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TORSION IN Ko OF UNIT-REGULAR RINGS*

by K. R. GOODEARL

(Received 14th September 1993)

We construct examples of unit-regular rings R for which K0(R) has torsion, thus answering a longstanding
open question in the negative. In fact, arbitrary countable torsion abelian groups are embedded in Ko of
simple unit-regular algebras over arbitrary countable fields. In contrast, in all these examples K0(R) is strictly
unperforated.

1991 Mathematics subject classification: 16E50, 16D40, 16E20.

1. Introduction

A longstanding open problem has been whether Ko of a unit-regular ring R must be
torsionfree. Equivalently, if A and B are finitely generated projective right /^-modules
and the direct sum of m copies of A is isomorphic to the direct sum of m copies of B,
for some positive integer m, is A ̂  B? (Cf. [8, p. 200] and [4, Open Problem 27, p. 347].)
Positive answers are known for various classes of regular rings, including regular rings
whose primitive factors are artinian [4, Proposition 6.11], regular rings satisfying
general comparability [4, Theorem 8.16], right X0-continuous regular rings [11,
Corollary 2.2; 6, Corollary 2.6; 1, Theorem 2.13], and N*-complete regular rings [5,
Theorem 2.6]. On the other hand, among non-unit-regular rings some negative
examples are known; e.g., every finite cyclic group is isomorphic to Ko of some regular
ring [4, Example 15.1]. These examples are directly infinite, as are the examples with
stable rank 2 constructed in [12, Example 4].

Here we demonstrate that torsion can occur in Ko of unit-regular rings; in fact, given
an arbitrary countable torsion abelian group G, we construct simple unit-regular rings R
for which K0(R) contains a copy of G. Interestingly, torsion is the only source of
perforation here, for in these examples K0(R) is strictly unperforated, meaning that
whenever xeK0(R) and neN with nx>0, then x>0. We proceed by building a tower of
several constructions, starting with directly infinite examples of the sort mentioned
above. Such an example may be cut down to a countable dimensional algebra over a
field, and a construction of Tyukavkin [14] then allows us to represent the latter
algebra as a factor of a subalgebra of a direct product of matrix algebras. This produces
examples which are at least directly finite. Finally, we use a direct limit construction to
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332 K. R. GOODEARL

embed these directly finite examples into simple unit-regular algebras which inherit the
nontrivial torsion in Ko.

We generally follow the notation and conventions of [4]. In particular, nA denotes
the direct sum of n copies of a module A. In Section 4, it will be convenient to work
within the monoid of isomorphism classes of finitely generated projective right modules
over a ring R. We denote this monoid by FPS(/?) and write its elements in the form
</!>. Thus </!> denotes the isomorphism class of a finitely generated projective module
A, as opposed to its stable isomorphism class [X]eK0(R). The operation in FPS(/?) is
induced from direct sum: <,4> + <B> = </4®2J>. Any ring homomorphism 4>:R-*S
induces a monoid homomorphism FPa($):FP3(l?)-»FPs(S) sending isomorphism
classes <X> to isomorphism classes (A(g)RSy, where S is viewed as an /?-S-bimodule
via <t>. Thus we obtain a functor FP3(—) from rings to monoids. We shall need two
basic properties of this functor. First, observe that FP3(—) preserves direct limits.
Second, when R and S are Morita-equivalent rings, the categories of finitely generated
projective right modules over R and S are equivalent, and so FPa(S)sFPs(R). In
particular, if S = Mn(R) for some n, there is an isomorphism FPS(S)->FP3(J?) given by
</4>t-»<y4 ®sPy, where P is the left-hand column of S. Note that this isomorphism
sends <S> to «<i?>. On the other hand, the diagonal map A:R->S usually does not
induce an isomorphism of FPS(K) onto FP3(S): the composition of FP=(A) with the
isomorphism just discussed is the endomorphism of FPs(i?) given by multiplication
by n.

2. Torsion over directly infinite regular rings

Examples are already known of directly infinite regular rings for which Ko is a finite
cyclic group of arbitrary order [4, Example 15.1]. We build on these examples to obtain
larger torsion subgroups, and then we trim the rings to countable examples for use in
the following section. If one only wishes to obtain examples of simple unit-regular rings
R for which K0(R) contains a finite cyclic subgroup, the following proposition is not
needed; it may be replaced by [4, Example 15.1] in the proof of Corollary 2.2, and the
latter proof simplifies accordingly.

