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1. Introduction. We shall consider finite groups @ of order of g which 
satisfy the following condition: 

(*) There exists a prime p dividing g such that if P ^ 1 is an element of a 
p-Sylow group ty of © then the centralizer S(P) of P in @ coincides with the 
centralizer £ ( $ ) of ty in ©. 

This assumption is satisfied for a number of important classes of groups. 
It also plays a role in discussing finite collineation groups in a given number 
of dimensions. 

Of course (*) implies that $ is abelian. It is possible to obtain rather detailed 
information about the irreducible characters of groups ® in this class (§ 4). 
The method used here is that of considering the exceptional characters of ® 
with regard to the normalizer 91(̂ 5) of $ (§3) and comparing the results 
with those obtained by studying the ^-blocks of characters of ©. It may be 
mentioned that the same method can be applied under wider assumptions 
than (*), but the results are less definite. 

If g is divisible by p but not by p2, it is clear that (*) will always be satis
fied. The corresponding class of groups has been studied by one of us pre
viously (3; 4). Our results contain many but not all of the previous results. 
On the other hand, our new method is more elementary. 

As a consequence of our results we show in § 5 that if a group © satisfying 
condition (*) has a faithful representation of degree less than (pn — 1)*, where 
pn is the order of the ^-Sylow group ^}, then 3̂ is normal in @. This is a 
generalization of a theorem of Blichfeldt (1). 

In order to make the paper more self-contained, we start with a specially 
elementary treatment of the theory of exceptional characters in the form 
needed here.f The method used can be applied under wider assumptions. 

2. Exceptional characters. Let © be a group of finite order g and let 
§ be a subgroup of order h. We assume that there exists a non-empty set ££ 
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of conjugate classes 8 of £> such that if L G 8, G G ©, and G~lLG G £ , then 
G G § , that is, that only the elements of § transform an element of 8 into 
an element of § . Clearly this condition on 8 is equivalent to the following 
two conditions: (I) If L G 8 then the centralizer S(L) of L in © lies in $ . 
(II) If 8 is included in the conjugate class $ of ® then $ H § = 8. It is 
not required that <g consist of all classes of $ with these properties. 

Let ^i , $2, . . . , \pi denote the irreducible characters of § . We arrange them 
in "families" Fu F2, . . . , such that \f/t and \f/j belong to the same family if 
and only if ïi(H) = \f/j(H) for all H G § which do not belong to a class 
8 G J2? We shall say that a family F is proper if it has more than one member. 

In the following, @, § , and <g will be fixed. The notion of exceptional 
characters of & will depend on § and Jg For convenience we shall call the 
classes 8 G J ? special classes and their elements special elements. 

(2A) Le/ F = { î, ^2, . . . , ^w} #e « proper family. There exist m irreducible 
characters xu X2, - - • , Xm of ® such that 

(2.1) x<l$ = € * < + $ , ( i = 1,2, . . . , m ) , 

ï£>/̂ re e is a sign ± 1 independent of i, and S is a character of § independent 
of i in which \pu ^2, . . . , ^m appear with the same multiplicity. If % is an irre
ducible character of @ other than xi, X2, . . • , Xm then \pi} \p2, . . • , ^m appear with 
the same multiplicity in x|€>-

Proof. If xi» X2, • • • , Xk are the irreducible characters of ©, we can set 
1 

(2.2) xilS = £ *<i** (i = 1, 2, . . . , *), 

where the a a are non-negative integers. Then 

(2.3) hais = E Xi(H)ïj(H). 

We shall view the k numbers ai3- with fixed j as the coefficients of a column 4̂ j 
with i serving as row index. Likewise, if G G ®, we arrange the & numbers 
Xi(G) in a column X(G). Then (2.3) becomes 

(2.3*) A4, = E X(H)~^(H)f (j = 1, 2, . . . , /). 

The inner product of two columns is defined in the usual manner. If G G ®, 
we have 

ft(*(GM> - ^ 0 = 1 : (X(G)tX(H))(UH) ~ *i(*0). 

