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Dwork’s conjecture on the logarithmic growth of

solutions of p-adic differential equations

Yves André

Abstract

This is a study of the asymptotic behaviour of solutions of p-adic linear differential equa-
tions near the boundary of their convergence disks. We prove Dwork’s conjecture on the
logarithmic growth of solutions in generic versus special disks.

1. Introduction

1.1 We consider an ordinary linear differential equation

dµy

dxµ
+ fµ−1(x)

dµ−1y

dxµ−1
+ · · · + f0(x)y = 0, (∗)

where the fi(x) are bounded analytic functions in the unit disk |x| < 1, with coefficients in a p-adic
field (a finite extension of Qp). We assume that there is a full set of solutions y which are analytic
in the unit disk.

Since his early studies on p-adic differential equations, Dwork drew attention to the growth of
solutions near the boundary of the unit disk. He proved that every solution y has at most logarithmic
growth of order µ − 1, i.e.

|y|0(r) = O((log 1/r)1−µ) for r < 1

(cf. § 2.1 below for the standard notation |y|0(r)). In order to encode the precise logarithmic growth
of the solutions, he introduced the (special) log-growth Newton polygon of (∗).

On the other hand, he considered the solutions of (∗) in the so-called generic unit disk |x−t| < 1,
proved that there is a full set solutions y analytic in that disk which have at most logarithmic growth
of order µ−1, and introduced the generic log-growth Newton polygon of (∗), cf. [Dwo73a, Dwo73b].

In case (∗) has a strong Frobenius structure, he put forward some empirical relationship
between the logarithmic growth rate of the solutions and the slopes of the Frobenius structure.
By analogy with Grothendieck’s specialization theorem [Gro74] for Frobenius–Newton polygons,
he then proposed the following.

Conjecture 1.1.1 (Dwork [Dwo73b]). The special log-growth Newton polygon lies above the
generic log-growth Newton polygon.

As an interesting example, he mentioned in the same paper the case of the hypergeometric differ-
ential equation with parameters (1/2, 1/2, 1) which controls the variation of the p-adic cohomology
of the Legendre family of elliptic curves. The log-growth Newton polygons then coincide with the
(suitably normalized) Frobenius–Newton polygons; in particular, in a supersingular disk, the special
log-growth Newton polygon lies strictly above the generic log-growth Newton polygon.
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Dwork’s conjecture on logarithmic growth

Later on, Dwork computed the generic and special log-growth of p-adic solutions of classical
hypergeometric equations1 [Dwo82, §§ 9.6, 9.7 and 16.9]; see also the studies by Adolphson and
Sperber of p-adic confluent hypergeometric differential equations.

The study of the generic log-growth filtration has given birth to factorization techniques for
differential operators which have had a considerable impact on the development of p-adic analysis
(works by Robba [Rob75], Christol [Chr83] and Dwork [Dwo73a, Dwo73b]).

1.2 In this paper, we prove Dwork’s conjecture, without assuming the existence of a Frobenius
structure: the special Newton polygon lies above the generic one (the right end-point being fixed);
cf. Theorem 4.1.1 for a precise and more general statement. In this generality, irrational slopes may
occur in both Newton polygons, cf. [CT07, § 5].

1.3 For p-adic differential equations which admit a Frobenius structure, the relationship between
the Frobenius filtration (up to shift) and the log-growth filtration remains mysterious; it is not even
known whether the log-growth slopes are rational in this situation. Some partial results have been
obtained in [CT07] (where the rank 2 case is settled).

No straightforward connection can be expected since the two filtrations exhibit rather different
qualitative features. Notably, in the generic situation, there is a horizontal filtration from which
the Frobenius slope filtration can be seen on the diagonal blocks of a full solution matrix (of the
associated linear system), whereas the log-growth filtration can only be detected by taking into
account the first row of blocks.

Also, the log-growth filtration is not strictly compatible with the tensor product, which prevents
us from using Grothendieck’s well-known argument of exterior powers in the case of the Frobenius
slope filtration (cf. e.g. [CT07, Theorem 6.12] in our context) in order to prove the specialization
theorem.

Our method is somewhat inspired by another specialization theorem, which concerns the Newton
polygon controlling the irregularity at zero of an ordinary linear differential equation with coefficients
in C((x)) (see [And07, Appendix]).