Proposition 2.1. Given any field F and any torsion abelian group G, there exists a
regular F-algebra T such that G embeds in K0(T).

Proof. After replacing G by its divisible hull, we may assume that G^^^G, where
each Ga = Z(p™) for some prime pa. If each Ga embeds in Ko of a regular F-algebra Ta,
then G embeds in K0(rjaTJ. Thus we need only consider the case that G = Z(p°°) for
some prime p.

Set K = F(x) for some indeterminate x; then K is a field which has finite dimensional
extension fields of all possible dimensions. For neN, choose a field Ln=>K such that
dimK(Ln)=p". The construction in [4, Examples 6.13, 15.1] (with K and Ln taking the
roles of F* and F) yields a regular /C-algebra Rn such that K0(Rn) is cyclic of order p",
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generated by a class [cn/?n] where ea is an idempotent in Rn such that p"(enRn) © R , s
Rn. It follows from this isomorphism that p"(eaRn) is cyclic.

Now set T = R/I where K = ]~[ni?n and I = @nRn. We may build some right ideals of
R by taking direct products of sequences of right ideals from the rings Rn. For n^k,
there is a principal right ideal in Rn isomorphic to p"~k(enRn), and so R has a principal
right ideal

In particular, *! S fL. P""1 («.*.) a n d P * i S H . *»"(«.*..)• S i n c e ?"(<?„*„)©*„ = KB for all
n, we obtain that pBx © RsR. Thus p{Bl/Bll)®T^.T, and so p[Bi/B,/] = 0 in K0(T).
If [B,/Bj/]=0, then (Bl/B1I)©mT^mT for some meM. The matrices implementing
this isomorphism would lift to matrices over R whose components (projecting onto
matrices over the Rn) would implement isomorphisms p"~i(enR^@mRn^mRn for all
but finitely many n. But such isomorphisms do not exist, because p"~1[en/?n] is a
nonzero element of K0(Rn) for every n. Therefore [ B ^ B ^ ^ O , and so this element of
K0(T) has order p.

For all k, we have

BkJ
kf\0)x(ekRk)x( fl

\n=0 / \n=*+

whence Bk/BkI^p(Bk+l/Bk+lI) and so [Bt/Blk/] = p[Bt + 1 /Bt + 1 / ] . Therefore Z(ptD) is
isomorphic to the subgroup of K0(T) generated by the elements [Bk/Bt/]. D

Corollary 2.2. Given any countable field F and any countable torsion abelian group G,
there exists a countable regular F-algebra T such that G embeds in K0(T).

Proof. By Proposition 2.1, there exists a regular F-algebra U such that G is
isomorphic to a subgroup H of Ko(£0- List the elements of H as x,,x2 Then H can
be presented with the xn as generators and countably many relations, corresponding to
countably many equations CT, each of which says that some Z-linear combination of
finitely many of the xa vanishes. Each a, can be rewritten in the form

where the ain and bin are nonnegative integers, all but finitely many of which vanish.
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Write each xn = [en(tnU)~\ — [/„({„(/)] for some tneN and some idempotent matrices
en,fneMtn(U). Each equation a, corresponds to an isomorphism

en(tnU))) 0 ( © fc J/-(t- l^A ©

for some c,eN. Such an isomorphism can be implemented by a pair of matrices
uh vt € MSI(U) where st = c{ + £„ («« + *>«)h-

Let To be the F-subalgebra of U generated by the entries of all the matrices
en,fn,uhVj. Since F is countable, so is To. Let Go be the subgroup of K0(T0) generated
by the elements yn = [en(tnToy\ — [/„(£„ 7^)]. Since all the u, and »,• are matrices over To,
the yn satisfy the same relations as the xn. Thus Ko of the inclusion map To -»{/ maps
Go isomorphically onto H.