Assume here that 1 < j < m. It will suffice to let H range over the special 
elements of § since otherwise \pj(H) = \pi(H). By the orthogonality relations 
(X(G), X(H)) = 0 if G and H are not conjugate in @. If G and H are con
jugate, (X(G), X(H)) is the order c(H) of the centralizer fë(iJ). For a special 
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element iJ, Ê(-ff) is also the centralizer of H in & and the class 8 of H in § 
consists of h/c(H) elements. Thus, for j = 1, 2, . . . , m, 

(2.4) (X(G),Aj-Al) = {UH)->
UH) 

where the first case applies when G is conjugate in @ to special elements 
H G § and the second case when G is not conjugate to such elements. 

Combining (2.3*) and (2.4), we have 

h(Ar,Aj - A1) = £ * , ( f l ) (* , (#) - i M # ) ) , ( 1 < r < /; 1 < j < m). 

Hence, if 5^ has the usual significance, 

(2.5) (Ar, AJ - AJ = djr - ôlT, (1 < r < /; 1 < j < m). 

This implies that (Aj — Au Aj — Ai) =2 for 2 < j < w. Hence Aj — Ax 

contains two coefficients ± 1 while all other coefficients vanish. If § ^ ©, 
the unit element 1 is not special and (2.4) shows that (X(l), Aj — Ai) = 0. 
Since X(l) has positive coefficients, the two non-vanishing coefficients in 
Aj — Ai have opposite signs. If § = ®, this is still true, since here the 
matrix [atj] in (2.2) is the unit matrix. If 1 < i < j < m then (At — Ai, 
Aj — Ai) = 1 by (2.5). It now follows easily that the characters xi» X2, . . . , Xk 
can be taken in such an order that the first m rows in the m — 1 columns 
A2 — Au Az — A1, . . . , Am — Ax are given by 

with e = ± 1 

while the remaining rows vanish. In other words 

!

— e for i — 1, 2 < j < m 
e for i = j , 2 < j < m 

0 otherwise. 

(For j = 1, the left side of (2.6) vanishes trivially.) 
It now follows from (2.5) that 

(2.7) — aire + ajre = djr — 8ir, (1 < r < /, 1 < j < m). 

In particular 

(2.7*) ajr = aiT1 (1 < j < w, r > m). 

We find from (2.7) and (2.6) that 

(2.8) ajT — edjr = a i r — edir = an — €, (1 < j < w, 1 < r < m). 

e — € — e 
e 0 0 
0 € 0 

0 0 e 
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Here an — e = a12 > 0. On combining (2.8) and (2.7*) with (2.2) we see 
that 

m 

Xj\& — ^j = (an - 0 S ^r + 2 airtr, (1 < j < m). 
r=l r>m 

Thus this expression is a character S of § which is independent of j and 
which contains \pi, ^2, . . . , \f/m with the same multiplicity. This yields (2.1). 
The last statement of (2A) is immediate from (2.2) and (2.6) with i > m. 

We call Xj the exceptional character of © corresponding to y//j, (1 < j < m). 
It is clear from (2A) that xj is uniquely determined by \f/j. 

On combining (2.4) and (2.6) we have 

(2B) If G is an element of © which is not conjugate to a special element then 
the exceptional characters Xj of © corresponding to the characters of § in a proper 
family F all take the same value for G. In particular, if © 9e § then these charac
ters Xj all have the same degree. 

The last statement is obtained by taking G = 1 which is permitted for 
© ^ § . 

Let T7* be a proper family of characters of § different from the family F 
in (2A). Then tyr Ç F* appears with the same multiplicity in xi|€>> X2|§, . . . , 
Xm|€>- This shows that xi, X2, . . . , Xm are different from the exceptional 
characters of © associated with the characters in F*. We shall say that an 
irreducible character x of © is exceptional, if x is the exceptional character 
of © corresponding to a character of H in some proper family. By definition, 
exceptional characters of © are irreducible. Combining the preceding remark 
with (2A), we have 

(2C) If x is an exceptional character of © and ty the irreducible character 
of & with which it is associated, then the correspondence x -> *A is a (1 — 1) 
correspondence between the exceptional characters of © and the irreducible charac
ters of § belonging to proper families. If \f/ belongs to the proper family Fo then 
we have formulae 

(2.9) x|£ = « ( W + E a(F0, F) £ ^ 
F ipeF 

where F ranges over all families of characters of § , proper or improper. Here 
e(Fo) is a sign depending only on Fo, and a(F0, F) is a non-negative rational 
integer depending only on Fo and F. 

