left(\in C_{0}^{\infty}\left(R^{3}\right)\right)$ such that the support of f and g is contained in $|x|<\gamma^{\alpha}$. Then, there exist constants θ and $\beta, 0<\beta \leq 1$, such that the local energy for the solution u decays at the rate of $\exp \left(-\theta t^{8}\right)$ as $t \rightarrow \infty$.

The explicit expression of the constant β will be given in the proof of this theorem (§2).

Remark. The above result is valid for a weak solution with $f \in H^{1}\left(R^{3}\right)$ and $g \in L^{2}\left(R^{3}\right)$.

Next we consider the exterior problem with Dirichlet boundary conditions. Let \mathscr{E} be a domain exterior to a star-shaped bounded domain with smooth boundary and let u be a solution of the following equation:

$$
\begin{equation*}
u_{t t}+b u_{t}-\Delta u=0 \quad \text { in }(0, \infty) \times \mathscr{E} \tag{0.3}
\end{equation*}
$$

(0.4) $u(t, x)=0$ on $(0, \infty) \times \partial \mathscr{E}, \partial \mathscr{E}$ being the boundary of \mathscr{E}.

$$
\begin{equation*}
u(0, x)=f(x), \quad u_{t}(0, x)=g(x) \tag{0.5}
\end{equation*}
$$

Here $b(t, x)$ satisfies Assumption (A). Then the same result as Main Theorem holds. Since the proof for the exterior problem is done with a slight modification of the proof for the whole space problem, we consider only the whole space problem in this paper. The method presented here will be useful for the problem with expanding obstacles with time and details will be discussed in the next papere.

The proof of Main Theorem is done by a generalization of the method used in Morawetz [5]. In § 1 we show the uniform decay of order $t^{-\mu}, \mu>0$, and in §2 we prove Main Theorem. In $\S 3$ we show that our method can be applied to wave equations with potentials of a special form.

Finally we note the following facts: (a) The symbols C, C_{1}, C_{2}, \ldots are used to denote (unessential) positive constants which are not necessarily the same. (b) Integration with no domain attached is taken over the whole space. (c) We use the summation convention. (d) All the functions considered here are real-valued.

§1. Uniform decay

Let $s \geq 0$ be fixed and let $v(t ; s)$ be a smooth solution of the equation

$$
\begin{equation*}
v_{t t}+b(t ; s) v_{t}-v_{j j}=0 \tag{1.1}
\end{equation*}
$$

with the initial data $v(0 ; s)$ and $v_{t}(0 ; s)$ of compact support, where $v_{j j}=\Delta v, b(t ; s)=b(t+s, x), b(t, x)$ being the function in equation (0.1), and by (0.2)
the support of $b(t ; s)$ is contained in $\left\{x \| x \mid<(t+s+\gamma)^{\alpha}\right\}$ for each $t \geq 0$.

It is convenient to introduce the following notation:

$$
E(v ; h, T, s)=\int_{|x|<h}\left(\left|v_{t}(T ; s)\right|^{2}+|\nabla v(T ; s)|^{2}\right) d x
$$

for $0<h \leq \infty$.
Lemma 1.1. Let $v(t ; s)$ be a solution of problem (1.1). Then,

$$
\begin{equation*}
E(v ; \infty, T, s) \leq E(v ; \infty, 0, s) \tag{1.3}
\end{equation*}
$$

for each $T \geq 0$, and

$$
\begin{equation*}
\int_{0}^{\infty} \int b(t ; s)\left|v_{t}(t ; s)\right|^{2} d x d t \leq \frac{1}{2} E(v ; \infty, 0, s) \tag{1.4}
\end{equation*}
$$

Proof. We multiply the equation (1.1) by v_{t}. Then we have

$$
\frac{1}{2}\left(v_{t}^{2}\right)_{t}+b(t ; s) v_{t}^{2}-\left(v_{j} v_{t}\right)_{j}+\frac{1}{2}\left(v_{j}^{2}\right)_{t}=0
$$

Integrating this identity over $R^{3} \times(0, T)$, we easily obtain the conclusion.

We use the next identities.
Lemma 1.2 (cf. Strauss [6], Lemma 1). Let $\zeta(r)$ be a smooth function of $r=|x|$ and let $\chi_{i}=\zeta(r) \frac{x_{i}}{r}$. Then the equation

$$
\begin{equation*}
\left(u_{t t}+b u_{t}-u_{j j}\right)\left(2 \chi_{i} u_{i}+\chi_{i i} u\right)=X_{t}(u ; t)+\nabla \cdot Y(u)+Z(u)^{1)} \tag{1.5}
\end{equation*}
$$

holds, where

1) $X_{t}(u ; t)=\frac{\partial}{\partial t} X(u ; t)$ and $Y(u)=\left(Y_{1}(u), Y_{2}(u), Y_{3}(u)\right)$. The same notation will be used in what follows.

$$
\begin{aligned}
X(u ; t) & =u_{t}\left(2 \chi_{i} u_{i}+\chi_{i i} u\right) \\
Y_{j}(u) & =-u_{j}\left(2 \chi_{i} u_{i}+\chi_{i i} u\right)+\chi_{j}\left(|\nabla u|^{2}-u_{t}^{2}\right)+\frac{1}{2} \chi_{i i j} u^{2} \\
Z(u) & =2 \chi_{i j} u_{i} u_{j}-\frac{1}{2} \chi_{i i j j} u^{2}+2 b u_{t} \chi_{i} u_{i}+b u_{t} \chi_{i i} u .
\end{aligned}
$$