Finally, choose countable F-subalgebras T Q S T ^ T J C • • • £ ( / SUch that each element
of Tj has a quasi-inverse in TJ+1. Then T = y ; T j is a countable regular F-subalgebra of
U. Since the inclusion map T0-*U factors through the inclusion map r\:T0-*T, we
conclude that K0(rj) is injective on Go. Therefore /Co(f/)(GO) = GOSG. •

3. Transfer to residually finite dimensional algebras

Our next step is to build residually finite dimensional regular algebras S for which
K0(S) contains an arbitrary countable torsion subgroup. This is achieved by applying a
construction of Tyukavkin [14] as developed in [10, Section 2] to the algebras
produced in Corollary 2.2. Recall that an algebra A over a field F is residually finite
dimensional provided the intersection of the cofinite dimensional ideals of A is zero. We
shall say that A is countably residually finite dimensional if some intersection of
countably many cofinite dimensional ideals of A is zero. Note that this occurs if and
only if A can be embedded in a direct product of countably many full matrix algebras
over F.

Throughout this section, let F be a field, B(F) the algebra of all row- and column-
finite coxct> matrices over F, and T a regular F-subalgebra of B(F). Later we shall
assume that F is countable and T is one of the examples produced in Corollary 2.2; any
such algebra T—in fact, any countable dimensional F-algebra—can be embedded in
B(F) by [10, Proposition 2.1]. We use Tyukavkin's construction to build a subalgebra of
the algebra U = Y\™= i Mn(F) with a factor algebra isomorphic to T. Namely, let S be the
set of those sequences x = (xn) e U for which there is an element <j>{x) e T satisfying the
following property: for all keM, there exists an index m,>.k such that for n^.mk, all
entries of the first k rows and columns of xn agree with the corresponding entries of
(f>(x). Then S is an F-subalgebra of U and (f> is a well-defined surjective F-algebra
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homomorphism of S onto T. Moreover, S is regular, and the ideal / = ker(<£) satisfies
/ [ / / £ / . Let us identify T with S/I via (p; then we may view <f> as the quotient map.

Each of the projection maps S-*Mn(F) induces a functor mod-S -• mod-Mn(F).
Composing with the length function, we obtain a function dn from the finitely generated
right S-modules to Z+ which is invariant under isomorphism and additive on direct
sums, and has the additional property that dn(S) = n. Note that dn(xS) = rank(xn) for
all xeS.

Lemma 3.1. Let A and B be finitely generated projective right S-modules such that
AI = A and BI = B.

(a) IfA®sU^B®sU,thenA^B.
(b) / /1 is a positive integer that divides da(A) for all n, then A has a submodule C such

that tC^A.
(c) If cl,c2,... is a bounded sequence of nonnegative integers, there exists a finitely

generated projective right S-module C such that CI = C and dn(C) = cn for all n.

Proof. We may assume that A = e(mS) and B=f(mS) for some me^J and some
idempotent matrices e,feMm(S). Since AI = A, we find that eeMm(/), and similarly
feMm(I).

(a) We are given e(mU)^A ®SU = B<S>SU = f(mU), and so there exist ueeMm{U)f
and vefMm(U)e such that uv = e and vu=f. Since IUI^I^S, we see that u,veMm{S),
and consequently A ̂  B.

(b) After identifying Mm(U) with JX> ^»»'(^)> w e n a v e e = (ei>e2»-) f°r some
idempotent matrices eneMmn(F) such that mnk(en) = dn(A) is divisible by t. Hence, each
en is a sum of t pairwise orthogonal equivalent idempotents. Thus, at least in Mm(U), we
have e=fi + — + / , for some pairwise orthogonal equivalent idempotents /,. Observe
that f, = ef,eeMm(I)Mm(U)Mm(I)cMm(S). Now A=fl{mS)®--® f,(mS), and each
fi(mU)^fi(mU). By part (a), each /(mSJ^/^mS), and thus C = /,(mS) is the desired
submodule of A.

(c) Since the sequence (cuc2,...) is a finite sum of 0,1 sequences, it suffices to
consider the case that all cne{0,1}. Now define matrices xneMn(F) as follows:

JO ifcn =

where enn denotes the usual matrix unit. This gives us a sequence x=(xn)eU, and we
observe that xel. Therefore xS is a finitely generated projective right S-module such
that (xS)I = xS and dn(xS) = rank(xn) = cn for all n. •

Proposition 3.2. The restriction of K0{<f>) to the torsion subgroup of K0(S) provides an
isomorphism onto the torsion subgroup of K0(T).