Likewise, if Xn is an irreducible character of © which is non-exceptional then 
we have a formula 

(2.10) XMI£ = Z aU F) £ * 
F $tF 

where the a(ju, F) are non-negative rational integers. 

3. Application of the exceptional characters. Let p be a prime number. 
We consider groups © of finite order g divisible by p which satisfy the following 
assumption : 
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(*) If $ is a p-Sylow subgroup of ® and P ^ 1 is an element of $, then the 
centralizer (S(P) of P in @ coincides with the centralizer £ ( $ ) of $ in ©. 

It follows from (*) that ty is abelian. The order of $ will be denoted by 
pn. Set S = g(Ç). As is well known, 

(3.1) S = 5̂ X 33 

where 33 is a group of order v prime to p. We choose § as the normalizer 
5ft ($) of $ in ©. Both $ and 33 are normal in § . Since $ is the only £-Sylow 
subgroup of § , every ^-singular class S of § consists of elements of the form 
P F w i t h P G %P 9*1,V€ 33. It follows from (*) that $ C 6 ( P 7 ) Ç g Ç ^ 
Now Sylow's theorem shows that if G~lPVG Ç § for some G Ç ®, then G f § . 
Hence we may choose for <g in § 2 the set of all ^-singular classes 8 of § . 

We next discuss the irreducible characters of § . If #i, #2, . . . , &a
 a r e the 

irreducible characters of 33 and Xi, X2, . . . , X& those of ty, and if we define 
X/3#a by 

(\0»a)(PV) = \?(P)âa(V)y (P G Ç, F e 35), 

then the a6 products X^a are the a6 distinct irreducible characters of the 
direct product S in (3.1). Every irreducible character ^ of § appears as a 
constituent in a character (X^a)* of § induced by an irreducible character 
X/3#a of S. Here 

(3>2) (V>«)*(#) = 2'(xX)(ff), (^ 6 6)', 

where N ranges over a complete residue system R of § (mod (£). It follows 
that we have (\$&a)* = (\p'&a')* if a n d only if there exists an iV Ç § such 
that X|8' = X^ and êa> = tfa^. In particular, to obtain all characters (X^a)* 
it will suffice to let ûa range over a set © of irreducible characters of 33 such 
that each irreducible character of 33 is an associate in § of exactly one element 
of @. 

If N Ç § — (S then iV transforms the abelian group $ into itself leaving 
only the unit element fixed. Hence every P ^ 1 in 5̂ has ( § : (£) conjugates 
in § . Thus if w conjugate classes of § contain such elements P and if 
( $ : 1) = ^ , then 

(3.3) £» - 1 = w($ :<£). 

Moreover for N G § — Ë, the mapping \—*\N permutes the irreducible 
characters X of ^ leaving only the principal character 1 fixed.f Hence if 
X# 5̂  1 in (3.2) then the characters X^ appearing in (3.2) are distinct. If \j/ 
is an irreducible constituent of (\$d-a)*, then ^|(S is a sum of terms \pNâa

N 

such that with each term its distinct associates appear. Since we have just 
seen that all ( § : Ë) associates are distinct, we have (\$âa)* = $', that is, 

fCf., e.g., the "permutation lemma" in (2). 
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(X^«)* is irreducible if X̂  ^ 1. We shall have (A,s#«)* = (X^tf*)* if and only 
if there exists an N G £> such that \$> = X^ and da = êa

N. The latter con
dition means that N must belong to the inertial group $(&a) 2 E of ^ in ^p. 

If we set 

(3.4) ( $ : & ( # « ) ) = r„, (%(âa) : g) = sa, 

it follows from our remarks that we have (pn — l)/sa irreducible characters 
^ of ^ of the form (X^)* with fixed a and X̂  ^ 1. We shall denote this set 
of characters by F(âa). Then, by (3.3) and (3.4), F($a) consists of wra distinct 
irreducible characters ^ of § . As shown by (3.2), each \p £ F(ûa) vanishes 
for the elements H £ & — (5. If F is a ^-regular element of Ê then V £ 35 
and we have 