Lemma 1.3 (cf. Lax and Phillips [4], Appendix 3). The equation

$$
\begin{align*}
& \left(u_{t t}+b u_{t}-u_{j j}\right)\left(\left(r^{2}+t^{2}\right) u_{t}+2 t r u_{r}+2 t u\right) \tag{1.6}\\
& \quad=F_{t}(u ; t)+\nabla \cdot G(u)+H(u)
\end{align*}
$$

holds, where

$$
\begin{aligned}
F(u ; t)= & \frac{1}{2}\left(r^{2}+t^{2}\right)\left(|\nabla u|^{2}+u_{t}^{2}\right)+2 t r u_{r} u_{t}+2 t u_{t} u \\
& +r^{-2}\left(r^{2}+t^{2}\right)\left((\nabla u \cdot x) u+\frac{1}{2} u^{2}\right) \\
G_{j}(u)= & -u_{j}\left(\left(r^{2}+t^{2}\right) u_{t}+2 t r u_{r}+2 t u\right)+x_{j} t\left(|\nabla u|^{2}-u_{t}^{2}\right) \\
& -\frac{1}{2} r^{-2}\left(\left(r^{2}+t^{2}\right) u^{2}\right)_{t} x_{j} \\
H(u)= & \left(r^{2}+t^{2}\right) b u_{t}^{2}+2 t r b u_{t} u_{r}+2 t b u_{t} u,
\end{aligned}
$$

and $x=\left(x_{1}, x_{2}, x_{3}\right)$ is a position vector.
Lemma 1.4. Let $0<\delta \leq 1$ and let $v(t ; s)$ be a solution of problem (1.1). Then, there exists a constant C independent of T and s such that for $T \geq 1$,

$$
\begin{aligned}
\int_{0}^{T} \int(1+r)^{-1-\delta}\left|v_{r}(t ; s)\right|^{2} d x d t+ & \int_{0}^{T} \int(1+r)^{-3-\delta}|v(t ; s)|^{2} d x d t \\
& \leq C(T+s)^{\alpha(1+\delta)} E(v ; \infty, 0, s),
\end{aligned}
$$

where the constant C depends on δ and the bound of $b(t, x)$.
Proof. We use Lemma 1.2 with $\zeta(r)=1-(1+r)^{-\delta}$. Then we note the following facts:

$$
\begin{equation*}
\chi_{i j} v_{i} v_{j}=\frac{\zeta(r)}{r}\left(|\nabla v|^{2}-v_{r}^{2}\right)+\zeta_{r}(r) v_{r}^{2} \geq \delta(1+r)^{-1-\bar{\delta}} v_{r}^{2} . \tag{1.7}
\end{equation*}
$$

$$
\begin{gather*}
\chi_{i i j}=\left(\zeta_{r r}(r)+\frac{2}{r} \zeta_{r}(r)-\frac{2}{r^{2}} \zeta(r)\right) \frac{x_{j}}{r} . \tag{1.9}\\
\chi_{i i j j}=\zeta_{r r r}(r)+\frac{4}{r} \zeta_{r r}(r) \leq-\delta(1+\delta)(1+r)^{-3-\bar{o}} \tag{1.10}
\end{gather*}
$$

We integrate the identity (1.5) with $u=v(t ; s)$ and $b=b(t ; s)$ over
$\{x||x| \geq \varepsilon\} \times(0, T), \varepsilon, \varepsilon>0$, being arbitrary (small enough), we have

$$
\begin{aligned}
\int_{|x|>e}(X(v ; T)-X(v ; 0)) d x & +\int_{0}^{T} \int_{|x|=e}\left(Y_{j}(v) \cdot n_{j}\right) d S d t \\
& +\int_{0}^{T} \int_{|x|>e} Z(v) d x d t=0,
\end{aligned}
$$

where $n=\left(n_{1}, n_{2}, n_{3}\right)$ denotes the unit exterior normal to the domain $\{x||x|>\varepsilon\}$. By virtue of (1.7) and (1.9), the second term tends to zero as $\varepsilon \rightarrow 0$, and taking account of (1.8) and (1.10), we obtain

$$
\begin{aligned}
& \int_{0}^{T} 2 \delta(1+r)^{-1-\delta} v_{r}^{2} d x d t+\frac{1}{2} \int_{0}^{T} \int \delta(1+\delta)(1+r)^{-3-\delta} v^{2} d x d t \\
& \leq \int|X(v ; T)| d x+\int|X(v ; 0)| d x-2 \int_{0}^{T} \int b(t ; s) \zeta(r) v_{t} v_{r} d x d t \\
& \quad-\int_{0}^{T} \int b(t ; s)\left(\zeta_{r}(r)+\frac{2}{r} \zeta(r)\right) v_{t} v d x d t,
\end{aligned}
$$

since $\chi_{i} v_{i}=\zeta(r) v_{r}$ and $\chi_{i i}=\zeta_{r}(r)+\frac{2}{r} \zeta(r)$. Furthermore, since $\left|\chi_{i i}\right|$ $\leq C_{1}(1+r)^{-1}$ for some C_{1} by (1.7), we make use of Lemma 1.1 and Poincaré's inequality to obtain

$$
\int|X(v ; T)| d x \leq C_{2} E(v ; \infty, 0, s)
$$

with C_{2} independent of T, s and v. And the last two terms are dealt with by the Schwarz inequality, so that

$$
\begin{align*}
& \int_{0}^{T} \int(1+r)^{-1-\delta} v_{r}^{2} d x d t+\int_{0}^{T} \int(1+r)^{-3-\delta} v^{2} d x d t \\
& \quad \leq C_{3} E(v, \infty, 0, s)+C_{4} \int_{0}^{T} \int(1+r)^{1+i} b(t ; s) v_{t}^{2} d x d t \tag{1.11}
\end{align*}
$$

By (1.2),

$$
(1+r)^{1+\delta} \leq C_{5}(T+s)^{\alpha(1+\delta)}, \quad T \geq 1
$$

on the support of $b(t, s), 0 \leq t \leq T$. Hence, combining (1.11) with Lemma 1.1, we conclude the proof.

The next lemma gives the uniform decay of the local energy.
Lemma 1.5. Let $v(t ; s)$ be a solution of problem (1.1). Then, there exists a constant C independent of T and s such that for $T \geq 1$,

$$
E\left(v ; \frac{1}{2} T, T, s\right) \leq C\left(T^{-2} d(v(0 ; s))^{2}+T^{-1}(T+s)^{\alpha(2+\delta)}\right) E(v ; \infty, 0, s)
$$

where $d(u)$ denotes the radius of the ball with center at the origin containing the support of u.

