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The purpose of this paper is to improve a result in [2] on the automor-
phisms of the semigroup 2 = Z(E) of all (Fréchet)-differentiable mappings
of a real Banach space E into itself.

We denote the derivative of f e 2 at a € E by f'(a). This means that
f(a) e L = F(E) (the Banach algebra of all continuous linear mappings of
E into itself with the usual upper bound norm) and

“ililfilollxll‘lllf(f; a,z)|| =0,
where
r(f; a, z) = flat+x)—f(a)—f (a)(x) for x e E.
It is well-known that, for fg which is defined by

(fe) (@) = f(g(x)) for every z € E,
we have fg € @ whenever fe & and g € Z, and

(f8) (a) = f'(g(a))g’ (a).
This product defines a semigroup structure in 2. An automorphism ¢ of 2
is a bijection of 2 such that

$(fg) = () ¢ (g) for every fe 2 and ge 2.

An automorphism ¢ is said to be inner if there exists a bijection % € & such
that 271 € & and

) &(f) = hfh? for every fe 2.

We denote the set of real numbers by #. For « € #, the mapping
x > ax of E into itself is obviously continuous and linear. We denote this
mapping by «. Since « € &, for an automorphism ¢ of &, we can consider
{$(x)|le € #} which is a one-parameter group of diffeomorphisms (i.e.
bijective and bi-differentiable mappings).
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For a = ¢(0)(0) and the translation ¢,:z ->z-+4a, the mapping
¢o 1 Z — 2 defined by

$olf) = 51 ¢ ()t
is an automorphism which satisfies ¢,(0) = 0.

DEFINITION. An automorphism ¢ of & is said to be uniform if, for any
positive ¢ e Z and every {«,} C % such that «, — 0, there exists a positive
0 € # such that ||x|| < ¢ implies

sup |l o (a0,) () — 2|} < el |]].

The main result of this paper is the following theorem.

THEOREM. An automorphism of & is inner if and only if it is uniform.

If () € £ for every a € Z, {¢(«)} is a one-parameter group of topologi-
cal linear isomorphisms of E into itself. The continuity with respect to the
parameter (see (2) below) leads to the conclusion that ¢(«) = « for every
o € #, from which the uniformity immediately follows and, therefore, ¢
is inner. This is the result obtained in [2].

If we take the sum f+g as well as product fg into consideration, the set
2 is a near-ring. If ¢ is a near-ring automorphism, then it is easy to see that
(o) = o for every « e #, which implies that ¢ is uniform. This implies
that the near-rings D (E,) and D (E,) ave isomorphic if and only if the Banach
spaces E; and E, are diffeomorphic. On the other hand, from our theorem
it follows that the semigroups D(E,) and D (E,) are isomorphic by a uniform
isomorphism if and only if E, and E, are diffeomorphic.

We believe that the answer to the following problem is affirmative,

PROBLEM. [Is every automorphism of & uniform?
Therefore, in the proof of sufficiency, we shall avoid using the uniformity
wherever possible, which sometimes makes the proof unnecessarily long.

Proof of the necessity

We assume that ¢ is an inner automorphism of the semigroup 2.
Therefore, there exists a diffeomorphism % : E — E such that (%) is true.
Then, since ¢(1) = 1, we have (h5')(0) = hy(0)™" and %4(0) = 0 where
hy = ;% with a = h(0).

Let & be an arbitrary positive number. There exists & > 0 such that

129 (0) &1+ (1126(0) M| +-21)er < .

Putting 7, () = 7(hy; 0, ) and 7,(x) = r(kg"; 0, ), we can take &, > 0
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such that 0 < ||z|] < §, implies ||r;(x)]| < &llz|| ¢ = 1, 2). Sincey! 4 is
continuous, there exists 6 > 0 such that

0 <6< 6, and ||hgt(x)|| < &, if {|=|| < 8.
Then, for « € # such that 0 < |a] << 1, if ||z]} < 4,

oty (g @) | = Vg™ @)1 (llaig™ (@)11) 17y (kg™ () |
< (1A (0) | Nl |41 lre (®)11) &1 -

Therefore, since
a7y () (x) — = g (0)ry (%) ot ry (g (),
we have, if ||z]| < 4,

|lo o (o) () =] < |Veg(O)i] [172 ()| +[lo 7y {ahig () ]
< ho(0)leal 2l ]+ (1o (0) 7] el |+ 172 ()1]) &1
= {I16(0) [lex+ (1176(0) 2| +21) &4} ]|
< & ||x}].

Proof of the sufficiency

Let ¢ be an automorphism of 2. The following fact has been proved by
K. D. Magill, Jr. [1].

There exists a bijection h : E — E which satisfies (%).

All we know about this % at this stage is that it is a bijection (i.e., one-to-one
and onto). We are going to prove that e Z and 41 e 2.