Proof. First consider a torsion element xekerK0((p). By [4, Proposition 15.15],
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x = [/4] —[B] for some finitely generated projective right S-modules A and B such that
Al = A and BI = B. Further, tx = 0 for some teM, and so tA © kS = tB © kS for some
keN. It follows that dn(A)=dn{B) for all n, and hence A®SU^B®SU. Then ,4SB by
Lemma 3.1, and so x = 0. Therefore Ko(4>) is injective on the torsion subgroup of K0(S).

Now consider a torsion element yeK0(T). Then y = [/!'] — [B'] for some finitely
generated projective right T-modules A' and B', and tA' @kT^tB' @kT for some
r.fcefcl. Since y = [A' ® kT]-[B' @ kT\ and r(/T©/cT)st(B'© ZcT), there is no loss of
generality in assuming that tA's tB'.

Choose finitely generated projective right S-modules A and B such that A/Al = 4 ' and
B/BI^B'; then (t/4)/(t/l)/^(tB)/(tB)/. By [4, Proposition 2.19], there exist decompo-
sitions tA = Al®A2 and tB = Bt@ B2 such that A{^Bt while >l2/ = y42 and B2I = B2.
Then M © B 2 ^ r B © / 4 2 , from which we see that dn(B2) = dn(A2) (modr) for all n.
Choose integers cne{0, l,...,t— 1} such that dn(A2) + cn is divisible by t for all n. By
Lemma 3.1, there is a finitely generated projective right S-module C such that CI = C
and dn(C) = cn for all n. Hence, dn(A2 © C) is divisible by t for all n. Since dn{B2) = dn(A2)
(mod r) for all n, we also have dn(B2 © C) divisible by t for all «.

By Lemma 3.1, A2@ C^tD and B2©C = f£ for some finitely generated projective
right S-modules D and E; moreover, DI = D and EI = E. Hence, the element z —
IA © £] - [B © £>] £ /CQ(S) satisfies

Ko(0)(z) = \A/AT] - [B/B7] = [/I'] - [B'] = >-.

On the other hand, t(A® E)^tA ® B2® C^tB ® A2@ C^t(B ® D), and so tz = 0.
Therefore /Co(0) maps the torsion subgroup of K0(S) onto the torsion subgroup
ofKo(T). •

4. Transfer to unit-regular algebras

Our final construction step provides a means of embedding a countably residually
finite dimensional regular algebra into a simple unit-regular algebra while preserving the
torsion in Ko. This construction is an analog of the C*-algebra construction investi-
gated in [7].

Throughout this section, let S be a countably residually finite dimensional regular
algebra over a field F. Later, we shall let S be one of the algebras produced by the
Tyukavkin construction. Since finite dimensional algebras embed in matrix algebras,
there exists a countable sequence of F-algebra homomorphisms <5n:S->M((n)(F) such that
f")"=i ker(<5n)=0. Replace the sequence 8U52,... by a sequence in which each map is
repeated infinitely often, say Si,Sl,d2,di,52,d3,dl,S2,S3,d^, Hence, after renumber-
ing we may assume that P)™=tker(5n) = 0 for all k.

Identify F with the subalgebra F • 1 £ S; consequently, each M,(n)(F) is identified with a
subalgebra of MI(n)(S), and so we may view Sn as a homomorphism S -> MtM(S). We
shall also use <5n to denote the induced homomorphism Mk{S)-*MktM{F)-*Mk,M(S) for
any k.
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Set v(l)=l and v(n+ l) = v(n)(l + t(n)) for n=l,2,.... Moreover, for
n = Mv(n)(S), let (pn:Rn->Rtt+1 be the block diagonal map given by the rule

337

, set

a 0
0 5.(fl

and let 4>nk = <f>n_i<l>n_2...<f>k.Rk-*Rn for /c<n. Finally, define R to be the direct limit of
the sequence

and let rj^.S = R1-^R be the natural embedding. Observe that

a 0
0 8k(a)

0

0

fa 0
"HO 5k(a

a 0 0 0
0 5k(a) 0 0
0 0 Sk+l(a) 0
0 0 0 Sk+18k(a)j

for aeRk, and similarly for <j>k+24>k+i<t>k(a) etc- 1° particular, for any n>k the matrix
0Mk(a) can be written as a block diagonal matrix in which a,5k(a),dk+1(a),...,8n_l{a) all
appear as blocks.