Proof. We make use of Lemma 1.3 with $u=v(t ; s)$ and $b=b(t ; s)$. Integrating the identity (1.6) over $R^{3} \times(0, T)$, we have

$$
\int F(v ; T) d x+\int_{0}^{T} \int H(v) d x d t=\int F(v ; 0) d x .
$$

Since $b(t ; s)\left(r^{2}+t^{2}\right) v_{t}^{2} \geq 0$, and since

$$
\int F(v ; 0) d x \leq C_{1} d(v(0 ; s))^{2} E(v ; \infty, 0, s)
$$

by Poincaré's inequality, it follows that

$$
\begin{aligned}
\int F(v ; T) d x \leq & C_{1} d(v(0 ; s))^{2} E(v ; \infty, 0, s) \\
& -2 \int_{0}^{T} \int t b(t ; s)\left(r v_{t} v_{r}+v_{t} v\right) d x d t
\end{aligned}
$$

By use of the fact that $(1+r) \leq C_{2}(T+s)^{\alpha}, T \geq 1$, on the support of $b(t ; s), 0 \leq t \leq T$, the last term is majorized by

$$
C_{3} T(T+s)^{\alpha} \int_{0}^{T} \int\left((1+r)^{1+\delta} b(t ; s) v_{t}^{2}+(1+r)^{-1-\delta} v_{r}^{2}+(1+r)^{-3-\delta} v^{2}\right) d x d t
$$

Hence, in view of Lemma 1.4, we have

$$
\int F(v ; T) d x \leq C_{4}\left(d(v(0 ; s))^{2}+T(T+s)^{\alpha(2+\delta)}\right) E(v ; \infty, 0, s) .
$$

On the other hand, we obtain that $F(v ; T)$ is non-negative and that

$$
F(v ; T) \geq \frac{1}{8} T^{2}\left(v_{t}^{2}+|\nabla v|^{2}+\left(r^{-2} v^{2} x_{j}\right)_{j}\right)
$$

for $|x| \leq \frac{T}{2}$ (see pp. 264, [4]), so that

$$
\int F(v ; T) d x \geq \int_{|x| S T / 2} F(v ; T) d x \geq \frac{1}{8} T^{2} E\left(v ; \frac{1}{2} T, T, s\right) .
$$

Thus, we conclude the proof.

§ 2. Proof of Main Theorem

Let $0 \leq \alpha<\frac{1}{2}$ and $\delta, 0<\delta \leq 1$, be so small that $\alpha(2+\delta)<1$. Let

$$
\begin{equation*}
p \geq \alpha(2+\delta)(1-\alpha(2+\delta))^{-1} \tag{2.1}
\end{equation*}
$$

so that $p \geq \alpha(2+\delta)(p+1)$.
Let $\left\{T_{k}\right\}_{k=0}^{\infty}$ be the sequence defined by

$$
T_{k}=k^{p} T
$$

T being large enough (determined below, Lemma 2.2), and let

$$
S_{k}=\sum_{m=0}^{k} T_{m}
$$

Fig. 1
Obviously,

$$
\begin{equation*}
S_{k} \leq C_{p} k^{p+1} T, \quad k \geq 0, \tag{2.2}
\end{equation*}
$$

for C_{p} independent of k. We put $g(t)=(t+\gamma)^{\alpha}, \gamma>1$, and define $\left\{a_{k}\right\}_{k=0}^{\infty}$, $a_{k}>1$, by

$$
\begin{equation*}
a_{k}=g\left(S_{k}\right), \quad a_{0}=\gamma^{\alpha} \tag{2.3}
\end{equation*}
$$

Furthermore we define the sequence $\left\{b_{k}\right\}_{k=0}^{\infty}, b_{k}>0$, as follows:
(2.4) b_{k} is a (unique) root of the equation $t-a_{k}=g\left(t+S_{k}\right)$.

Lemma 2.1. There exists a constant M independent of k such that for $k>0$

$$
a_{k} \leq b_{k} \leq M a_{k}
$$

Proof. The conclusion readily follows from Fig. 1.
Lemma 2.2. Let $T_{k}, \dot{S}_{k}, a_{k}$ and b_{k} be as above. Then, there exists a constant T (large enough) independent of $k \geq 1$ such that

$$
\begin{gather*}
a_{k}+2 b_{k}<\frac{1}{2}\left(T_{k}-b_{k-1}\right) \tag{2.5}\\
a_{k-1}+b_{k-1}<T_{k}+a_{k}-b_{k-1} \tag{2.6}\\
\frac{1}{2} k^{p} T<T_{k}-b_{k-1} . \tag{2.7}
\end{gather*}
$$

Proof. For the proof of (2.5), in virtue of Lemma 2.1 and the monotone increasingness of a_{k}, it suffices to show that $T_{k}>(5 M+2) a_{k}$. By (2.2) and (2.3), $a_{k} \leq C_{1} k^{\alpha(p+1)} T^{\alpha}$ for C_{1} independent of $k \geq 1$. Since $\alpha(p+1)<p$ by (2.1), we can choose T independently of $k \geq 1$ so that $k^{p} T>C_{1}(5 M+2) k^{\alpha(p+1)} T^{\alpha}$. This implies (2.5). (2.6) and (2.7) are proved similarly.

Now, we shall prove Main Theorem. To this end we prepare several lemmas.

Lemma 2.3. Let u be the solution of problem (0.1) with the initial data f and $g\left(\in C_{0}^{\infty}\left(R^{3}\right)\right)$ such that the support of f and g is contained in $|x| \leq \gamma^{\alpha}$. Then, the solution u may be written as

$$
u=R_{0}+F_{0},
$$

where F_{0} is the free space solution with the same initial data as u and

$$
F_{0}=0 \quad \text { for }|x| \leq t-a_{0},
$$

while R_{0} has compact support of at most $|x| \leq a_{0}+b_{0}$ at $t=b_{0}$, and is a solution of problem (0.1) for $t>b_{0}$.