2. Logarithmic growth

2.1 Let K be a field of characteristic zero which is complete with respect to a discrete non-
archimedean absolute value | · |. Let OK be its ring of integers and let k be its residue field. We
assume that k is of characteristic p > 0.

For any a ∈ OK , let A(a, 1−) be the K-algebra of analytic functions (with coefficients in K)
in the residue class D(a, 1−) of a. It is endowed with the family of (multiplicative) norms | · |a(r)
(for r ∈ [0, 1[):

f =
∑

bn(x − a)n �→ |f |a(r) = sup |bn|rn.

If ā ∈ k denotes the residue class of a, A(a, 1−) depends only (up to canonical isomorphism) on ā,
and we sometimes write A(ā, 1−) to emphasize this.

Let B(a, 1−) = OK [[x − a]] ⊗OK
K be the subalgebra of bounded analytic functions. This is a

Banach algebra with respect to the (multiplicative) norm

f �→ |f | := |f |a(1) = sup |bn|.

1I am indebted to F. Baldassarri for these references.
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Similarly, B(a, 1−) depends only (up to canonical isomorphism) on ā, and we sometimes write
B(ā, 1−) to emphasize this independence.

Remarks 2.1.1. (1) The ring B(a, 1−) is principal. Indeed, let IK be an ideal of B(a, 1−), and let I
be the ideal IK ∩ OK [[x − a]] of OK [[x − a]]. Then I is either principal or of the form (π, f), f ∈
(x−a)OK [[x−a]], and we see that, in both cases, IK = I[ 1

π ] is principal in B(a, 1−) = OK [[x−a]][ 1
π ].

On the other hand, B(a, 1−) is differentially simple: there is no non-trivial ideal stable under
d/dx .

(2) In contrast, A(a, 1−) is not noetherian and a fortiori not principal. However, according to
a result of Lazard, it is Bézout (every finitely generated ideal is principal), hence integrally closed
and coherent.

On the other hand, it is not differentially simple (cf. the differential ideal generated by an analytic
function with zeroes of unbounded multiplicities), but there is no non-trivial finitely generated
differential ideal (see e.g. [And02, § 2] for a discussion of this matter).

2.2 For any σ ∈ R�0, let Wa,σ (or WK,a,σ) be the K-space formed by all series f =
∑

bn(x−a)n ∈
K[[x − a]] such that

|f |a,σ := sup
n

(n + 1)−σ |bn| < ∞,

and let Wa,σ+ (or WK,a,σ+) be the K-vector space formed by all series f =
∑

bn(x−a)n ∈ K[[x−a]]
such that

lim
n

log |bn|
log(n + 1)

� σ.

Lemma 2.2.1. We have the following.

(i) Here σ �→ Wa,σ is an increasing sequence of B(a, 1−)-submodules of A(a, 1−).

(ii) We have (Wa,0, | · |a,0) = (B(a, 1−), | · |).
(iii) We have Wa,σ+ =

⋂
σ′>σ Wa,σ′ .

(iv) Each Wa,σ is a K-Banach space with respect to | · |a,σ. It is the space of analytic functions f
of logarithmic growth at most σ in D(a, 1−), i.e. such that

|f |a(r) = O((log 1/r)−σ) for r < 1.

(v) For a, a′ in the same residue class, Wa,σ = Wa′,σ and | · |a,σ, | · |a′,σ are equivalent norms.
A fortiori Wa,σ+ = Wa′,σ+ . (We sometimes write Wā,σ and Wā,σ+ instead of Wa,σ and Wa,σ+ ,
respectively, to emphasize this independence.)

(vi) We have Wa,σ.Wa,σ′ ⊂ Wa,σ+σ′ .

(vii) Here Wa,σ is stable under derivation.

(viii) For any f ∈ A(a, 1−), df/dx ∈ Wa,σ implies f ∈ Wa,σ+1.

Proof. These properties are standard and left to the reader. We just indicate that property (iv)
follows from the inequality

sup
n

(n + 1)σrn � 1
r

(
σ

e

)σ

(log 1/r)−σ.

Remark 2.2.2. Strictly speaking, the classical notion of logarithmic growth corresponds to the case
when the absolute value is normalized by |p| = p−1.
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3. Log-growth filtration and Newton polygon

3.1 Let M be a differential module of rank µ over B(a, 1−), i.e. a B(a, 1−)[d/dx]-module whose
underlying B(a, 1−)-module is free of rank µ. We denote by ∇(d/dx) or simply ∇ the action of d/dx
on M .

