[Radiocarbon, Vol 25, No. 2, 1983, P 279-286]

CALIBRATED 14C DATES IN CENTRAL EUROPE - SAME AS ELSEWHERE?

J C FREUNDLICH and BURGHART SCHMIDT

¹⁴C -Laboratorium and Labor fuer Dendrochronologie, Univ Koeln Weyertal 125, D-5000 Koeln 41, Germany (Fed Rep)

ABSTRACT. ¹⁴C dating results derived from an absolutely-dated 471-year tree-ring sequence from central European oak show a trend towards somewhat older dates than those for bristleconepine tree rings of the same age, but similar to those for Egyptian historical samples. Differences visible between these trend lines are not relevant considering the standard errors proposed by Clark (1975).

INTRODUCTION

From the beginning, the 14 C dating method has been extensively checked (Arnold and Libby, 1949) by testing samples of known age. Subsequently, many more known-age samples were cross-dated by 14C, (1) mostly tree-rings from California long-lived trees (more than 1000 dates; Clark, 1975; Klein et al, 1982) and (2) Egyptian historically dated materials (about 50 dates; Olsson, 1970; Clark and Renfrew, 1973). From these measurements it was concluded that 14 C dates generally deviate from known ages by determinable amounts of time and that recalibration is needed before comparing 14 C dates with historical dates.

CALIBRATION FUNCTIONS

For this "calibration," 16 tables or graphs were prepared by a variety of interpolation methods: (1) free-hand line drawing, (2) Fourier analysis, (3) polynomial regression, (4) averaging methods, and (5) spline functions. McKerrell (1975) compiled 14 C analyses on Egyptian historically dated samples for comparison with the results gained on bristlecone-pine tree rings. Figure 1 shows that there is no contradiction between calibration functions as long as realistic allowance is made (Clark, 1975) for measurement scatter.

EUROPEAN OAK CHRONOLOGIES

A third path towards known-age material was opened by Huber (1941) inaugurating dendrochronology of the European oak. Seven laboratories in Germany reported on progress of dendrochronology in central Europe (Frenzel, 1977), other laboratories are active in Northern Ireland, Belgium, and Switzerland. Close cooperation recently resulted in an absolute oak chronology

Fig 1. Comparison of ¹⁴C measurements on samples of precisely known age from Egyptian history and from bristlecone-pine tree rings.
= bristlecone-pine tree rings (after McKerrell, 1975, fig 5, p 73)
→ Egyptian samples (with error range after McKerrell, 1975, fig 11, p 77)

----- = 6th order regression polynomial

covering the last four millennia (Schmidt and Schwabedissen, 1982) and offered promise for a connection with the 4000-yr chronology of the Irish oak (Pearson, Pilcher, and Baillie, 1983; Becker, 1983).

RESULTS

A tree-ring sequence of nearly 500 years close to the oldest part of our chronology was analyzed in our laboratory (table 1). Figure 2A shows the results as well as those of contemporaneous bristlecone-pine tree rings (Suess, 1978). Measurements were made in our CO2-filled proportional counters containing ca 1g of carbon accumulating ca 150,000 to 300,000 counts. Tree-ring samples were pretreated by the acid/alkali/ acid (AAA) method described earlier (Freundlich, 1973); results were measured to a counting statistic precision of 2.4% (±19 yr) to 3.5% (±28 yr). Estimating a set of additional error sources equivalent to Pearson et al (1977) increases these standard errors by a factor of nearly 1.3.

280

fiom bulopean oun					¹⁴ C Date			
14 _C sample	Tree-ring sample	No. annual rings	Dendrc BC	-date* BP	¹³ C cor- rected	BP	lø error	δ ¹³ C %.
KN-2800 -2799 -2798 -2797 -2796 -2795	Ram 5/ 36 Ram 5/ 69 Ram 5/ 95 Ram 5/125 Ram 5/155 Ram 5/185	16 11 8 5 7	1732 1699 1673 1643 1613 1583	3681 3648 3622 3592 3562 3532	1507 1597 1492 1436 1394 1450	3456 3546 3441 3385 3343 3399	21 19 22 28 23 25	-25.8 -25.8 -24.2 -24.3 -24.4 -24.5
-2429	IpM370/ 18	4	1559	3508	1403	3352	27	-25.0
-2794	Ram 5/215	8	1553	3502	1293	3242	22	-25.4
-2430	IpM370/ 38	4	1539	3488	1343	3292	28	-24.6
-2793	Ram 5/247	12	1521	3470	1320	3269	26	-24.9
-2431	IpM370/ 58	4	1519	3468	1336	3285	27	-24.8
-2432	IpM370/ 78	4	1499	3448	1384	3333	28	-24.6
-2792	Ram 5/275	8	1493	3442	1334	3283	28	-24.8
-2433	IpM370/ 98	4	1479	3428	1366	3315	27	-24.2
-2791	Ram 5/305	12	1463	3412	1288	3237	25	-25.0
-2434	IpM370/118	4	1459	3408	1236	3185	28	-24.5
-2435	IpM370/138	4	1439	3388	1256	3205	27	-25.0
-2790	Ram 5/335	7	1433	3382	1212	3161	26	-24.5
-2436	IpM370/158	4	1419	3368	1191	3140	25	-25.1
-2437	IpM370/178	4	1399	3348	1249	3198	27	-25.4
-2438	IpM370/198	4	1379	3328	1231	3180	28	-24.4
-2439	IpM370/218	4	1359	3308	1163	3112	28	-25.1
-2440	IpM370/238	4	1339	3288	1158	3107	27	-24.5
-2441	IpM370/258	4	1319	3268	1104	3053	28	-24.5
-2442	IpM370/278	4	1299	3248	1134	3083	27	-24.6