Furthermore, we have

$$
E\left(R_{0} ; \infty, t, 0\right) \leq 4 E(u ; \infty, 0,0), \quad t \geq 0
$$

Here a_{0} and b_{0} are the number defined by (2.3) and (2.4), respectively, and $E(;,,$,$) is the notation introduced in \S 1$.

Proof. It is clear that $F_{0}=0$ for $|x| \leq t-a_{0}\left(a_{0}=\gamma^{\alpha}\right)$ by Huyghen's principle. Hence, by the definition of b_{0}, it follows that for $t>b_{0}, F_{0}$ $=0$ in $\left\{x||x| \leq g(t)\}, g(t)=(t+\gamma)^{\alpha}\right.$, so that F_{0} is a solution of problem (0.1) for $t>b_{0}$. Since u is a solution of problem (0.1), R_{0} is also a solution for $t>b_{0}$. Furthermore, by the argument of the dependence of domain ${ }^{2)}$, it is easily seen that R_{0} has compact support of at most $|x| \leq a_{0}+b_{0}$ at $t=b_{0}$. Finally we have

[^0]$$
E\left(R_{0} ; \infty, t, 0\right) \leq 2\left(E(u ; \infty, t, 0)+E\left(F_{0} ; \infty, t, 0\right)\right) \leq 4 E(u ; \infty, 0,0)
$$
since F_{0} is the free space solution with the same initial data as u and since $E(u ; \infty, t, 0) \leq E(u ; \infty, 0,0)$.

LEMMA 2.4. Let $\left\{T_{k}\right\}_{k=0}^{\infty},\left\{S_{k}\right\}_{k=0}^{\infty},\left\{a_{k}\right\}_{k=0}^{\infty}$ and $\left\{b_{k}\right\}_{k=0}^{\infty}$ be the sequences defined above and let R_{0} and F_{0} be as in Lemma 2.3. Then, we can construct $\left\{R_{k}\right\}_{k=1}^{\infty}$ and $\left\{F_{k}\right\}_{k=1}^{\infty}$ with the following properties:
(a) $R_{k-1}=R_{k}+F_{k}$, for $t \geq S_{k}$;
(b) F_{k} is the free space solution with the same initial data as R_{k-1} at $t=S_{k}$, and

$$
F_{k}=0 \quad \text { for }|x|<t-S_{k}-a_{k}
$$

(c) R_{k} is a solution of problem (0.1) for $t>S_{k}+b_{k}$, and has compact support of at most $|x| \leq a_{k}+b_{k}$ at $t=S_{k}+b_{k}$.
(d) $E\left(R_{k} ; \infty, 0, S_{k}+b_{k}\right) \leq 4 E\left(R_{k-1} ; a_{k}+2 b_{k}, T_{k}-b_{k-1}, S_{k-1}+b_{k-1}\right)$.

Proof. First, we consider the case of $k=1$. Let F_{1} be the free space solution with the same initial data as R_{0} at $t=S_{1}\left(S_{1}=T_{1}\right)$. We continue F_{1} as $F_{1}=R_{0}$ for $t<S_{1}$. Then, $\square F_{1}=0$ in the domain exterior to $\left\{(t, x)\left|0<t \leq S_{1},|x| \leq g(t)\right\}\right.$. We apply Huyghen's principle to F_{1} in this domain. Let (t, x) be a point with $|x|<t-S_{1}-a_{1}$. Then, the backward cone with vertex at (t, x) does not intersect $\left\{(t, x) \mid 0<t \leq S_{1}\right.$, $|x| \leq g(t)\}$, and intersect the plane $t=b_{0}$ outside the sphere $|x|=S_{1}$ $+a_{1}-b_{0}\left(=T_{1}+a_{1}-b_{0}\right.$) (see Fig. 1). By (2.6) in Lemma 2.2, $T_{1}+a_{1}$ $-b_{0}>a_{0}+b_{0}$, and the support of R_{0} at $t=b_{0}$ is contained in $|x| \leq a_{0}$ $+b_{0}$ by Lemma 2.3. Thus, we conclude that $F_{1}=0$ for $|x|<t-S_{1}-a_{1}$. Therefore, by the definition of $b_{1}, F_{1}=0$ in $|x| \leq g(t)$ for $t \geq S_{1}+b_{1}$. This implies that R_{1} is a solution of problem (0.1) for $t>S_{1}+b_{1}$. Similarly to the proof of Lemma 2.3, it is easily seen by the argument of the dependence of domain that R_{1} has compact support of at most $|x| \leq a_{1}+b_{1}$ at $t=S_{1}+b_{1}$.

It remains to prove the property (d). By property (c) and the standard method of energy estimate ${ }^{3}$, we obtain

$$
\begin{aligned}
E\left(R_{1} ; \infty, 0, S_{1}+b_{1}\right) & =E\left(R_{1} ; a_{1}+b_{1}, 0, S_{1}+b_{1}\right) \\
& \leq 2\left(E\left(F_{1} ; a_{1}+b_{1}, 0, S_{1}+b_{1}\right)+E\left(R_{0} ; a_{1}+b_{1}, 0, S_{1}+b_{1}\right)\right) \\
& \leq 4 E\left(R_{0} ; a_{1}+2 b_{1}, T_{1}-b_{0}, b_{0}\right)
\end{aligned}
$$

[^1]where the last inequality follows from the fact that R_{0} is a solution of problem (0.1) for $t>b_{0}$. Following the above procedure and noting (2.6) in Lemma 2.2, we can construct F_{k} and R_{k} by induction on k.

