ON THE SEMIGROUP OF DIFFERENTIABLE MAPPINGS

SADAYUKI YAMAMURO

(Received 9 April 1969)

To Bernhard Hermann Neumann on his 60th birthday

Communicated by G. B. Preston

The purpose of this paper is to improve a result in [2] on the automorphisms of the semigroup \(\mathcal{D} = \mathcal{D}(E) \) of all (Fréchet)-differentiable mappings of a real Banach space \(E \) into itself.

We denote the derivative of \(f \in \mathcal{D} \) at \(a \in E \) by \(f'(a) \). This means that \(f'(a) \in \mathcal{L} = \mathcal{L}(E) \) (the Banach algebra of all continuous linear mappings of \(E \) into itself with the usual upper bound norm) and

\[
\lim_{||x|| \to 0} ||r(f; a, x)|| = 0,
\]

where

\[
r(f; a, x) = f(a+x) - f(a) - f'(a)(x)
\]

for \(x \in E \).

It is well-known that, for \(fg \), which is defined by

\[
(fg)(x) = f(g(x))
\]

for every \(x \in E \), we have \(fg \in \mathcal{D} \) whenever \(f \in \mathcal{D} \) and \(g \in \mathcal{D} \), and

\[
(gf)'(a) = f'(g(a))g'(a).
\]

This product defines a semigroup structure in \(\mathcal{D} \). An automorphism \(\phi \) of \(\mathcal{D} \) is a bijection of \(\mathcal{D} \) such that

\[
\phi(fg) = \phi(f) \phi(g)
\]

for every \(f \in \mathcal{D} \) and \(g \in \mathcal{D} \).

An automorphism \(\phi \) is said to be inner if there exists a bijection \(h \in \mathcal{D} \) such that \(h^{-1} \in \mathcal{D} \) and

\[
\phi(f) = hfh^{-1}
\]

for every \(f \in \mathcal{D} \).

We denote the set of real numbers by \(\mathbb{R} \). For \(\alpha \in \mathbb{R} \), the mapping \(x \to \alpha x \) of \(E \) into itself is obviously continuous and linear. We denote this mapping by \(\alpha \). Since \(\alpha \in \mathcal{D} \), for an automorphism \(\phi \) of \(\mathcal{D} \), we can consider \(\{\phi(x) | \alpha \in \mathbb{R}\} \) which is a one-parameter group of diffeomorphisms (i.e. bijective and bi-differentiable mappings).

503
For \(a = \phi(0)(0) \) and the translation \(t_a : x \to x + a \), the mapping \(\phi_0 : \mathcal{D} \to \mathcal{D} \) defined by

\[
\phi_0(f) = t_a^{-1} \phi(f) t_a
\]

is an automorphism which satisfies \(\phi_0(0) = 0 \).

Definition. An automorphism \(\phi \) of \(\mathcal{D} \) is said to be uniform if, for any positive \(\varepsilon \in \mathbb{R} \) and every \(\{x_n\} \subset \mathbb{R} \) such that \(x_n \to 0 \), there exists a positive \(\delta \in \mathbb{R} \) such that \(||x|| < \delta \) implies

\[
\sup_{u \geq 1} ||x_n^{-1}\phi_0(x_n)(x) - x|| \leq \varepsilon ||x||.
\]

The main result of this paper is the following theorem.

Theorem. An automorphism of \(\mathcal{D} \) is inner if and only if it is uniform.

If \(\phi(\alpha) \in \mathcal{L} \) for every \(\alpha \in \mathbb{R} \), \(\{\phi(\alpha)\} \) is a one-parameter group of topological linear isomorphisms of \(E \) into itself. The continuity with respect to the parameter (see (2) below) leads to the conclusion that \(\phi(\alpha) = \alpha \) for every \(\alpha \in \mathbb{R} \), from which the uniformity immediately follows and, therefore, \(\phi \) is inner. This is the result obtained in [2].