Since ¢71(f) = A~1fh and ¢! is also an automorphism, any statement
about % can be replaced by the same statement about 4~*. We shall use this
fact freely.

Moreover, we can assume that %(0) = 0, because, if £(0) = a # 0, we
have only to consider the bijection %, = #;*h, which corresponds to the
automorphism ¢,.

For the sake of convenience, we denote the set of all sequences {¢,} C 2
such that lim,_ &, = 0 by (c,).

(1) inf, ., ||e; (e, a)|| = O for every a € E and any {&,} € (c,).

Assume that there exist @ € E and {¢,} € (¢,) such that

lim ||, A (e a)|] = O.

n-o0

For any {4,} € (c,), taking one of its subsequences if necessary, we can
assume that 8,¢;* — 0. Then,

8.1 h(8,a) = 6, h (0,5, 6,a) = 8,1 (3,8, ) h(eqa).
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On the other hand, the uniformity implies that there exists 4 > 0 such that
|||l << & implies
sup 1077 . (8,857) @)I| = []]]-

Since lim,,_, A(e,a) = 0, we get

1671 2(0na)|| = le3* 107" £nd(Bnen®)lena)ll
< |lez" hle,a)ll,
which implies
lim 6;*4(8,a) = 0.

n—-»00

Therefore,

lim e 1A(s a) = 0,
E~0

which means that 7% is Gateaux-differentiable at 0, because, for any z, if
we take y € & such that y(a) = =,

e h(ex) = e h(ex(a)) = e ()hlea),

from which it follows that lim,_ e 1k(ex) = 0. Moreover, % is Gateaux-
differentiable at every point, because, for £, : z — 22, we have {, € Z and

e [h(z+ez) —h(x)] = e[ (L) h(ez) — (L) R(0)],
from which it follows that

lim e [h(w+22) —h(x)] = ()’ (0) (lim £A(e2)).

E~0 E=0

If we denote the Gateaux-derivative of 4 at & by A*(x), then we have
h*(@x) = 0 for every x e E. The mean value theorem then implies that
k = 0, which is a contradiction.

For the conjugate space E, the value of @ € E at x € E is denoted by {z, @).

(2) For any a e E, {h(x), @) is continuous with respect to x.

To prove the continuity at a € E, we use the method used by K. D.
Magill, Jr. [1]. We take positive ¢ € Z and non-zero b € E and consider the
mapping g € 2 such that

glx) = B(<z—h(a), @>)b+h(a),
where § : # — Z is a differentiable function such that
BE) =0 if || =¢; =1if E=0.

We take f e @ such that ¢(f) = g. Then, f(a) + a, because, if f(a) = a, we
have

h(a) = hf(a) = $(/)h(a) = ghla) = b+-h(a),
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which is a contradiction. Since f is continuous, there exists d > 0 such that
lle—a|| < & implies f(x) % a. Therefore, if ||jx—a|| < 8, we have gh(x) =
hi(z) # h(a), which means that g((k(x)—h(a), @) # 0. By the definition
of 8, we have {h(x)—h(a), d> < &.

(8) sup,=, |le; k(e a)|| < oo for any a e E and any {e,} € (o).
As a special case, lim,,_,  h{c,a) = 0.

Let us suppose that there exist 4 € E and {¢,} € (¢,) such that

lim ||e; A1 (e,a)|| = c0.
Then, for some d € E, we have
lim {&;'h 1 (¢s,a), &) = c0.

For these a € E and 4 € E, we consider the mapping 4 ® 4 € # that is

defined by
a@ dlx) =<z, a)a.
Then,
$(a @ 4)'(0)(a) = lim 7' (a @ d)(e,a)
= lim & h[{h (e, a), da])
= lim (&;'Ch (e a), D) (Ch i (e a), d)) 2

Xh[{h7 (eqa), d)al,

from which it follows that

lim (Ch(e,a), &)~k [(h(e,a), @)a] = O,

which contradicts the facts proved in (1) and (2).

(4) For any ae E and any {e,} € (¢y), there exwists a subsequence {e, }
such that

{eath(e,,a)}
1s convergent.