Theorem 2.1. Suppose that Assumption (A) is satisfied and that $0 \leq \alpha<\frac{1}{2}$. Let u be the smooth solution of problem (0.1) with the initial data f and $g\left(\in C_{0}^{\infty}\left(R^{3}\right)\right)$ such that the support of f and g is contained in $|x| \leq \gamma^{\alpha}, \gamma>1$, and let $h, h>0$, be fixed. Then, there exist constants θ and β such that

$$
E(u ; h, t, 0) \leq 4 \exp \left(-\theta t^{\beta}\right) E_{0}(u),
$$

where $\beta=(p+1)^{-1}, p$ being the constant defined by (2.1), and

$$
E_{0}(u)=\int\left(|\nabla f|^{2}+|g|^{2}\right) d x .
$$

Proof. According to Lemma 2.4, we can write

$$
u=\sum_{j=0}^{n} F_{j}+R_{n} \quad \text { for } t>S_{n}
$$

where

$$
\begin{equation*}
F_{j}=0 \quad \text { for }|x| \leq t-S_{j}-a_{j} \tag{2.8}
\end{equation*}
$$

and
(2.9) $\quad R_{n}$ is a solution of problem (0.1) for $t>S_{n}+b_{n}$.

Let $t>S_{n}+b_{n}+h$. Then, in view of (2.8) and the fact that $b_{n} \geq a_{n}$ (see, Lemma 2.1), $u=R_{n}$ in $|x| \leq h$, so that by (2.9) and Lemma 2.4,

$$
\begin{aligned}
E(u ; h, t, 0) & \leq E\left(R_{n} ; \infty, t-S_{n}-b_{n}, S_{n}+b_{n}\right) \leq E\left(R_{n} ; \infty, 0, S_{n}+b_{n}\right) \\
& \leq 4 E\left(R_{n-1} ; a_{n}+2 b_{n}, T_{n}-b_{n-1}, S_{n-1}+b_{n-1}\right)
\end{aligned}
$$

By (2.5) in Lemma 2.2, $a_{n}+2 b_{n}<\frac{1}{2}\left(T_{n}-b_{n-1}\right)$. Hence, we can apply Lemma 2.5 to $E\left(R_{n-1} ; a_{n}+2 b_{n}, T_{n}-b_{n-1}, S_{n-1}+b_{n-1}\right)$ to obtain

$$
\begin{aligned}
E\left(R_{n-1} ;\right. & \left.a_{n}+2 b_{n}, T_{n}-b_{n-1}, S_{n-1}+b_{n-1}\right) \\
\leq & C\left(\left(T_{n}-b_{n-1}\right)^{-2} d\left(R_{n-1}\right)^{2}\right. \\
& \left.+\left(T_{n}-b_{n-1}\right)^{-1} S_{n}^{\alpha(2+\delta)}\right) E\left(R_{n-1} ; \infty, 0, S_{n-1}+b_{n-1}\right),
\end{aligned}
$$

where $d\left(R_{n-1}\right)$ denotes the radius of the ball with center at the origin containing the support of R_{n-1} at $t=S_{n-1}+b_{n-1}$ and satisfies

$$
d\left(R_{n-1}\right) \leq a_{n-1}+b_{n-1} \leq(M+1) a_{n-1} \leq C n^{\alpha(p+1)} T^{\alpha}
$$

by (c) in Lemma 2.4 and Lemma 2.1. Furthermore, making use of (2.7) in Lemma 2.4 and recalling the definition of p given by (2.1), we have

$$
\begin{aligned}
& E\left(R_{n-1} ; a_{n}+2 b_{n}, T_{n}-b_{n-1}, S_{n-1}+b_{n-1}\right) \\
& \quad \leq C T^{\alpha(2+\delta)-1} E\left(R_{n-1} ; \infty, 0, S_{n-1}+b_{n-1}\right)
\end{aligned}
$$

for C independent of n. We repeat this procedure and using Lemma 2.3, we finally have

$$
\begin{equation*}
E(u ; h, t, 0) \leq\left(C T^{\alpha(2+\delta)-1}\right)^{n} E\left(R_{0} ; \infty, 0, b_{0}\right) \leq 4 \exp (-n \tilde{\theta}) E_{0}(u) \tag{2.10}
\end{equation*}
$$

where we take T, noting that $\alpha(2+\delta)<1$, so large that $-\tilde{\theta}=$ $\log \left(C T^{\alpha(2+\delta)-1}\right)<0$. Thus, for given $t>0$, we choose the maximal integer n such that $t>S_{n}+b_{n}+h$. Then, there exists a constant $C(T)$ such that $n \geq C(T) t^{\beta}, \beta=(p+1)^{-1}$. This, together with (2.10), completes the proof.

Remark. If, in addition to (i) \sim (iii) in Assumption (A), we assume that

$$
b(t, x) \leq C(1+|x|)^{-1-s}, \quad \varepsilon>0,
$$

then Theorem 2.1 holds for $\alpha<1$ with $\beta=(p+1)^{-1}, p \geq \alpha(1-\alpha)^{-1}$. In fact, in this case we have

$$
\begin{aligned}
& \int_{0}^{\infty} \int(1+r)^{-1-\delta}\left|v_{r}(t ; s)\right|^{2} d x d t+\int_{0}^{\infty} \int(1+r)^{-3-\delta}|v(t ; s)|^{2} d x d t \\
& \quad \leq C E(v ; \infty, 0, s)
\end{aligned}
$$

instead of Lemma 1.4, so that Lemma 1.5 holds with $\alpha(2+\delta)$ replaced by α.

§3. Decays for wave equations with potentials

We consider the following equation in three dimension space R^{3} :

$$
\begin{equation*}
u_{t t}-\Delta u+q(t, x) u=0 \tag{3.1}
\end{equation*}
$$

with initial data $u(0, x)=f(x)$ and $u_{t}(0, x)=g(x)$ of compact support. Here we make the following assumptions on $q(t, x)$.