If we take the sum \(f + g \) as well as product \(fg \) into consideration, the set \(\mathcal{D} \) is a near-ring. If \(\phi \) is a near-ring automorphism, then it is easy to see that \(\phi(\alpha) = \alpha \) for every \(\alpha \in \mathbb{R} \), which implies that \(\phi \) is uniform. This implies that the near-rings \(\mathcal{D}(E_1) \) and \(\mathcal{D}(E_2) \) are isomorphic if and only if the Banach spaces \(E_1 \) and \(E_2 \) are diffeomorphic. On the other hand, from our theorem it follows that the semigroups \(\mathcal{D}(E_1) \) and \(\mathcal{D}(E_2) \) are isomorphic by a uniform isomorphism if and only if \(E_1 \) and \(E_2 \) are diffeomorphic.

We believe that the answer to the following problem is affirmative.

Problem. Is every automorphism of \(\mathcal{D} \) uniform?

Therefore, in the proof of sufficiency, we shall avoid using the uniformity wherever possible, which sometimes makes the proof unnecessarily long.

Proof of the necessity

We assume that \(\phi \) is an inner automorphism of the semigroup \(\mathcal{D} \). Therefore, there exists a diffeomorphism \(h : E \to E \) such that \((*)\) is true. Then, since \(\phi(1) = 1 \), we have \((h_0^{-1})(0) = h_0'(0)^{-1}\) and \(h_0(0) = 0 \) where \(h_0 = t_a^{-1}h \) with \(a = h(0) \).

Let \(\varepsilon \) be an arbitrary positive number. There exists \(\varepsilon_1 > 0 \) such that

\[
||h_0'(0)||\varepsilon_1 + (||h_0'(0)^{-1}|| + \varepsilon_1)\varepsilon_1 < \varepsilon.
\]

Putting \(r_1(x) = r(h_0^{-1}; 0, x) \) and \(r_2(x) = r(h_0^{-1}; 0, x) \), we can take \(\delta_1 > 0 \)
such that $0 < |x| < \delta_1$ implies $|r_i(x)| < \varepsilon_i|x|$ $(i = 1, 2)$. Since h is continuous, there exists $\delta > 0$ such that

$$0 < \delta < \delta_1 \text{ and } |h_0^{-1}(x)| < \delta_1 \text{ if } |x| < \delta.$$

Then, for $x \in \mathcal{A}$ such that $0 < |x| < 1$, if $|x| < \delta$,

$$||x^{-1}r_1(xh_0^{-1}(x))|| \leq ||h_0^{-1}(x)|| (||xh_0^{-1}(x)||)^{-1}||r_1(xh_0^{-1}(x))||$$

$$< (||h_0'(0)||^{-1} ||x|| + ||r_2(x)||) \varepsilon_1.$$

Therefore, since

$$x^{-1}\phi_0(x)(x) - x = h_0'(0)r_2(x) + x^{-1}r_1(xh_0^{-1}(x)),$$

we have, if $|x| < \delta$,

$$||x^{-1}\phi_0(x)(x) - x|| \leq ||h_0'(0)|| ||r_2(x)|| + ||x^{-1}r_1(xh_0^{-1}(x))||$$

$$< ||h_0'(0)|| \varepsilon_1 ||x|| + (||h_0'(0)||^{-1} ||x|| + ||r_2(x)||) \varepsilon_1$$

$$\leq (||h_0'(0)|| \varepsilon_1 + (||h_0'(0)||^{-1} + \varepsilon_1) \varepsilon_1) ||x||$$

$$< \varepsilon ||x||.$$

Proof of the sufficiency

Let ϕ be an automorphism of \mathcal{A}. The following fact has been proved by K. D. Magill, Jr. [1].

There exists a bijection $h : E \to E$ which satisfies (\ast).

All we know about this h at this stage is that it is a bijection (i.e., one-to-one and onto). We are going to prove that $h \in \mathcal{A}$ and $h^{-1} \in \mathcal{A}$.

Since $\phi^{-1}(f) = h^{-1}fh$ and ϕ^{-1} is also an automorphism, any statement about h can be replaced by the same statement about h^{-1}. We shall use this fact freely.

Moreover, we can assume that $h(0) = 0$, because, if $h(0) = a \neq 0$, we have only to consider the bijection $h_0 = t_a^{-1}h$, which corresponds to the automorphism ϕ_0.

For the sake of convenience, we denote the set of all sequences $\{\varepsilon_n\} \subset \mathcal{A}$ such that $\lim_{n \to \infty} \varepsilon_n = 0$ by (c_0).