Now set K=FPS(S) and u = (S}eV. Note that for any veV, there exist v'eV and
meN such that v + v' = mu. As noted in Section 1, the category equivalences mod-i?n->
mod-S induce monoid isomorphisms fin:FPs(Rn)-> V such that //„«/?„» = v(n)u. In
particular, if pn denotes the matrix unit exleRn, then /*„«/>„/?„» = u. Set /„ equal to the
composition

K ^ F P s ( R n ) - ^ ! H FP£(Kn + 1 ) - ^ V,

and set fnk = fn-ifn-2---fk f°r «>&• Note that 0n(pn) is a diagonal matrix in which 1
appears 1 + t(n) times and all other entries are 0. Hence,

Since the functor FPS(—) preserves direct limits, FP=(R) is isomorphic to the monoid

Finally, set sn equal to the composition
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and observe that sn(v(«)u) = v(«)t(n), whence sn(u) = r(n). Since the isomorphism n~l can
be given by the rule </4> i—> </l (X)s Q} where Q is the top row of Rn, we see that

Sn«e(rS)» = r a n k l e )

for all idempotent matrices eeMr(S).

Lemma 4.1. Let veV and n>k in N.
(a) / / st(v) = 0 for all i > k, then v = 0.
(b) fnk(v) = v + (YJ=£ st

Proof, (a) This follows from the fact that f)fLk+1 ker((5,-)=0.
(b) Observe first that /j(w) = w + s,(vv)u for all weV and ieN. The given formula for

fnk(v) follows by an obvious induction on n. •

Proposition 4.2. The algebra R is simple and unit-regular, and K0(R) is strictly
unperforated. Moreover, K0(f/,) restricts to an embedding of the torsion subgroup of K0(S)
into K0(R).

Proof. Obviously R is regular. To prove simplicity, it suffices to show that for
any nonzero element aeRk, there exists n>k such that Rn<j>nk(a)Rn = Rn. Since
P)"=tker((5n)=0, there is an index n>k such that <5n_1(a)^0. Now &n-x{a) is a matrix
with scalar entries, and so at least one entry is invertible. Further, Sn-i(a) appears as a
block in 0n(i(a). Thus </)nk(a) has at least one invertible entry, and hence Rn<f>nk(a)Rn = Rn

as desired. Therefore R is simple.
To prove that R is unit-regular, it suffices to show that the monoid W has

cancellation. Hence, it is enough to show that for any keN and any x,y,veV satisfying
x + v = y + v, there exists n>k such that fnk(x) = fnk{y). There exist v'eV and meN such
that v + v' = mu, whence x + mu = y + mu. Moreover, s,(x)=S;(.y) for all i. If x=0, then
si(y) = 0 for all i, and consequently y = 0 by Lemma 4.1. Thus we may assume that x#0.

Now there exists an integer t^k such that se(x)>0. Choose an integer n^/f + 2 such
that 2"~e~l ^.m. In view of Lemma 4.1, fnk(x) = x + hu for some integer h such that

Since s,(j>) = s,(x) for all i, it also follows from Lemma 4.1 that fnk(y) = y+hu. Thus

as desired. Therefore R is unit-regular.
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Since R is unit-regular, W = K0(R)+. Thus to prove that K0(R) is strictly unperfor-
ated, it suffices to show that for any k,meN and any x,y,veV such that mx + v=my
and u#0, there exist n>k and a nonzero element v'eV such that fnk(x) + v'=fnk(y).
There exist x'eV and peN such that x + x' = pu, and there exists an integer <f̂ fc such
that 5^(y)>0. Choose an integer n^if + 2 such that 2"'"~l>mp. As above, it follows
from Lemma 4.1 that /nl(o) = u + Jiu for some integer h>mp. Further, fnk(x) = x + au and
fnkiy)z=y + bu for some a, feeZ+ such that

mh = " l Si(my) n (1 + t(j)) = " l 5,.(mx + i>) "f\

Hence, b — a = h/m > p, and so

moreover, the element x' + y+(b — a—p)u is nonzero because b — a—p>0. Therefore
K0(R) is strictly unperforated.