ASSUMPTION (B). (i) $q(t, x)$ is a smooth function with bounded derivatives. (ii) $q(t, x)$ is non-negative. (iii) For each $t \geq 0$,
(3.2) the support of $q(t, x)$ is contained in $\left\{x\left||x| \leq(t+\gamma)^{\alpha}\right\}, 0 \leq \alpha<1\right.$, $r>1$.
(iv) $q_{r}(t, x) \leq 0$ for each $t \geq 0$. (v) There exists a constant $\beta_{0}, 0<\beta_{0}<1$, such that for $t \geq t_{0}$ and $|x| \geq R_{0}, t_{0}$ and R_{0} being large enough,

$$
\begin{equation*}
q_{t}(t, x)+\beta_{0} q_{r}(t, x) \leq 0 . \tag{3.3}
\end{equation*}
$$

(vi) There exists a constant K such that for $t \geq t_{0}$

$$
\begin{equation*}
\left|q_{t}(t, x)\right| \leq \frac{K}{t} \tag{3.4}
\end{equation*}
$$

The constants β_{0}, t_{0}, R_{0} and K are used with the meaning ascribed here throughout this section.

As in $\S 1$, let $s, s \geq 0$, be fixed and we consider the following equation :

$$
\begin{equation*}
v_{t t}(t ; s)-\Delta v(t ; s)+q(t ; s) v(t ; s)=0 \tag{3.5}
\end{equation*}
$$

with initial data $v(0 ; s)$ and $v_{t}(0 ; s)$ of compact support, where $q(t ; s)$ $=q(t+s, x)$, and by (3.2)
(3.6) the support of $q(t ; s)$ is contained in $\left\{x\left||x| \leq(t+s+\gamma)^{\alpha}\right\}\right.$. Furthermore, by (3.4)

$$
\begin{equation*}
\left|q_{t}(t ; s)\right| \leq \frac{K}{t+s} \quad \text { for } t \geq t_{0}-s \tag{3.7}
\end{equation*}
$$

We begin with the following identity.
Lemma 3.1 (cf. [3], Lemma 1). Let $u(t, x)$ and $\zeta(r), r=|x|$, be smooth functions and let $\chi_{i}(x)=\zeta(r) \frac{x_{i}}{r}$. Let $\beta, \beta>0$, be a constant. Then,

$$
\left(u_{t t}-u_{j j}+q u\right)\left(2 u_{t}+2 \beta \chi_{i} u_{i}+\beta \chi_{i i} u\right)=X_{t}(u ; t)+\nabla \cdot Y(u)+Z(u),
$$

where

$$
\begin{aligned}
X(u ; t) & =\left(u_{t}^{2}+|\nabla u|^{2}+q u^{2}\right)+u_{t}\left(2 \beta \chi_{i} u_{i}+\beta \chi_{i i} u\right) \\
Y_{j}(u) & =-u_{j}\left(2 u_{t}+2 \beta \chi_{i} u_{i}+\beta \chi_{i i} u\right)+\beta \chi_{j}\left(|\nabla u|^{2}-u_{t}^{2}+q u^{2}\right)+\frac{\beta}{2} \chi_{i i j} u^{2} \\
Z(u) & =2 \beta \chi_{i j} u_{i} u_{j}-\frac{\beta}{2} \chi_{i i j j} u^{2}-q_{t} u^{2}-\beta q_{i} \chi_{i} u^{2} .
\end{aligned}
$$

Furthermore, using the notation

$$
w_{j}=\zeta(r) u_{j}+\frac{1}{2}\left(\zeta_{r}(r)+\frac{2}{r} \zeta(r)\right) \frac{x_{j}}{r} u \quad \text { and } \quad w_{r}=w_{j} \cdot \frac{x_{j}}{r}
$$

we can write $X(u ; t)$ as follows:

$$
X(u ; t)=\varphi_{1}(u)+\varphi_{2}(u)+\varphi_{3}(u)+\varphi_{4}(u)+\varphi_{5}(u),
$$

where

$$
\begin{aligned}
& \varphi_{1}(u)=(1-\beta)\left(u_{t}^{2}+|\nabla u|^{2}\right)+q u^{2} \\
& \varphi_{2}(u)=\beta\left(1-\zeta^{2}\right)|\nabla u|^{2} \\
& \varphi_{3}(u)=\beta\left(u_{t}^{2}+|w|^{2}+2 w_{r} u_{t}\right) \\
& \varphi_{4}(u)=-\frac{\beta}{2} \nabla \cdot\left(\zeta(r)\left(\zeta_{r}(r)+\frac{2}{r} \zeta(r)\right) \frac{x}{r} u^{2}\right) \\
& \varphi_{5}(u)=\frac{\beta}{4}\left(\zeta_{r}(r)^{2}+2 \zeta(r)\left(\zeta_{r r}(r)+\frac{4}{r} \zeta_{r}(r)\right)\right) u^{2} .
\end{aligned}
$$

Proof. The proof is elementary, so we omit it.
Lemma 3.2. Let $v(t)=v(t ; s)$ be a smooth solution of problem (3.5). Then, there exists constants C and $t_{1}, t_{1} \geq t_{0}$, such that for $s \geq t_{1}$ and $T \geq 0$,

$$
\hat{E}(v ; \infty, T, s) \leq C \hat{E}(v ; \infty, 0, s)
$$

and

$$
\int_{0}^{T} \int(1+r)^{-3-\delta} v^{2} d x d t \leq C \hat{E}(v ; \infty, 0, s)
$$

where $0<\delta<1$ and

$$
\hat{E}(v ; h, T, s)=\int_{|x|<h}\left(v_{t}(T ; s)^{2}+|\nabla v(T ; s)|^{2}+q(T ; s) v(T ; s)^{2}\right) d x
$$

for $0<h \leq \infty$.
Proof. Let β_{0} be the constant introduced in Assumption (B) and let $\beta=\beta_{0}+\varepsilon, \varepsilon>0$. We take ε so small that $0<\beta<1$. We use Lemma 3.1 with $\zeta(r)=1-(1+r)^{-\delta}, 0<\delta<1, q=q(t ; s)$ and β defined above. Then, following the same method as in the proof of Lemma 2.4, we have

$$
\begin{equation*}
\int X(v ; T) d x+\int_{0}^{T} \int Z(v) d x d t=\int X(v ; 0) d x \tag{3.8}
\end{equation*}
$$