For any B(a, 1−)[d/dx]-submodule W ⊂ K[[x − a]] which contains B(a, 1−), we endow

MW := M ⊗B(a,1−) W
with the action of d/dx defined by ∇(d/dx) ⊗ 1 + 1 ⊗ d/dx.

We say that M is solvable in W if and only if the following equivalent conditions are fulfilled:

• the natural morphism (MW )∇ ⊗K K[[x − a]] → MK[[x−a]] is surjective;

• (MW )∇ ⊗K K[[x − a]] → MK[[x−a]] is bijective;

• dimK(MW)∇ = µ.

It is well-known that M is always solvable in K[[x − a]]: in fact, the K-linear endomorphism

Πa =
∑
n�0

(a − x)n

n!
∇

(
d

dx

)n

of MK[[x−a]] is a projector which induces an isomorphism of K-vector spaces of dimension µ:

Π̄a : M/(x − a)M
∼=−→ (MK[[x−a]])

∇,

cf. [Kat70, 8.9]. Therefore, M is solvable in W if and only if every formal solution belongs to W.

If M is solvable in A(a, 1−), then Π̄a : M/(x− a)M
∼=−→ (MA(ā,1−))∇, and M/(x− a)M becomes

canonically isomorphic to M/(x − a′)M for any a′ in the same residue class as a.

3.2 The importance of logarithmic growth in the context of p-adic differential equations lies the
following result.

Theorem 3.2.1 (Dwork). If M is solvable in A(a, 1−), then it is also solvable in Wa,µ−1.

See [Dwo73a, Dwo73b], and also [Chr83, § 5]; the proof uses a transfer from the generic disk to
the special disk D(a, 1−). The theorem is also a straightforward consequence of the Dwork–Robba
effective bounds for the Taylor coefficients of solutions [DR80].

3.3 We assume henceforth that M is solvable in A(a, 1−).
It follows from Dwork’s theorem that for any non-zero m ∈ (MA(ā,1−))∇, there exists a maximal

value σ = σ(m) ∈ R�0 for which m ∈ (MWā,σ+ )∇. We call it the log-growth slope of m (this is the
infimum of all σ′ for which m ∈ (MWā,σ′ )∇).

Let us consider the corresponding exhaustive increasing filtration of (MA(ā,1−))∇ given by

Wσ+(MA(ā,1−))
∇ = (MWā,σ+ )∇.

We set

grσ(MA(ā,1−))
∇ = (MWā,σ+ )∇

/ ⋃
τ<σ

(MWā,τ+ )∇.

We denote by Σā(M) ⊂ R�0 the finite set of σ (the breaks) for which grσ(MA(ā,1−))∇ 
= 0.
The log-growth Newton polygon NPlog,ā(M) (at ā ∈ k), which we place by convention in the

fourth quadrant, is defined as follows: its last vertex on the right is (µ, 0), and for each break σ,

487

https://doi.org/10.1112/S0010437X0700320X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0700320X


Y. André

it has an edge of slope σ and horizontal length

µā,σ(M) := dim grσ(MA(ā,1−))
∇.

Example 3.3.1. Let M be B(0, 1−)e1 ⊕ B(0, 1−)e2, with

∇
(

d

dx

)
e1 = 0, ∇

(
d

dx

)
e2 =

1
x − 1

e1.

Let SnM be the nth symmetric power of M (a basis of solutions being given by logj(1−x), j � n).
Then NPlog,0(SnM) has slopes 0, 1, . . . , n.

Remarks 3.3.2. (1) For any finite extension K ′/K, WK ′,ā,σ+ = WK,ā,σ+ ⊗K K ′, and
(MWā,σ+⊗KK ′)∇ = (MWā,σ+ )∇ ⊗K K ′ (cf. [CT07, 1.9]). A fortiori, NPlog,ā(M) does not change
if one replaces K by K ′.

(2) If N is another differential module solvable in A(a, 1−), then the tensor product M⊗B(a,1−)N
is also solvable in A(a, 1−), and

((M ⊗ N)A(a,1−))
∇ = (MA(ā,1−))

∇ ⊗K (NA(ā,1−))
∇.

One has
(MWā,σ+ )∇ ⊗ (NWā,τ+ )∇ ⊂ ((M ⊗ N)Wā,(σ+τ)+

)∇.