Finally, to prove that Ko(^1) is injective on the torsion subgroup of K0(S), it suffices
to show that each K0{(t>n) is injective on the torsion subgroup of K0{Rn). Hence, it is
enough to show that whenever m,neH and x,y,v,v'e V with mx + v = my + v and
fn{x) + v'=fn(y) + v', there exists weV such that x + w = y + w. Applying sn to the
equation mx + v = my + v and cancelling sn(v),m, we obtain sn(x) = sn(y). Setting w =
sn(x)u + v', we conclude that

as desired. Therefore K0(»h) is injective on the torsion subgroup of K0(S). •

Ara has pointed out that the algebra R has a unique rank function N, which may be
described as follows. For a e Rk and n > k, observe that

, , . fa 0

where Wfl)eM,w-, ( W(F)£lW,( , , .» (n(S); if a'eR is the image of a, then

v(n)

5. Summary

The results of Sections 2-4 immediately combine to produce the desired examples.
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Namely, given any countable field F and any countable torsion abelian group G,
Corollary 2.2 provides us with a countable regular F-algebra T such that G embeds in
K0(T). By [10, Proposition 2.1], T can be embedded in B(F), and so we can construct a
countably residually finite dimensional regular F-algebra S as in Section 3. By
Proposition 3.2, the torsion subgroups of K0(S) and K0(T) are isomorphic, and so G
embeds in K0(S). Finally, we use S to construct an algebra R as in Section 4; the desired
properties of R are given by Proposition 4.2. To summarize:

Theorem 5.1. Given any countable field F and any countable torsion abelian group G,
there exists a simple unit-regular F-algebra R such that G embeds in K0(R) and K0(R) is
strictly unperforated.

Theorem 5.1 provides a negative solution to [4, Open Problem 27], but it
immediately suggests a substitute problem: Is Ko of every simple unit-regular ring
necessarily strictly unperforated? An appropriate general version of this question for
non-simple unit-regular rings is the following: If A and B are finitely generated
projective modules over a unit-regular ring and (n+ \)A<>nB for some positive integer n,
is A<m

Another obvious question is whether countability is necessary here: If R is a simple
unit-regular ring with uncountable center, is K0(R) necessarily torsionfree or even
unperforated? As "moral support" for a positive answer to this last question, recall the
role of countability in various unit-regularity problems. For instance, the first example
of a regular, non-unit-regular ring with a rank function was an algebra over a countable
field [3], whereas any regular ring with a rank function which is an algebra over an
uncountable field must be unit-regular [9, Corollary 5.3]. Further, any simple regular
ring R with uncountable center such that all matrix rings Mn(R) are directly finite is
unit-regular [9, Corollary 5.4], while the question whether all directly finite simple
regular rings are unit-regular [4, Open Problem 3] remains open.

O'Meara has asked whether unperforatedness might provide a means to prove unit-
regularity of directly finite simple regular rings. He showed that a directly finite simple
regular ring R is unit-regular provided R satisfies the following property: whenever
x,yeR and neN such that n(xR)<n(yR), then xR<>yR [13, Corollary 3]. In fact, in
view of a general cancellation result of Blackadar [2, Theorem 3.1.4], it would suffice to
know that n(xR) = n(yR) always implies xR^yR. However, our examples show that
neither of the above properties hold for all simple unit-regular rings, and hence they do
not hold for all directly finite simple regular rings.

We conclude by mentioning the matrix-isomorphism problem for the class of unit-
regular rings (cf. [4, Open Problem 47]): If R and S are unit-regular rings such that
Mn(R)^Mn(S) for some positive integer n, is R = S? One might hope to obtain a
counterexample from Theorem 5.1. By that theorem, there exists a simple unit regular
ring R with finitely generated projective modules Al and A2 such that nAx = nA2 but
AljkA2, and the rings £I = EndiJ(^,) are then simple unit-regular rings such that
Mn(£1)sMn(£2). However, it is unclear whether or not £x and E2 are isomorphic. We
leave this question to the reader.
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