TABLE 1. Koeln ¹⁴C measurements on absolutely-dated tree rings from European oak

* From middle tree ring

Statistical approximation by a weighted least squares regression line yields a slope ($\Delta^{14}C/\Delta$ dendro) = 1.0138 and least squares standard deviation of ±43.3 years (fig 2B). The calibration curve of Clark (1975) is included for reference (including Clark's standard error of ± 112 years). Figures 2A and 2B show a trend similar to that found by comparing Egyptian historical samples with bristlecone-pine tree rings. Our ¹⁴C dates for central European tree rings lie fairly close to bristlecone-pine tree rings of the same dendrochronologic age, almost within the lo statistical range. (The same is evident by entering our regression line in figure 1 - shaded band).

WIGGLES. Our results show "wiggles" although not very conspicuously. It seems that we are in a relatively quiet period similar to that of Pearson et al (1977). Perhaps the wiggles structure will become more evident upon subsequent reduction of standard errors. The average standard deviation, ± 43.3 years as derived from our least squares approximation is comparable to the adjusted average precision figure, ± 33 years, especially when visualizing the observable wiggles structure.

FHS DATE. Besides the absolute dendrochronologic date of our analyzed tree rings, a "wiggle-matching" date has also been

tentatively determined by a method similar to the one proposed by FHS (Ferguson, Huber, and Suess, 1966) (table 2; fig 3).

TABLE 2. Comparison of dendrochronologic and FHS dates for the first tree ring of our 471-year sequence.

FHS date (fig 3) 1830 ± 40 BC

Dedrochronologic date 1737 BC

The resulting difference, 63 ± 40 years, closely resembles the "off-set" figures quoted for bristlecone pine by Stuiver (1982, table 2, p 18). Possible reasons for this off-set may be attributed to 1) in situ ¹⁴C production (Suess and Strahm, 1970, p 94,95; Radnell, Aitken, and Otlet, 1979), 2) younger ¹⁴C transported by mobile organic constituents (Suess, 1978, p 4, legend, App 1; Long et al, 1979).

CONCLUSION

There has been considerable unrest about calibrated ¹⁴C dates from the Old World Bronze age, presumably because inherent precision questions had not been adequately assessed. Even McKerrell's (1975) alternate list of "Egyptian historical" calibration figures lying almost halfway between bristlecone-pine calibration figures and zero calibration, does not lie off further than permissible by statistics (!). Our results fit this quite well (fig 1). They are somewhat different from formerly accepted bristlecone-pine based calibration figures; they do not give completely new figures, but rather form a narrower band of somewhat revised calibration figures for the time period mentioned (table 3).

ACKNOWLEDGMENTS

Thanks are due Hermann Schwabedissen for his invaluable assistance, Hajo Hayen, Oldenburg/O, and Friedrich Hohenschwert, Detmold, and many others for cooperation in field work; U Jux, N Zygojannis, and S Strecker, Geol Inst, Univ Koeln, for ^{13}C analyses, and Roland Aniol, for computer programming. Our work was partly funded by Deutsche Forschungsgemeinschaft, Bonn, and by Stiftung Volkswagenwerk, Hannover. We were assisted by H Grützmacher, E Norkus, and P Velicky.

Fig 2B. Trend lines (with band giving average lo statistical error)

= this paper; least squares regression line

= bristlecone pine: spline functions (after Clark, 1975)

BRISILLCONE DEMORO (DC)

- Fig 3. Tentative bristlecone-pine calibration with method proposed by Ferguson, Huber, and Suess (1966)
- b: = this paper (only relative year rings used) = bristlecone-pine date (after Suess, 1970)

Calibration figure (years) as guoted from	Conventional 14C date (5568)	1050 3000	1250 3200	1450 3400	1650 B C 3600 B P
Damon, Long, and Walli	ck (1972)	275±125	325±103	380±103	440± 63
Switsur (1973)		280±125	310±103	375±103	445± 63
Ralph, Michael, and Ha	n (1973)	250	270/340	270/420	460
Clark (1975		270±112	300±112	320±112	385±112
<pre>(1 σ standard error) McKerrell (1975) ("Egyptian historica</pre>	.")	⁸⁰ /170	⁹⁰ /180	¹²⁰ /230	200/320
("50-year average")		210/320	²⁷⁰ /310	250/430	430/460
Suess (1979)		260/340	270/330	290	310/450
Freundlich and Schmidt (least squares fit)	(1983)	(184± 43)	181± 43	179± 43	(176± 43)