(1) $\inf_{n \geq 1} ||\varepsilon_n^{-1}h(\varepsilon_n a)|| > 0$ for every $a \in E$ and any $\{\varepsilon_n\} \in (c_0)$.

Assume that there exist $a \in E$ and $\{\varepsilon_n\} \in (c_0)$ such that

$$\lim_{n \to \infty} ||\varepsilon_n^{-1}h(\varepsilon_n a)|| = 0.$$

For any $\{\delta_n\} \in (c_0)$, taking one of its subsequences if necessary, we can assume that $\delta_n \varepsilon_n^{-1} \to 0$. Then,

$$\delta_n^{-1}h(\delta_n a) = \delta_n^{-1}h(\delta_n \varepsilon_n^{-1} \varepsilon_n a) = \delta_n^{-1}\phi(\delta_n \varepsilon_n^{-1})h(\varepsilon_n a).$$
On the other hand, the uniformity implies that there exists \(\delta > 0 \) such that
\[
|\|x\|| < \delta \Rightarrow \sup_{n \geq 1} |\|\phi(x)\|| \leq |\|x\||.
\]
Since \(\lim_{n \to \infty} h(e_n a) = 0 \), we get
\[
|\|\delta^{-1} h(\delta_n a)\|| = |\|\delta^{-1} e_n \phi(\delta_n e_n^{-1}) h(e_n a)\||
\leq |\|e_n^{-1} h(e_n a)\||,
\]
which implies
\[
\lim_{n \to \infty} \delta^{-1} h(\delta_n a) = 0.
\]
Therefore,
\[
\lim_{\varepsilon \to 0} \varepsilon^{-1} h(\varepsilon x) = 0,
\]
which means that \(h \) is Gateaux-differentiable at 0, because, for any \(x \), if we take \(\chi \in \mathcal{L} \) such that \(\chi(a) = x \),
\[
\varepsilon^{-1} h(\varepsilon x) = \varepsilon^{-1} h(\varepsilon \chi(a)) = \varepsilon^{-1} \phi(\chi) h(\varepsilon a),
\]
from which it follows that \(\lim_{\varepsilon \to 0} \varepsilon^{-1} h(\varepsilon a) = 0 \). Moreover, \(h \) is Gateaux-differentiable at every point, because, for \(t_x : x \to x+z \), we have \(t_x \in \mathcal{D} \) and
\[
\varepsilon^{-1}[h(x+\varepsilon z) - h(x)] = \varepsilon^{-1}[\phi(t_x) h(\varepsilon z) - \phi(t_x) h(0)],
\]
from which it follows that
\[
\lim_{\varepsilon \to 0} \varepsilon^{-1}[h(x+\varepsilon z) - h(x)] = \phi(t_x)'(0) \lim_{\varepsilon \to 0} \varepsilon^{-1} h(\varepsilon z).
\]
If we denote the Gateaux-derivative of \(h \) at \(x \) by \(h^*(x) \), then we have \(h^*(x) = 0 \) for every \(x \in E \). The mean value theorem then implies that \(h = 0 \), which is a contradiction.

For the conjugate space \(E \), the value of \(\bar{a} \in E \) at \(x \in E \) is denoted by \(\langle x, \bar{a} \rangle \).

(2) *For any \(\bar{a} \in E \), \(\langle h(x), \bar{a} \rangle \) is continuous with respect to \(x \).*

To prove the continuity at \(a \in E \), we use the method used by K. D. Magill, Jr. [1]. We take positive \(\varepsilon \in \mathcal{B} \) and non-zero \(b \in E \) and consider the mapping \(g \in \mathcal{D} \) such that
\[
g(x) = \beta(\langle x-h(a), \bar{a} \rangle) b + h(a),
\]
where \(\beta : \mathcal{B} \to \mathcal{B} \) is a differentiable function such that
\[
\beta(\xi) = 0 \text{ if } |\xi| \leq \varepsilon; = 1 \text{ if } \xi = 0.
\]
We take \(f \in \mathcal{D} \) such that \(\phi(f) = g \). Then, \(f(a) \neq a \), because, if \(f(a) = a \), we have
\[
h(a) = hf(a) = \phi(f)h(a) = gh(a) = b + h(a),
\]
On the semigroup of differentiable mappings

507

which is a contradiction. Since \(f \) is continuous, there exists \(\delta > 0 \) such that \(||x-a|| < \delta \) implies \(f(x) \neq a \). Therefore, if \(||x-a|| < \delta \), we have \(gh(x) = hf(x) \neq h(a) \), which means that \(\beta(\langle h(x) - h(a), \tilde{a} \rangle) \neq 0 \). By the definition of \(\beta \), we have \(\langle h(x) - h(a), \tilde{a} \rangle < \epsilon \).