We claim that there exists constants C_{1} and t_{1} such that for $s \geq t_{1} \geq t_{0}$

$$
\begin{equation*}
\frac{\beta}{2} \chi_{i i j j}+q_{t}(t ; s)+\beta \zeta(r) q_{r}(t ; s) \leq-C_{1}(1+r)^{-3-\delta} . \tag{3.9}
\end{equation*}
$$

Indeed, by our choice of $\zeta(r)$ and the definition of $\beta, \beta \zeta(r)>\beta_{0}$ for $r \geq R_{1}>R_{0}$. Hence, this, together with (3.3) and the non-positivity of $q_{r}(t ; s)$ ((iv) of Assumption (B)), implies that for $r \geq R_{1}$

$$
\begin{equation*}
q_{t}(t ; s)+\beta \zeta(r) q_{r}(t ; s) \leq q_{t}(t ; s)+\beta_{0} q_{r}(t ; s) \leq 0 \tag{3.10}
\end{equation*}
$$

On the other hand, by (1.10) and (3.4) and again by the non-positivity of q_{r}

$$
\frac{\beta}{2} \chi_{i i j j}+q_{t}(t ; s)+\beta \zeta(r) q_{r}(t ; s) \leq-\frac{\beta}{2} \delta(1+\delta)(1+r)^{-3-\delta}+\frac{K}{t+s},
$$

so that for $s \geq t_{1}$ (large enough)

$$
\frac{\beta}{2} \chi_{i i j j}+q_{t}(t ; s)+\beta \zeta(r) q_{\tau}(t ; s) \leq-C_{2}
$$

in $r \leq R_{1}$, which, together with (3.10) and (1.10), gives (3.9). Therefore, by (3.9) and (1.8), we obtain

$$
\begin{equation*}
\int X(v ; T) d x+C \int_{0}^{T} \int(1+r)^{-3-\delta} v^{2} d x d t \leq \int X(v ; 0) d x \tag{3.11}
\end{equation*}
$$

We recall the expression of $X(v ; T)$ in Lemma 3.1. Then, for our choice of $\zeta(r), \varphi_{5}(v) \geq 0$, so that by the condition $0<\beta<1$ and $0<\zeta(r)$ ≤ 1

$$
\begin{equation*}
\int X(v ; T) d x \geq C_{3} \hat{E}(v ; \infty, T, s) \tag{3.12}
\end{equation*}
$$

for $C_{3}>0$. Furthermore, by the Poincaré inequality, it is] easily seen that

$$
\int X(v ; 0) d x \leq C_{5} \hat{E}(v ; \infty, 0, s)
$$

This completes the proof.
We use the following identity similar to (1.6) for the proof of the next lemma:

$$
\begin{gather*}
\left(u_{t t}-u_{j j}+q u\right)\left(\left(r^{2}+t^{2}\right) u_{t}+2 t r u_{r}+2 t u\right) \tag{3.13}\\
=\tilde{F}_{t}(u ; t)+\nabla \cdot \tilde{G}(u)+\tilde{H}(u),
\end{gather*}
$$

where

$$
\begin{aligned}
\tilde{F}(u ; t) & =F(u ; t)+\frac{1}{2}\left(r^{2}+t^{2}\right) q u^{2} \\
\tilde{G}_{j}(u) & =G_{j}(u)+t q u^{2} x_{j} \\
\tilde{H}(u) & =-\left(\frac{1}{2}\left(r^{2}+t^{2}\right) q_{t}+2 t q+t r q_{r}\right) u^{2}
\end{aligned}
$$

and $F(u ; t)$ and $G_{j}(u)$ are as in Lemma 1.3.
Lemma 3.3. Let $v(t)=v(t ; s)$ be a smooth solution of problem (3.5) and let t_{1} be as in Lemma 3.2. Let $\alpha<\frac{1}{3}$ and let δ be so small that $\alpha(3+\delta)<1$. Then there exists a constant C such that for $s \geq t_{1}$ and $T \geq 1$

$$
\hat{E}\left(v ; \frac{1}{2} T, T, s\right) \leq C\left(T^{-2} d(v(0 ; s))^{2}+T^{-1}(T+s)^{\alpha(3+\delta)}\right) \hat{E}(v ; \infty, 0, s),
$$

where $d(v(0 ; s))$ denotes the radius of the ball with center at the origin containing the support of $v(0 ; s)$ and $\hat{E}(;,$,$) is the notation introduced$ in Lemma 3.2.

Proof. Integrating the identity (3.13) with $u=v(t ; s)$ and q $=q(t ; s)$ and using (3.7) and Lemma 3.2, we obtain in the same way as in the proof of Lemma 1.5 that

$$
\frac{1}{8} T^{2} \hat{E}\left(v ; \frac{1}{2} T, T, s\right) \leq C\left(d(v(0 ; s))^{2}+s^{2 \alpha}+T(T+s)^{\alpha(3+\delta)}\right) \hat{E}(v ; \infty, 0, s)
$$

The conclusion easily follows from the above estimate.
Lemma 3.4. Let u be the solution of problem (3.1) with the initial data f and $g\left(\in C_{0}^{\infty}\left(R^{3}\right)\right)$ such that the support of f and g is contained in $|x| \leq \gamma^{\alpha}$. Then, the solution u may be written as

$$
u=R_{0}+F_{0},
$$

where R_{0} and F_{0} have the same properties as in Lemma 2.3. Furthermore,

$$
\hat{E}\left(R_{0} ; \infty, t, 0\right) \leq C(t) \hat{E}(u ; \infty, 0,0) .
$$

Proof. The proof is the same as that of Lemma 2.3 and the last assertion is easily verified.