3.4 Let π be a uniformizer of OK . The π-adic completion of

OK((x − a)) := OK [[x − a]]
[

1
x − a

]

coincides after inverting π with the completion of the fraction field of B(a, 1−): this is the field

Ex−a =
{∑

n∈Z

bn(x − a)n, (bn) bounded, lim
n→−∞ bn = 0

}
.

Let t be another indeterminate, which we view as a π-adic unit (Dwork’s generic point) in the
complete field Kt := Et−a (whose residue field is kt := k((t̄ − ā))). One has isometric embeddings of
normed rings

B(a, 1−) ⊂ Ex−a ⊂ B(t, 1−),
(where the latter is the ring of bounded analytic functions, with coefficients in Kt, in the generic
disk), and, correspondingly, isometric embeddings of complete π-adic subrings:

OK [[x − a]] ⊂ OEx−a ⊂ OKt [[x − t]].

The embedding OK [[x−a]] ⊂ OK [[t−a, x−t]] has a retraction given by the specialization map t �→ a.
We can apply the constructions of § 3 to Mt̄ = M⊗B(ā,1−)B(t̄, 1−), replacing (a,K, k) by (t,Kt, kt)

(and denoting by t̄ the image of t in kt). In this way, we get the generic filtration Wσ+(MA(t̄,1−))∇,
and the generic log-growth Newton polygon NPlog,t̄(Mt̄) at t̄.

When compared with NPlog,t̄(Mt̄), NPlog,ā(M) is usually referred to as the special log-growth
Newton polygon (in the residue class D(ā, 1−)).

Remark 3.4.1. It is known that the generic filtration Wσ+(MA(t̄,1−))∇ comes from a horizontal
filtration of MEx (see Robba [Rob75] and Christol [Chr83, 4.3]; see also [CT07, 3.2]).

4. Main theorem

4.1 Let M be a differential module over B(ā, 1−), which is solvable in A(ā, 1−).

488

https://doi.org/10.1112/S0010437X0700320X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0700320X


Dwork’s conjecture on logarithmic growth

Theorem 4.1.1. The special log-growth Newton polygon NPlog,ā(M) lies above the generic log-
growth Newton polygon NPlog,t̄(Mt̄).

It is important here to keep in mind that the right end-point of the log-growth Newton polygon
is fixed: it is (µ, 0) by convention. The theorem implies in particular that the left end-point of the
special log-growth Newton polygon lies above the left end-point of the generic log-growth Newton
polygon. Whether or not these points coincide remains an open question.

Remark 4.1.2. The main difficulty in comparing the two Newton polygons is the following: one has

(M ⊗A(t, 1−))∇ = (M ⊗ (OK [[t − a]] ⊗ K)[[x − t]])∇ ⊗(OK [[t−a]]⊗K) Et−a

but the log-growth filtration does not come from a filtration of

(M ⊗ (OK [[t − a]] ⊗ K)[[x − t]])∇

in general, and thus cannot be specialized for t �→ a.
This difficulty is settled below by using appropriate approximations of the log-growth slope

function by continuous numerical functions, combined with a compacity argument.
As was mentioned in the introduction, another difficulty is that the log-growth filtration is neither

exact (which prevents us from arguing by devissage and induction on µ), nor strictly compatible
with the tensor product (which prevents us from applying Grothendieck’s well-known argument of
exterior powers in the case of the Frobenius slope filtration, cf. e.g. [CT07, 6.12] in our context).

4.2 For any ξ ∈ R�0, we write

σā,ξ =
∑

σ∈Σā,σ>ξ

µā,σ(M).(σ − ξ),

σt̄,ξ =
∑

τ∈Σt̄,τ>ξ

µt̄,τ (Mt̄).(τ − ξ).

Let us first explain how to derive the theorem from the following lemma.

Lemma 4.2.1. One has σā,ξ � σt̄,ξ.

For x ∈ [0, µ], let us denote by gā(x) (respectively gt̄(x)) the convex, piecewise affine function
(with non-positive values) whose graph is the boundary of NPlog,ā(M) (respectively NPlog,t̄(Mt̄)).
For ξ ∈ [0,∞[, let us denote by

g∗ā(ξ) = sup
x

(xξ − gā(x))
(
respectively g∗̄t (ξ) = sup

x
(xξ − gt̄(x))

)

the Legendre transform of gā (respectively gt̄), which is given by

g∗ā(ξ) = µξ + σā,ξ (respectively g∗̄t (ξ) = µξ + σt̄,ξ).