(3) \(\sup_{n \geq 1} ||\varepsilon_n^{-1}h(e_n a)|| < \infty \) for any \(a \in E \) and any \(\{e_n\} \in (c_0) \).

As a special case, \(\lim_{n \to \infty} h(e_n a) = 0 \).

Let us suppose that there exist \(a \in E \) and \(\{e_n\} \in (c_0) \) such that

\[
\lim_{n \to \infty} ||\varepsilon_n^{-1}h^{-1}(e_n a)|| = \infty.
\]

Then, for some \(\tilde{a} \in \tilde{E} \), we have

\[
\lim_{n \to \infty} \langle \varepsilon_n^{-1}h^{-1}(e_n a), \tilde{a} \rangle = \infty.
\]

For these \(a \in E \) and \(\tilde{a} \in \tilde{E} \), we consider the mapping \(a \otimes \tilde{a} \in \mathcal{L} \) that is defined by

\[
a \otimes \tilde{a}(x) = \langle x, \tilde{a} \rangle a.
\]

Then,

\[
\phi(a \otimes \tilde{a})(0)(a) = \lim_{n \to \infty} \varepsilon_n^{-1}\phi(a \otimes \tilde{a})(e_n a)
\]

\[
= \lim_{n \to \infty} \varepsilon_n^{-1}h[\langle h^{-1}(e_n a), \tilde{a} \rangle a]
\]

\[
= \lim_{n \to \infty} (\varepsilon_n^{-1}\langle h^{-1}(e_n a), \tilde{a} \rangle) (\langle h^{-1}(e_n a), \tilde{a} \rangle)^{-1}
\]

\[
\times h[\langle h^{-1}(e_n a), \tilde{a} \rangle a],
\]

from which it follows that

\[
\lim_{n \to \infty} (\langle h^{-1}(e_n a), \tilde{a} \rangle)^{-1}h[\langle h^{-1}(e_n a), \tilde{a} \rangle a] = 0,
\]

which contradicts the facts proved in (1) and (2).

(4) For any \(a \in E \) and any \(\{e_n\} \in (c_0) \), there exists a subsequence \(\{e_{n_k}\} \) such that

\[
\{\varepsilon_{n_k}^{-1}h(e_{n_k} a)\}
\]

is convergent.

Since \(a \) can be supposed to be non-zero, we can take \(\tilde{a} \in \tilde{E} \) such that \(\langle a, \tilde{a} \rangle \neq 0 \) and \((\phi(a \otimes \tilde{a})(0)(a) \neq 0 \). For this \(a \otimes \tilde{a} \), we take \(\{\delta_n\} \in (c_0) \) such that

\[
\langle h^{-1}(\delta_n a), \tilde{a} \rangle = \varepsilon_n,
\]

which is possible because of (2). Since the sequence of real numbers

\[
\{\delta_n^{-1}\langle h^{-1}(\delta_n a), \tilde{a} \rangle\}
\]

is bounded, it contains a convergent subsequence

\[
\{\delta_{n_k}^{-1}\langle h^{-1}(\delta_{n_k} a), \tilde{a} \rangle\}.
\]
Then,
\[
0 \neq \phi(a \otimes \bar{a})'(0)(a) = \lim_{k \to \infty} \delta_{n_k}^{-1} \phi(a \otimes \bar{a})\left(\delta_{n_k} a\right)
\]
\[
= \lim_{k \to \infty} \delta_{n_k}^{-1} \langle h^{-1}(\delta_{n_k} a), \bar{a} \rangle \epsilon_{n_k}^{-1} h(\epsilon_{n_k} a),
\]
which implies that
\[
\lim_{k \to \infty} \delta_{n_k}^{-1} \langle h(\delta_{n_k} a), \bar{a} \rangle \neq 0.
\]
Therefore, we have the limit
\[
\lim_{k \to \infty} \epsilon_{n_k}^{-1} h(\epsilon_{n_k} a) = \left(\lim_{k \to \infty} \delta_{n_k}^{-1} \langle h^{-1}(\delta_{n_k} a), \bar{a} \rangle\right)^{-1} \phi(a \otimes \bar{a})'(0)(a).
\]
(5) The limit \(\lim_{\epsilon \to 0} \epsilon^{-1} h(\epsilon a) \) exists.

