THE n-INSERTIVE SUBGROUPS OF UNITS

DAVID DOLŽAN

Let \(R \) be a finite ring. Let us denote its group of units by \(G = G(R) \) and its Jacobson radical by \(J = J(R) \). Let \(n \) be an arbitrary integer. We prove that \(R \) is an \(n \)-insertive ring if and only if \(G \) is an \(n \)-insertive group and show that every \(n \)-insertive finite ring is a direct sum of local rings. We prove that if \(n \) is a unit, then the local ring \(R \) is \(n \)-insertive if and only if its Jacobson group \(1 + J \) is \(n \)-insertive and find an example to show that this is not true if \(n \) is a non-unit.

1. INTRODUCTION

Many properties of finite rings follow from the properties of their groups of units. For example, it was shown in [1] that a finite ring is commutative if and only if its group of units is commutative. The notion of commutativity can be generalised to the notion of \(n \)-insertiveness, as shown below. In this paper, we study the link between the \(n \)-insertiveness of a finite ring and the \(n \)-insertiveness of its group of units.

So, let \(R \) be a finite ring with identity \(1 \neq 0 \). Denote the group of units of \(R \) by \(G = G(R) \) and the Jacobson radical of \(R \) by \(J = J(R) \).

If \(n \) is an integer, we call \(R \) an \(n \)-insertive ring if, for \(a, b \in R \) and \(ab = n \), we have \(arb = nr \) for every \(r \in R \). Let \(H \) be a subgroup of \(G \). We call \(H \) an \(n \)-insertive group if, for \(a, b \in R \) and \(ab = n \), we have \(agb = ng \) for every \(g \in H \).

Lemma 1.1. \(G \) is \(1 \)-insertive if and only if \(G \) is commutative.

Proof: Assume that \(G \) is \(1 \)-insertive. Choose \(a \in G \) and denote \(b = a^{-1} \). Since \(G \) is \(1 \)-insertive, we have \(ab = 1 \) and \(agb = g \) for every \(g \in G \). Therefore \(ag = gb^{-1} = ga \) for every \(g \in G \), so \(G \) is commutative.

On the other hand, if \(G \) is commutative, then \(R \) is commutative by a corollary of [1, Theorem 3.2]. This implies that \(R \), and then of course also \(G \), is \(1 \)-insertive.

We know by [3, Lemma 1] that \(R \) is \(1 \)-insertive if and only if \(R \) is commutative. A corollary of [1, Theorem 3.2] tells us that \(R \) is commutative if and only if \(G \) is commutative. So, the above lemma implies that \(G \) is \(1 \)-insertive if and only if \(R \) is \(1 \)-insertive.

We prove that for every integer \(n \) the following holds: \(G \) is \(n \)-insertive if and only if \(R \) is \(n \)-insertive. We prove this by studying the structure of \(n \)-insertive rings, showing...
that every n-insertive ring (for an arbitrary integer n) is a direct sum of local rings. We also show that the converse of this statement is false. Namely, we find a local ring that is not n-insertive for any integer n.

The group $1 + J$ is a normal subgroup of G, called the Jacobson group. We study whether the n-insertiveness of $1 + J$ is equivalent to the n-insertiveness of R. Obviously, the answer is negative in general (consider for example the full matrix ring over some finite field). However, we prove that the answer is affirmative if R is a local ring and n is a unit. We also find an example of a non n-insertive local ring R with a n-insertive Jacobson group (for every integer non-unit n in R), thus proving that the above equivalence does not hold for an arbitrary n, even in the class of local rings.

2. THE PROPERTIES OF n-INSERTIVE RINGS

Theorem 2.1. Let n be an arbitrary integer. If G is n-insertive, then R is a direct sum of local rings.

Proof: Assume that R is a directly indecomposable ring. Assume also that R is not local. Then there exists a non-trivial idempotent $e_1 \in R$. Denote $e_2 = 1 - e_1$. Since R is indecomposable, we either have $e_1Re_2 \neq 0$ or $e_2Re_1 \neq 0$, otherwise we would be able to decompose R as $R = e_1Re_1 \oplus e_2Re_2$. We can assume without any loss of generality that $e_1xe_2 \neq 0$ for some $x \in R$. Now, $(e_1 + ne_2)(ne_1 + e_2) = n$, so by our assumption $(e_1 + ne_2)g(ne_1 + e_2) = ng$ for every $g \in G$. Clearly, $1 + e_1xe_2 \in G$, since $(e_1xe_2)^2 = 0$. But $(e_1 + ne_2)(1 + e_1xe_2)(ne_1 + e_2) = n + e_1xe_2$, therefore $(n - 1)e_1xe_2 = 0$. We can therefore conclude that $n - 1 \notin G$. However, R is indecomposable, therefore it is a p-ring for some prime number p. Since $n - 1$ is a multiple of p, we can conclude that n has to be prime to p, and thus n must be a unit. Let us show that G is then 1-insertive. Choose $a, b \in R$ such that $ab = 1$ and choose $g \in G$. Then $a(bn) = n$ and therefore $agbn = gn$, so $agb = g$, because n is a unit. So, Lemma 1.1 implies that G is Abelian and therefore R is commutative by [1, Theorem 3.2]. This, together with the existence of e_1, is a contradiction with the indecomposability of R. Therefore, we can conclude that R is indeed a local ring. □

Example 2.2. The converse of the above statement is false. Let p be a prime number and let R be a ring of all 4×4 upper triangular matrices with entries from $GF(p^2)$, such that their entries on the (main) diagonal are constant. Obviously, G is a non-Abelian group. Therefore G is not 1-insertive and then G is also not n-insertive for any integer n, prime to p, by the proof of Theorem 2.1. If we take $p = 3$, we have

\[
\begin{bmatrix}
0 & 1 & 2 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix} = 0, \text{ but}
\]

[https://doi.org/10.1017/S0004972700038958 Published online by Cambridge University Press]
The \(n \)-insertive sugroups of units

So, for \(p = 3 \), \(R \) is a local ring, but \(G \) is not \(n \)-insertive for some integers \(n \) (specifically \(n = 0, 3, 6, \ldots \)).

