actually prevented a significant number of suicides or have we just postponed them? Do we at times facilitate suicides in potential patients, for example, by prescribing antidepressants?

Psychiatrists and the rest of the society would be better off if we could confess our helplessness in averting suicides and declare the fact that at the best we might be able to postpone some and only sometimes prevent them.

ALBERT MICHAEL
ANIL P. JOSEPH
ALPHIE Pallen

St Fintan’s Hospital
Portlaoise
Co. Laois
Republic of Ireland

Neuroleptic malignant syndrome

Sir: Those who would classify neuroleptic malignant syndrome (NMS) with malignant hyperthermia (MH) and exertional heatstroke (EHS), as differing manifestations of a common thermic stress syndrome with differing trigger factors but shared pathophysiology at a biochemical level, will be disappointed by the report of Rosebush et al (Journal, November 1991, 159, 709–712) finding no useful role for dantrolene in the treatment of NMS: dantrolene is the drug of choice in the treatment and prophylaxis of MH and there is some evidence for its efficacy in EHS (Larner, 1992). However, previous reports have acknowledged that the benefits of dantrolene in NMS are at best partial and less consistent than in MH, and the possibility that NMS results, at least in part, from a disorder of muscle-cell calcium homeostasis still remains.

The fullest account of post-mortem muscle pathology in NMS reported a toxic myopathy similar to that seen in MH in the absence of major brain abnormalities, supporting a peripheral mechanism for the hyperpyrexia of NMS (Jones & Dawson, 1989). Furthermore, it has been known for some years that NMS muscle in vitro responds to halothane (but not caffeine) with a contracture, as does MH muscle, suggesting a link between the conditions at the pathophysiological level (Caroff et al, 1983).

To further elucidate potential similarities in the biochemical mechanisms underlying NMS, MH, and EHS, it would be useful to determine the response of NMS muscle to ryanodine in vitro. Ryanodine binds specifically and avidly to the calcium release channel of muscle sarcoplasmic reticulum, the proposed site of the MH defect (Mickelson et al, 1988), and ryanodine contracture may therefore be a more specific test for MH (Hopkins et al, 1991) and hence for a deregulation of muscle-cell calcium homeostasis.

SIR: Those who would classify neuroleptic malignant syndrome (NMS) with malignant hyperthermia (MH) and exertional heatstroke (EHS), as differing manifestations of a common thermic stress syndrome with differing trigger factors but shared pathophysiology at a biochemical level, will be disappointed by the report of Rosebush et al (Journal, November 1991, 159, 709–712) finding no useful role for dantrolene in the treatment of NMS: dantrolene is the drug of choice in the treatment and prophylaxis of MH and there is some evidence for its efficacy in EHS (Larner, 1992). However, previous reports have acknowledged that the benefits of dantrolene in NMS are at best partial and less consistent than in MH, and the possibility that NMS results, at least in part, from a disorder of muscle-cell calcium homeostasis still remains.

The fullest account of post-mortem muscle pathology in NMS reported a toxic myopathy similar to that seen in MH in the absence of major brain abnormalities, supporting a peripheral mechanism for the hyperpyrexia of NMS (Jones & Dawson, 1989). Furthermore, it has been known for some years that NMS muscle in vitro responds to halothane (but not caffeine) with a contracture, as does MH muscle, suggesting a link between the conditions at the pathophysiological level (Caroff et al, 1983).

To further elucidate potential similarities in the biochemical mechanisms underlying NMS, MH, and EHS, it would be useful to determine the response of NMS muscle to ryanodine in vitro. Ryanodine binds specifically and avidly to the calcium release channel of muscle sarcoplasmic reticulum, the proposed site of the MH defect (Mickelson et al, 1988), and ryanodine contracture may therefore be a more specific test for MH (Hopkins et al, 1991) and hence for a deregulation of muscle-cell calcium homeostasis.

SIR: Spivak et al (Journal, March 1992, 160, 412–414) report hallucinations induced by physical and psychological stress in three young soldiers and quote the pertinent literature from 1960 onwards. I would like to remind of a similar, but more complex phenomenon observed in the soldier Socrates during the Peloponnesian war (ca. 431 to 404 BC) and reported by Alcibiades (Plato, The Dinner Party):

“At daybreak he became thoughtful. He stood in the same place just thinking, and kept on at it without any sign of giving up. When noon came the men became interested and said to each other ‘look, Socrates has been standing there thinking since daybreak’. Later some of the Ionians brought out their bedding after supper— it was in summertime— and slept out in the cool air. They watched him to see whether he would stand there all night. He did! He stood quite still until the sun rose and the dawn came. . . .”

Later, Socrates explained (Plato, Socrates’ Defense):

“I have a strange experience. Previously the divine voice which I have become used to, has always stayed with me. It has opposed me even in quite unimportant matters if I was about to take the wrong action. . . . At other occasions it has even stopped me in the middle of a sentence.”

I suggest that the term Socrates’ symptom should be used for the combination of auditory hallucinations and cataplexia-like symptoms occurring under