We have only to show that, if the limits
\[
\lim_{n \to \infty} \epsilon_{n}^{-1} h(\epsilon_{n} a) = a_1 \text{ and } \lim_{n \to \infty} \delta_{n}^{-1} h(\delta_{n} a) = a_2
\]
exist for \(\{\epsilon_{n}\} \in (c_0) \) and \(\{\delta_{n}\} \in (c_0) \), then we have \(a_1 = a_2 \).

We can assume, taking a subsequence of \(\delta_{n} \) if necessary, that
\[
\lim_{n \to \infty} \delta_{n} = 0.
\]
Then,
\[
\delta_{n}^{-1} h(\delta_{n} a) = \delta_{n}^{-1} h(\delta_{n} \epsilon_{n}^{-1} \epsilon_{n} a) = \delta_{n}^{-1} \phi(\delta_{n} \epsilon_{n}^{-1}) h(\epsilon_{n} a)
\]
\[
= \epsilon_{n}^{-1} [\delta_{n}^{-1} \epsilon_{n} \phi(\delta_{n} \epsilon_{n}^{-1}) h(\epsilon_{n} a) - h(\epsilon_{n} a)] + \epsilon_{n}^{-1} h(\epsilon_{n} a).
\]
The uniformity then implies that
\[
\lim_{n \to \infty} ||\delta_{n}^{-1} h(\delta_{n} a) - \epsilon_{n}^{-1} h(\epsilon_{n} a)|| = 0.
\]
We denote this limit by \(h^*(0)(a) \).

(6) \(h \) is differentiable at every point in all directions.

Let \(a \) be an arbitrary point and consider the mapping \(t_a : x \mapsto x + a \).

Then, \(t_a \in \mathcal{D} \) and
\[
e^{-1}[h(a + \epsilon x) - h(a)] = e^{-1}[\phi(t_a) h(\epsilon x) - \phi(t_a) h(0)]
\]
\[
= e^{-1}[\phi(t_a)'(0) h(\epsilon x) + r(\phi(t_a) ; 0, h(\epsilon x))].
\]
Therefore,
\[
\lim_{\epsilon \to 0} e^{-1}[h(a + \epsilon x) - h(a)] = \phi(t_a)'(0) h^*(0)(x).
\]
We denote this limit by \(h^*(a)(x) \). Obviously,
\[
h^*(a)(ax) = a h^*(a)(x).
\]
(7) For any $a \otimes \tilde{a}$, $h(a \otimes \tilde{a}) \in \mathcal{D}$ and

$$(h(a \otimes \tilde{a}))'(x)(y) = \langle y, \tilde{a} \rangle h^*(\langle x, \tilde{a} \rangle a)(a).$$

Since

$$\varepsilon^{-1}[h(a \otimes \tilde{a})(x+\varepsilon y) - h(a \otimes \tilde{a})(x)]$$

$$= \varepsilon^{-1}[h(\langle x, \tilde{a} \rangle a + \varepsilon \langle y, \tilde{a} \rangle a) - h(\langle x, \tilde{a} \rangle a)],$$

it follows from (6) that the limit as $\varepsilon \to 0$ exists and it is

$$\langle y, \tilde{a} \rangle h^*(\langle x, \tilde{a} \rangle a)(a),$$

which is obviously continuous and linear with respect to y. Moreover,

$$\lim_{\|\varepsilon\| \to 0} \left| \begin{array}{c} |y|^{-1} |h(a \otimes \tilde{a})(x+y) - h(a \otimes \tilde{a})(x) - (h(a \otimes \tilde{a}))^* (x)(y)| \\
\end{array} \right|$$

$$\leq ||\tilde{a}|| \lim_{\|\varepsilon\| \to 0} \left| \begin{array}{c} \langle y, \tilde{a} \rangle^{-1}[h(\langle x, \tilde{a} \rangle a + \langle y, \tilde{a} \rangle a) - h(\langle x, \tilde{a} \rangle a)] \\
-h^*(\langle x, \tilde{a} \rangle a)(a) \\
= 0,
\right|$$

which means that $h(a \otimes \tilde{a}) \in \mathcal{D}$.