On the other hand, for any x ∈ [0, µ], ξ ∈ [0,∞[, one has the usual Young inequality

xξ � gā(x) + g∗ā(ξ) (respectively xξ � gt̄(x) + g∗̄t (ξ)),

that is
σā,ξ � −gā(x) − ξ(µ − x), (respectively σt̄,ξ � −gt̄(x) − ξ(µ − x)).

For x equal to the abscissa of a vertex of NPlog,ā(M), and for ξ equal to the slope of the edge on
the right of this vertex, the Young inequality for (gā, g

∗̄
a) becomes an equality: xξ = gā(x) + g∗̄a(ξ).

It then follows from the Young inequality for (gt̄, g
∗̄
t ) and from the inequality of Lemma 4.2.1 that

gā(x) � gt̄(x)
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for any break x of the piecewise affine function gā. Since gt̄ is convex, this implies that gā(x) � gt̄(x)
for every x ∈ [0, µ], i.e. NPlog,ā(M) lies above NPlog,t̄(Mt̄).

5. Proof of Lemma 4.2.1

To simplify notation, we assume that a = 0.

5.1 Some numerical functions of bases of M

We fix once for all a free OK -submodule V of M , of rank µ, which generates M over B(0, 1−). For
any sub-OK-algebra R of Kt = Et, we set

VR = V ⊗OK
R,

endowed with its natural norm | · |VR
.

We denote by V0 (respectively Vt) the (isomorphic) image of V (respectively VOKt
) in M/xM

(respectively Mt/(x − t)Mt). This is an OK -lattice of the K-space M/xM (respectively an OKt-
lattice of the Kt-space Mt/(x − t)Mt). We denote by B0 ⊂ V µ

0 (respectively Bt ⊂ V µ
t ) the metric

space of all bases of V0 (respectively Vt).
To any v ∈ V0, we attach a sequence of elements (vn)n�0 ∈ VK : vn is the image modulo x of the

coefficient of xn in the Taylor expansion of Π̄0(v) ∈ VK ⊗K A(0, 1−) = MA(0,1−).
In the same way, we attach to any w ∈ Vt a sequence of elements (wn)n�0 ∈ VKt .

Remarks 5.1.1. (1) Let v be a basis of V and v∗ be the dual basis. Let Gv,1 (respectively Gv∗,1 =
−(Gv,1)t) be the matrix of ∇(d/dx) in v (respectively v∗). Let Gv∗,n ∈ Mµ(B(0, 1−)) be the sequence
of matrices defined inductively by

Gv∗,n+1 =
d

dx
Gv∗,n + Gv∗,n.Gv∗,1,

so that Gv∗,n is the matrix of ∇(d/dx)n in v∗. Then if v (respectively vn) is identified with the
column vector of its coordinates in v, one has vn = (1/n!)(Gv∗ ,n(0))t.v.

(2) The choice of a basis v identifies V0 with the set of K-points of the unit polydisk, and B0

with the set of K-points of an affinoid.

For i � j and for any basis v of V0, we set

s0,ξ(v) =
∑
v∈v

max(0, σ(Π̄0(v)) − ξ),

s0,ξ,i(v) =
∑
v∈v

max
(

0,max
n�i

log |vn|VK

log(n + 1)
− ξ

)
.

s0,ξ,i,j(v) =
∑
v∈v

max
(

0, max
i�n�j

log |vn|VK

log(n + 1)
− ξ

)
.

We use similar notation, with t instead of 0, for any basis w of Vt.

Lemma 5.1.2. We have the following:

(i) s0,ξ,i,j is continuous on B0;

(ii) s0,ξ,i is lower semi-continuous on B0;

(iii) s0,ξ = infi s0,ξ,i = infi supj s0,ξ,i,j;

(iv) σ0̄,ξ = infv∈B0 s0,ξ(v) (cf. § 4.2);
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(v) for any ε > 0, there exist i such that for any j � i,

σ0̄,ξ � inf
v∈B0

s0,ξ,i,j(v) − ε.

The analogous statements with t instead of 0 hold.

Proof. Part (i) follows from the previous remark, and the continuity of | · |VK
on VK .