Since a can be supposed to be non-zero, we can take @ € E such that
{a,d@) # 0 and ¢(a ® 4)'(0)(a) # 0. For this a Q 4, we take {4,} € (cp)
such that

<h'—1 (611“)» iy = Ens

which is possible because of (2). Since the sequence of real numbers

{07Kh(8,a), @)}

is bounded, it contains a convergent subsequence

{00 <1 (8,,8), a}.

https://doi.org/10.1017/51446788700007801 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700007801

508 Sadayuki Yamamuro (61

Then,
0 # ¢(a Q 4)'(0)(a) = lim 6;::;3(41 ® d)(6,,a)
k=00
— lim 8;XCh1(3,, @), d>erthie, a),
k- oo

which implies that
lim 8,%<A (0, ), @) # 0.

k— oo

Therefore, we have the limit
lim &, h(e, a) = (lim 6,1<CA71(8,, ), @)) " d(a @ 4)'(0)(a).
k- o0 k-0

(8) The limit lim,_ ye™ 2 h(sa) exists.
We have only to show that, if the limits

lim &;'h(e,a) = a, and lim 8,;'%(8,a) = a,

n-—-+ oo n - 00

exist for {¢,} € (¢c,) and {4,} € (c,), then we have a; = a,.
We can assume, taking a subsequence of {d,} if necessary, that

lim 0, = 0.
Then, -
8 h(d,a) = 6,7 h(0,6, e,a) = 0,7 $(8,6, ) (e, a)
= ;1[0 e, p (0,65 ) h(e,a) —h(ena)]+e5 (e a).

The uniformity then implies that

llay—a,|| = lim |[6, 2 (8, a) —&, h(e,a)]
= lm ||, [0, £,4(8,6,") A (e, a) —h(e,a)]l] = 0.

We denote the limit lim,_ e~ h(sa) by h*(0)(a).

(8) 7 is differentiable at every point in all directions.
Let a be an arbitrary point and consider the mapping ¢, : ¢ — z+-a.
Then, ¢, e 2 and

el [h(atex) —h(a)] = e [$(t.)h(e ) —$(t)2(0)]
= g1 [B(t,) (0)h(ex) F7(¢(ta); O, h(ex))].
Therefore,

lim e [h(a+ex)—h(a)] = $(4,)’ (0)* (0) @).

£-0

We denote this limit by h*(a)(x). Obviously,
h*(a) (ax) = oh*(a)(x).
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(7) Forany a @ a, h(a Q d) € Z and
(h(a @ 4))" () (y) = <y, &> h* (K=, @) a)(a).

Since
e [h(a @ d)(xtey)—h(a ® @) (x)]
= &[>, dratedy, dra)—h((x, dHa)l,
it follows from (6) that the limit as ¢ — 0 exists and it is
Yy, @ h*({z, a)a)(a),

which is obviously continuous and linear with respect to y. Moreover,

im |y k(e @ 4)(@+y) ke @ d)(x)— (ke @ a)) * ()W)l

llvl 0 -
= ”d”“h;,mo 1<y, @) [h(lz, dra+y, dya)—h({x, d)a]
—h*({x, dya)(a)l|

== 0’
which means that 4(a ® d) € 2.
(8) Foranya ® 4, (a Q d)h € D and

((@ @ @)h) (@) (y) = <h*(x)(y), a>a.
By (7), we have
(a @ a)h =¢(hia ® d)) € D.
The formula for ((¢ @ 4)k)’(x)(y) is obvious.
(9) h*(a) e £ for every a € E.

The linearity follows immediately from (8). To prove the continuity,
let us take an arbitrary non-zero & ® 5. Then

|<h*(a) (@), B> = [1B17 [1((b @ fz)h)'(a)(x)ll
= 117 11((6 @ 8)) (@)l I,
which means the set
{#*(a) ()] ll=l| = 1}

is weakly bounded. Therefore, 4*(a) is continuous.

We define r,(x) and v,(x) by

hw)—h*(0) (&) = 7y(2) and b (z)— ()(0) (&) = 7,(a).
(10) For any sequence {x,} such that lim,_ . xz, = 0, the sequence

{l|z,|| 27, (x,)} converges weakly to O for ¢ =1, 2. Therefore, the sequence
{l|z 172 h(x,)} 7s bounded, which implies that lim,,_, . h(x,) = O.
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From (8) it follows that (@ ® @)r,(x) is the remainder of (@ ® &) at 0.
Therefore,
lim ”xn”-—l (d ® u-)rl(xn) = O’

n—-oo

which implies that
lim (fjz,||7 7,(2,), &) = 0
for every d e E.
(11) Yim, Lo ll2l ™ 7:(x) = 0 (¢ = 1, 2). Therefore, he & and h' e D.
Assume that there exists a sequence {z,} C E such that

lim z, = 0 and [&,||7! [[n (@)l 27 >0 (r=12--")

n-oo0

for some positive y € Z. By (5), we can take {¢,} € (c,) such that
ez 71 (ena) | < I, (n=12"--).
Then, for large #, we have

= llez 71 (en®n) =71 (@,)1] = [Iry (@)l —lle5 71 (ea )|
= (vl = (y_Han)(ir;lean 1) |7 A @)

Since, by (10), inf, ., ||z,[] ||%(x,)||~* > 0 which implies that lim,_, 4(z,) =0,
this contradicts the uniformity.
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