Corollary 2.3. Let \(n \) be an arbitrary integer. Then \(R \) is \(n \)-insertive if and only if \(G \) is \(n \)-insertive.

Proof: Since \(G(R_1 \oplus R_2) = G(R_1) \times G(R_2) \), it suffices to prove the corollary only for directly indecomposable rings. So, assume that \(R \) is directly indecomposable and that \(G \) is \(n \)-insertive. Let us prove that \(R \) is \(n \)-insertive. Assume that \(ab = n \) for some \(a, b \in R \) and choose \(r \in R \). By Theorem 2.1, \(R/J \) is a field and therefore \(R/J \) is generated by its units. But then \(R \) is also generated by its units, as was proved in [2, Lemma 4.5]. Thus, \(r = u_1 + \cdots + u_k \) and \(arb = au_1b + \cdots + au_kb = n(u_1 + \cdots + u_k) = nr \), because \(G \) is \(n \)-insertive.

3. The \(n \)-Insertiveness of the Jacobson Group

In this section, we examine if the \(n \)-insertiveness of \(R \) is perhaps also equivalent to the \(n \)-insertiveness of the Jacobson group \(1 + J \). Obviously, in general, the answer is negative, because the Jacobson group of a full matrix ring over some finite field is trivial, and therefore \(1 \)-insertive, but the ring itself is non-commutative and therefore not \(1 \)-insertive. However, we shall examine this question in the class of all finite local rings and find that the answer is positive, at least for those integers \(n \) that are units in \(R \).

For a subset \(S \subseteq R \), let \(C(S) = \{ x \in R; xs = sx \text{ for every } s \in S \} \) denote the centraliser of \(S \) in \(R \).

Lemma 3.1. Let \(R \) be an arbitrary finite ring and \(n \) an arbitrary integer. If \(n \) is a unit in \(R \), then \(1 + J \) is \(n \)-insertive if and only if \(J \subseteq C(G) \).

Proof: Assume \(1 + J \) is \(n \)-insertive and choose \(a \in G \). Then \(n(aa^{-1}) = n \), therefore \(na(1 + j)a^{-1} = n(1 + j) \) for every \(j \in J \), thus \(n(aa^{-1} - j) = 0 \). Since \(n \) is a unit, we can conclude that \(aj = ja \) for every \(j \in J \).

Conversely, if \(J \subseteq C(G) \), then \(a(1 + j)b = (1 + j)ab \) for every \(a, b \in G \) and every \(j \in J \), so \(1 + J \) is indeed \(n \)-insertive.

Theorem 3.2. Let \(R \) be a finite local ring and \(n \) an arbitrary integer. If \(n \) is a unit in \(R \), then the following are equivalent:

1. \(R \) is \(n \)-insertive.
2. \(1 + J \) is \(n \)-insertive.
3. \(R \) is commutative.

https://doi.org/10.1017/S0004972700038958 Published online by Cambridge University Press
PROOF: If \(n \) is a unit and \(R \) is \(n \)-insertive, then \(R \) is also 1-insertive and thus commutative by [3, Lemma 1]. So, it suffices to prove that the \(n \)-insertiveness of \(1 + J \) implies the commutativity of \(R \). Let us therefore assume that \(1 + J \) is \(n \)-insertive. We know that, since \(R \) is a finite local ring, the units of the factor field \(R/J \) form a cyclic group, generated by some element \(g + J \) of order \(k \). Then \(G = \bigcup_{i=1}^{k} (g^i + J) \). By the previous lemma we conclude that all elements in \(J \) are also in the centraliser of \(G \), thus \(1 + J \) is a commutative group, so \(J \) is commutative as well. Thus \(G \) is an Abelian group and therefore \(R \) is a commutative ring by the corollary of [1, Theorem 3.2].

The next example shows that this theorem does not hold if \(n \) is not a unit.

Example 3.3. If \(S \) is a ring, then let \(S\{x, y, z\} \) denote the polynomial ring over \(S \) in non-commuting variables. Let us examine the ring

\[
R = \frac{\mathbb{Z}_3\{x, y, z\}}{(x^2 + 1, y^3, z^3, yz, xz, yx - xz, zx - xy)}.
\]

Clearly, this is a finite ring, such that all of its non-units form the unique maximal ideal \(J = (y, z) \), therefore \(R \) is a local ring. We notice that \(J^3 = 0 \), therefore \(1 + J \) is a 0-insertive group, since \(ab = 0 \) implies \(a, b \in J \). However, \(R \) is not a 0-insertive ring, because we have \(yz = 0 \), but \(yxz = xz^2 \neq 0 \), because \(x \) is a unit and \(z^2 \neq 0 \). The same argument also implies that \(1 + J \) is \(n \)-insertive and \(R \) is not \(n \)-insertive for every integer \(n \) which is a non-unit in \(R \).

References