Part (ii) follows from part (i) since s0,ξ,i is the upper hull of the functions s0,ξ,i,j.
Part (iii) follows from the definition of the log-slope σ(Π̄0(v)).
We now prove part (iv). Via Π̄0, the log-growth filtration of MA(0,1−) induces a filtration of V0

by saturated OK-submodules. It is clear that σ0̄,ξ � s0,ξ(v), with equality if and only if v induces
a basis of ⊕grσV0.

By (iii) and (iv), one has
σ0̄,ξ = inf

i
inf

v∈B0

sup
j

s0,ξ,i,j(v).

Hence, for any ε > 0, there exists i for which

σ0̄,ξ � inf
v∈B0

sup
j

s0,ξ,i,j(v) − ε,

which gives part (v).

5.2 Descent: from OEt to OK [[t]]
Let B′

t ⊂ Bt be the (metric) space of all bases of VOK [[t]].

Lemma 5.2.1. We have the following.

(i) We have infw∈Bt st,ξ,i,j(w) = infw∈B′
t
st,ξ,i,j(w). The infimum is attained.

(ii) For any w ∈ B′
t, its specialization v ∈ B0 (for t �→ 0) satisfies

st,ξ,i,j(w) � s0,ξ,i,j(v).

Proof. For any w ∈ VKt, let us write

St,ξ,i,j(w) = max
(

0, max
i�n�j

log |wn|VKt

log(n + 1)
− ξ

)
,

so that
st,ξ,i,j(w) =

∑
w∈w

St,ξ,i,j(w).

Note that St,ξ,i,j is a continuous function on VKt.
Let R be a noetherian sub-OK-algebra of OKt . Let us define inductively a (finite) decreasing

filtration F •
t,ξ,i,jVR of VR by sub-R-modules as follows:

F 0
t,ξ,i,jVR = VR, (5.1)

F �+1
t,ξ,i,jVR =

{
w ∈ F �

t,ξ,i,jVR, St,ξ,i,j(w) < sup
w′∈F �

t,ξ,i,jVR

St,ξ,i,j(w′)
}

. (5.2)

We denote by F̄ •
t,ξ,i,jVR the image of the filtration F •

t,ξ,i,jVR in VR/πVR.
The cases of interest are R = OK [[t]],OK((t)) and OKt . Since t is a π-adic unit and (tv)n = t.vn,

it is clear that

F �
t,ξ,i,jVOK((t)) = (F �

t,ξ,i,jVOK [[t]])
[
1
t

]
,

and that F̄ �
t,ξ,i,jVOK [[t]]/F̄

�+1
t,ξ,i,jVOK [[t]] has no t-torsion, hence is a free k[[t]]-module of rank at most µ.
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On the other hand, since St,ξ,i,j is continuous and since OK((t)) is dense in OKt , it follows (by
induction on �) that F �

t,ξ,i,jVOK((t)) is dense in F �
t,ξ,i,jVOKt

. In other words, F �
t,ξ,i,jVOKt

is the topo-
logical closure of F �

t,ξ,i,jVOK((t)) in VOKt
, which is nothing but F �

t,ξ,i,jVOK((t)) ⊗OK((t)) OKt according
to [Bou98, III.3.4, Theorem 3]. Therefore

F �
t,ξ,i,jVOKt

= F �
t,ξ,i,jVOK [[t]] ⊗OK [[t]] OKt , (5.3)

F̄ �
t,ξ,i,jVOKt

= F̄ �
t,ξ,i,jVOK [[t]] ⊗k[[t]] k((t)). (5.4)

Let us now characterize those bases w of VR for which the infimum of st,ξ,i,j(w) is attained. For
this purpose, we define inductively a (finite) decreasing sequence �• of natural integers as follows:

• �0 is the last index for which F̄ �0
t,ξ,i,jVR 
= 0;

• �h+1 is the last index less than �h for which F̄
�h+1

t,ξ,i,jVR 
= F̄ �h
t,ξ,i,jVR.

If F̄ �h
t,ξ,i,jVR/F̄ �h+1

t,ξ,i,jVR is a free R/πR-module, we denote its rank by νh, so that
∑

νh = µ.
Then infw basis of VR

st,ξ,i,j(w) is attained at any basis w which induces a basis of⊕
h

F̄ �h
t,ξ,i,jVR/F̄ �h+1

t,ξ,i,jVR

(i.e. such that for any h, (wν0+···+νh−1+1, . . . , wν0+···+νh
) is a νh-uple of F �h

t,ξ,i,jVR which induces a

basis of F̄ �h
t,ξ,i,jVR/F̄ �h+1

t,ξ,i,jVR).
In view of (5.4), the sequence �• is the same for R = OK [[t]] and for R = OKt , and we conclude

that any w ∈ B′
t which induces a basis of

⊕
h F̄ �h

t,ξ,i,jVOK [[t]]/F̄
�h+1
t,ξ,i,jVOK [[t]] realizes the infimum

infw∈Bt st,ξ,i,j(w). This establishes point (i) of the lemma.
Point (ii) is immediate.