(8) For any $a \otimes \tilde{a}$, $(a \otimes \tilde{a})h \in \mathcal{D}$ and

$$((a \otimes \tilde{a})h)'(x)(y) = \langle h^*(x)(y), \tilde{a} \rangle a.$$

By (7), we have

$$(a \otimes \tilde{a})h = \phi^{-1}(h(a \otimes \tilde{a})) \in \mathcal{D}.$$

The formula for $((a \otimes \tilde{a})h)'(x)(y)$ is obvious.

(9) $h^*(a) \in \mathcal{L}$ for every $a \in E$.

The linearity follows immediately from (8). To prove the continuity, let us take an arbitrary non-zero $b \otimes \tilde{b}$. Then

$$|\langle h^*(a)(x), \tilde{b} \rangle| = ||b||^{-1} ||(b \otimes \tilde{b})h)'(a)(x)||$$

$$\leq ||b||^{-1} ||(b \otimes \tilde{b})h)'(a)|| ||x||,$$

which means the set

$$\{h^*(a)(x) ||x|| \leq 1\}$$

is weakly bounded. Therefore, $h^*(a)$ is continuous.

We define $r_1(x)$ and $r_2(x)$ by

$$h(x) - h^*(0)(x) = r_1(x) \text{ and } h^{-1}(x) - (h^{-1})^*(0)(x) = r_2(x).$$

(10) For any sequence $\{x_n\}$ such that $\lim_{n \to \infty} x_n = 0$, the sequence $\{|x_n|^{-1} r_i(x_n)\}$ converges weakly to 0 for $i = 1, 2$. Therefore, the sequence $\{|x_n|^{-1} h(x_n)\}$ is bounded, which implies that $\lim_{n \to \infty} h(x_n) = 0$.

https://doi.org/10.1017/S1446788700007801 Published online by Cambridge University Press
From (8) it follows that \((a \otimes \bar{a})r_1(x)\) is the remainder of \((a \otimes \bar{a})h\) at 0. Therefore,
\[
\lim_{n \to \infty} ||x_n||^{-1} (a \otimes \bar{a})r_1(x_n) = 0,
\]
which implies that
\[
\lim_{n \to \infty} \langle ||x_n||^{-1} r_1(x_n), \bar{a} \rangle = 0
\]
for every \(\bar{a} \in E\).

(11) \(\lim_{|x| \to 0} |x|^{-1} r_i(x) = 0\) \((i = 1, 2)\). Therefore, \(h \in \mathcal{D}\) and \(h^{-1} \in \mathcal{D}\). Assume that there exists a sequence \({x_n} \subset E\) such that
\[
\lim_{n \to \infty} x_n = 0 \text{ and } ||x_n||^{-1} ||r_1(x_n)|| \geq \gamma > 0 \quad (n = 1, 2, \cdots)
\]
for some positive \(\gamma \in \mathbb{R}\). By (5), we can take \({e_n} \in (c_0)\) such that
\[
||e_n^{-1} r_1(e_n x_n)|| \leq ||x_n||^2 \quad (n = 1, 2, \cdots).
\]
Then, for large \(n\), we have
\[
||e_n^{-1} \phi(e_n)h(x_n) - h(x_n)|| = ||e_n^{-1} h(e_n x_n) - h(x_n)||
\]
\[
= ||e_n^{-1} r_1(e_n x_n) - r_1(x_n)|| \geq ||r_1(x_n)|| - ||e_n^{-1} r_1(e_n x_n)||
\]
\[
\geq (\gamma - ||x_n||) ||x_n|| \geq (\gamma - ||x_n||) (\inf_{n \geq 1} ||x_n|| ||h(x_n)||^{-1}) ||h(x_n)||.
\]
Since, by (10), \(\inf_{n \geq 1} ||x_n|| ||h(x_n)||^{-1} > 0\) which implies that \(\lim_{n \to \infty} h(x_n) = 0\), this contradicts the uniformity.

References

Australian National University
and
State University of New York at Buffalo