TABLE 3. Comparison between calibration figures from various sources (calendrical minus $^{14}\mathrm{C}$ dates in years)

284

REFERENCES

- Arnold JR and Libby, WF, 1949, Age determinations by radiocarbon content: Checks with samples of known age: Science v 110, p 678-680.
- Becker, B, 1983, Long-term radiocarbon trends of the absolute Central-European tree-ring sequence, in Stuiver, M and Kra, RS, eds, Internatl ¹⁴C conf, 11th, Proc: Radiocarbon, v 25.
- Clark, RM, 1975, A calibration curve for radiocarbon dates; Antiquity, v 49, p 251-266.
- Clark, RM and Renfrew, C, 1973, Tree-ring calibration of radiocarbon dates and the chronology of ancient Egypt: Nature, v 243, p 266-270.
- Damon, PE, Long, A, and Wallick, EI, 1972, Dendrochronologic calibration of the carbon-14 time scale, in Rafter, TA and Grant-Taylor, T, eds, Internatl conf on ¹⁴C dating, 8th, Proc: Wellington, Royal Soc New Zealand, v 1, p A29-A43.
- Ferguson, CW, Huber, B, and Suess, HE, 1966, Determination of the age of Swiss lake dwellings as an example of dendrochronologically-calibrated radiocarbon dating: Zeitschr Naturforsch, ser a, v 21, p 1173-1177.
- Frenzel, B, ed, 1977, Dendrochronologie and postglaziale Klimaschwankungen in Europa: Wiesbaden, F Steiner Verlag.
- Freundlich, JC, 1973, Die Altersbestimmungen nach der Radiokohlenstoffmethode: Archäol Korrespondenzblatt, Mainz, von Zabern Verlag, v 3, p 159-162.
- Huber, B, 1941, Aufbau einer mitteleuropäischen Jahrringchronologie: Mitt Akad Deutsch Forstwiss, v 1, p 110-125 (after Frenzel, ed, 1977, p 8).
- Klein, J, Lerman, JC, Damon, PE, and Ralph, EK, 1982, Calibration of radiocarbon dates: Tables based on the consensus data of the workshop on calibrating the radiocarbon time scale: Radiocarbon, v 24, p 103-150.
- Long, A, Arnold, LD, Damon, PE, Ferguson, CW, Berman, JC, and Wilson, AT, 1979, Radial translocation of carbon in bristlecone pine, in Berger, Rainer and Suess, HE, eds, Radiocarbon dating, Internatl ¹⁴C conf, 9th, Proc: Berkeley, Univ California Press, p 532-537.
- McKerrell, H, 1975, Correction procedures for C-14 dates, in Watkins, T, ed, Radiocarbon: Calibration and prehistory: Edinburgh, Univ Press, p 47-100.
- Olsson, IU, ed, 1970, Radiocarbon variations and absolute chronology: Stockholm, Almqvist & Wiksell.
- Pearson, GE, Pilcher, JR, Baillie, MGL, and Hillam, J, 1977, Absolute radiocarbon dating using a low altitude European tree-ring calibration: Nature, v 270, p 25-28.
- Pearson, GW, Pilcher, JR, and Baillie, MGL, 1983, High-precision 14C measurement of Irish Oaks to show the natural 14C variations from 200BC to 4000BC, in Stuiver, M and Kra, RS, eds, Internatl 14C conf, 11th, Proc: Radiocarbon, v 25.

- Radnell, CJ, Aitken, MJ, and Otlet, RL, 1979, In-situ production of ¹⁴C in wood, in Berger, Rainer and Suess, HE, eds, Radiocarbon dating, Internatl ¹⁴C conf, 9th, Proc: Berkeley, Univ California Press, p 543-657.
- Ralph, EK, Michael, HN, and Han, MC, 1973, Radiocarbon dates and reality: Masca Newsletter, v 9, p 1-20.
- Schmidt, B and Schwabedissen, H, 1982, Ausbau des mitteleuropäischen Eichenjahrringkalenders bis in neolithische Zeit (2061 v Chr): Archäol Korrespondenzblatt, Mainz, von Zabern Verlag, v 12, p 107-108.
- Stuiver, M, 1982, A high-precision calibration of the AD radiocarbon time scale: Radiocarbon, v 24, p 1-26.
- Suess, HE, 1978, La Jolla measurements of radiocarbon in treering dated wood: Radiocarbon, v 20, p 1-18.
- 1979, A calibration table for conventional radiocarbon dates, in Berger, Rainer and Suess, HE, eds, Radiocarbon dating, Internatl ¹⁴C conf, 9th, Proc: Berkeley, Univ California Press, p 777-784.
- Suess, HE and Strahm, C, 1970, The Neolithic of Auvernier, Switzerland: Antiquity, v 44, p 91-99.
- Switsur, VR, 1973, The radiocarbon calendar recalibrated: Antiquity, v 37, p 131-137.

286