5.3 A compacity argument

Let us fix an arbitrary positive real number ε and choose an index i as in point (v) of Lemma 5.1.2.
For any j � i, let wi,j ∈ B′

t realize the infimum in Lemma 5.2.1(i). Let vi,j ∈ B0 be the specialization
of wi,j for t �→ 0. By Lemmas 5.1.2(v) and 5.2.1(ii), we have

σt̄,ξ � st,ξ,i,j(wi,j) − ε � s0,ξ,i,j(vi,j) − ε. (5.5)

Let us first assume that K is locally compact, i.e. a finite extension of Qp. Then B0 is compact.
Let (vi,jk

)k be a convergent subsequence, and let vi ∈ B0 be its limit. Since s0,ξ,i is lower semi-
continuous (Lemma 5.1.2(ii)), there is a compact neighborhood K(vi) of vi in B0 on which s0,ξ,i

takes values of at least s0,ξ,i(vi) − ε. It follows that, when k grows, the functions

min(s0,ξ,i,jk
+ ε, s0,ξ,i(vi))

form an increasing family of continuous functions on K(vi) which converges to the constant function
s0,ξ,i(vi).

By Dini’s lemma, the convergence is uniform. Thus, for k � 0, we have

vi,jk
∈ K(vi)

and

s0,ξ,i(vi) − min(s0,ξ,i,jk
(vi,jk

) + ε, s0,ξ,i(vi)) � ε,

that is,

s0,ξ,i,jk
(vi,jk

) � s0,ξ,i(vi) − 2ε. (5.6)
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Combining (5.5) and (5.6), we get σt̄,ξ � s0,ξ,i(vi) − 3ε, whence

σt̄,ξ � σ0̄,ξ − 3ε. (5.7)

Since (5.7) holds for any ε > 0, this ends the proof of Lemma 4.2.1 when K is locally compact.
If K is not locally compact, we take advantage of Remark 5.1.1(2). We replace V0

∼= Oµ
K by

the Berkovich affinoid space V an
0 (isomorphic to the unit polydisk), and B0 by the corresponding

Berkovich affinoid space Ban
0 , which is compact [Ber90]. More precisely, the choice of a basis v

of V0 identifies V an
0 with the Berkovich spectrum M(K{{x1, . . . , xµ}}). The linear map v �→ vn

corresponds to the analytic (hence continuous) morphism of polydisks

M(K{{x1, . . . , xµ}}) → M(K{{x1/r, . . . , xµ/r}})
(for r big enough) induced by

xi �→
∑

j

1
n!

(Gv∗,n)ji (0)xj

(see Remark 5.1.1(1)). On the other hand, a point u of M(K{{x1/r, . . . , xµ/r}}) corresponds to a
certain seminorm | · |u on the Tate algebra K{{x1/r, . . . , xµ/r}}, and

u �→ |u|VK
:= max(|x1|u, . . . , |xµ|u)

is continuous by definition of the Berkovich topology. Moreover, if u is a classical K-point of
M(K{{x1/r, . . . , xµ/r}}) (corresponding to an element of VK of norm � r), |u|VK

coincides with
the usual norm of u.

Therefore s0,ξ,i,j defines a continuous function on the compact (metric) space Ban
0 , and one can

apply the same compacity argument as before.

Remark 5.3.1. Analogous results hold in the context of p-adic q-difference modules, for |q − 1| <
|p|−1/p−1. The analog of Theorem 3.2.1 was proven by Di Vizio [Div04, 5.1]. The analog of Theo-
rem 4.1.1 can be proven along the same lines as above, mutatis mutandis.

Acknowledgements

I thank Bruno Chiarellotto and Nobuo Tsuzuki for several discussions which have reactivated my
interest in growth problems for solutions of p-adic differential equations.

References

And02 Y. André, Représentations galoisiennes et opérateurs de Bessel p-adiques, Ann. Inst. Fourier
(Grenoble) 52 (2002), 779–808.
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