Lemma 3.5. Let $\left\{T_{k}\right\}_{k=0}^{\infty},\left\{S_{k}\right\}_{k=0}^{\infty},\left\{a_{k}\right\}_{k=0}^{\infty}$ and $\left\{b_{k}\right\}_{k=0}^{\infty}$ be the sequences
defined in §2. Let R_{0} and F_{0} be as in Lemma 3.4. Then, we can construct $\left\{R_{k}\right\}_{k=1}^{\infty}$ and $\left\{F_{k}\right\}_{k=1}^{\infty}$ with properties (a), (b) and (c) in Lemma 2.4 and (d^{\prime}) stated below.

$$
\begin{align*}
\hat{E}\left(R_{k} ; \infty, 0, S_{k}+b_{k}\right) & \leq 2\left(\hat{E}\left(R_{k-1} ; a_{k}+2 b_{k}, T_{k}-b_{k-1}, S_{k-1}+b_{k-1}\right)\right. \\
& \left.+\hat{E}\left(R_{k-1} ; a_{k}+b_{k}, T_{k}+b_{k}-b_{k-1}, S_{k-1}+b_{k-1}\right)\right)
\end{align*}
$$

Proof. The construction of R_{k} and F_{k} with properties (a), (b) and (c) is the same as in the proof of Lemma 2.4. We shall prove (d^{\prime}). By property (c), we have

$$
\begin{aligned}
\hat{E}\left(R_{k} ; \infty, 0, S_{k}+b_{k}\right) & =\hat{E}\left(R_{k} ; a_{k}+b_{k}, 0, S_{k}+b_{k}\right) \\
& \leq 2\left(\hat{E}\left(R_{k-1} ; a_{k}+b_{k}, 0, S_{k}+b_{k}\right)\right. \\
& \left.+\hat{E}\left(F_{k} ; a_{k}+b_{k}, 0, S_{k}+b_{k}\right)\right)
\end{aligned}
$$

Since F_{k} is the free space solution for $t>S_{k}$ with the same initial data as R_{k-1} at $t=S_{k}$ and since $F_{k}=0$ on the support of $q(t, x)$ at $t=S_{k}$ $+b_{k}$ (see (2.4)),

$$
\begin{aligned}
\hat{E}\left(F_{k} ; a_{k}+b_{k}, 0, S_{k}+b_{k}\right) & \leq \hat{E}\left(F_{k} ; a_{k}+2 b_{k}, 0, S_{k}\right) \\
& =\hat{E}\left(R_{k-1} ; a_{k}+2 b_{k}, T_{k}-b_{k-1}, S_{k-1}+b_{k-1}\right)
\end{aligned}
$$

This completes the proof.
Let $0 \leq \alpha<\frac{1}{3}$ and let δ be so small that $\alpha(3+\delta)<1$. We fix p, $p>0$, as follows:

$$
\begin{equation*}
p \geq \alpha(3+\delta)(1-\alpha(3+\delta))^{-1} \tag{3.14}
\end{equation*}
$$

so that $p \geq \alpha(3+\delta)(p+1)$. Then, the main result of this section can be stated as follows:

THEOREM 3.1. Suppose that Assumption (B) is satisfied and that $0 \leq \alpha<\frac{1}{3}$. Let u be the solution of problem (3.1) with the initial data f and $g\left(\in C_{0}^{\infty}\left(R^{3}\right)\right)$ such that the support of f and g is contained in $|x| \leq \gamma^{\alpha}$. Let $h, h>0$, be fixed. Then, there exist constants C, θ and β such that

$$
\hat{E}(u ; h, t, 0) \leq C \exp \left(-\theta t^{\beta}\right) \hat{E}_{0}(u)
$$

where $\beta=\frac{1}{p+1}, p$ being the constant defined by (3.14), and $\hat{E}_{0}(u)$ $=\int\left(g^{2}+|\nabla f|^{2}+q(0, x) f^{2}\right) d x$.

Proof. The proof is done exactly in the same way as in the proof of Theorem 2.1.

Example. Let $\chi(x)$ be a smooth function such that $C_{1} r^{2} \leq \chi(x) \leq C_{2} r^{2}$, $r=|x|$, and that $\chi_{r}(x) \geq C_{3} r$ and let $\varphi(s), 0 \leq s \leq \infty$, be a nonnegative smooth function such that $\varphi(s)=0$ for $s \geq 1$ and that $\varphi_{s}(s) \leq 0$. Then, consider the following function: $q(t, x)=\varphi\left(\frac{\chi(x)}{(t+\gamma)^{2 \alpha}}\right), 0<\alpha<1, \gamma>1$. We can easily show that the function $q(t, x)$ satisfies Assumption (B).

Remark. If, in addition to Assumption (B), we assume that

$$
q(t, x) \leq C(1+r)^{-2}
$$

for a constant C independent of t and x, we easily see that the result of Theorem 3.1 holds for $0 \leq \alpha<1$ with $\beta=(p+1)^{-1}, p=\alpha(1-\alpha)^{-1}$

References

[1] C. O. Bloom and N. D. Kazarinoff, Energy decays locally even if total energy grows algebraically with time, J. of Diff. Equation, 16 (1974), 352-372.
[2] J. Cooper, Local decay of solutions of the wave equation in the exterior of a moving body, J. Math. Anal. Appl., 49 (1975), 130-153.
[3] J. Cooper and W. A. Strauss, Energy boundedness and decay of waves reflecting off a moving obstacle, India. Univ. Math. J., 25 (1976), 671-690.
[4] P. Lax and R. Phillips, "Scattering Theory", Academic Press, New York, 1967.
[5] C. Morawetz, Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math., 19 (1966), 439-444.
[6] W. A. Strauss, Dispersal of waves vanishing on the boundary of an exterior domain, Comm. Pure Appl. Math., 28 (1975), 265-278.

Department of Engineering Mathematics
Faculty of Engineering
Nagoya University

[^0]: 2) The equation $g(t)=t+\gamma^{\alpha}$ has no root in $t>0$ since $\gamma>1$. This means that the forward cone with bottom $\{0\} \times\left\{x \| x \mid \leq \gamma^{\alpha}\right\}$ does not intersect the support of $b(t, x)$.
[^1]: ${ }^{3)}$ It is readily proved that $E\left(F_{1}\left(R_{0}\right) ; a_{1}+b_{1}, 0, S_{1}+b_{1}\right) \leq E\left(F_{1}\left(R_{0}\right) ; a_{1}+2 b_{1}, 0, S_{1}\right)$.