(3.5) HV) = Z <£(V), (V € 8 ) . 
NeR 

Hence all characters in F($a) have the same value for elements of § which 
are not special in the sense of § 2. Thus the family F(ûa) is included in one of 
the families F in § 2. We note that (3.5) can be written 

(3.5*) *(V) = saUV) with UV) = Z *f (V) (V 6 25), 
M 

where M ranges over a complete residue system of §(mod 5 (#«))• 
It follows from (3.2) that the kernel of a character \p £ F(&) cannot include 

ty. If we let â range over the set ©, the families F(&) obtained will be dis
joint. The remarks above show that all irreducible characters \p of § will 
belong to such a family F(&) except those which appear as a constituent of 
some (l#p)* with ûp £ @. Let us denote the set of distinct irreducible con
stituents ^ of (lâp)* by U(ûp). It follows from (3.2) with \p = 1 that all these 
xp have kernels which include $. Consequently no \[/ Ç £7(#P) can belong to 
an F(#). 

We summarize some of the results in the following proposition. 

(3A) Let G be a group satisfying condition (*), ^ a p-Sylow group, 
g = (£($) = $ X 93, 91(̂ 5) = §• ^ ^ & be a system of irreducible characters 
ûa of 93 such that every irreducible character of 93 is an associate in § of exactly 
one êa Ç @. 77&e irreducible characters \p of § whose kernel does not include $ 
are distributed in the disjoint families F(âa), $a £ @. Here F(#a) consists of the 
characters of § induced by characters X#a 0/ Ë w/^re X is a non-principal irre
ducible character of ty. The number of members of F(âa) is (pn — l)/sa = wra 

where sa = (g(#a) : S), ra = (£> : g (#«)), ^ - 1 = w($ : g), and wAere g(#«) 
w the inertial group of &a in § . 

We now study the characters in the set U(ûp). It follows from (3.2) that 

for^ 6 ^ P ) , P e $, ve », 
(3.6) * (PF) = e(*) E * f (*0 = eMMV), 

M 
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where M ranges over a residue system of § (mod $(&p)) and where e(\l/) is 
a natural integer depending only on ^. In particular this shows that, for 
two distinct characters ûp and ûp> in ©, the sets U(êp) and £/(*V) are disjoint. 

(3B) Let U(ûp) denote the set of irreducible constituents of the character of Q 
induced by the character Wp of Ë. Each irreducible character of § whose kernel 
includes $ belongs to exactly one set U(êp) with ûp £ ©. 

In applying the lemma of § 2 each ^ in a set U{êp) will be considered as 
forming a family of one element; the remaining families will be the sets F(ûa)-
We claim that if we sum over all \p in F(âa), we have 

(o, (i^e), 
(3.7) Z HH) = <-UV), (H 6 6 - SB), 

* l(pn-i)UV), (H=vem, 
where H = P V with P 6 f, V 6 33, for H £ 6. This is immediate from (3.2) 
for H <t (5 and from (3.5*) for H G SB. Assume that i ï G S - SB. If we let X 
range over the pn — 1 non-principal irreducible characters of 'p, it follows 
from (3.4) and the remarks preceding it that each of the characters \p in 
F(âa) is obtained sa times in the form (\âa)*, and we have 

s«Z *|<s= Z Z « • 
For H = P F with P * 1, we have E M I X W ( - P ) = - 1 . Thus 

Z *(tf) = -(1A-) Z **(t0 = -UV) 
& NeR 

by (3.5*). This completes the proof of (3.7). 

The family F(&a) is proper except when w = 1 and ra = 1, that is, when 
( § : (E) = pw — 1 and #a is associated only with itself. If F(ûa) is a proper 
family, there exist exactly wra exceptional characters % corresponding to the 
characters \f/ Ç F(da). If x/3(a) is the exceptional character of ® corresponding 
to (X*»«)* G P(0«), then by (2.9) 

(3.8) x T l S = e(F@am\0»a)* + Z o(F(fi«),F) Z *• 

For P Ç $, P ?* 1, F G 35, using (3.2), (3.6), (3.7), we have 

(3.9) x £ V n = e(F(tfa)) Z **(P)*Z(V) + Z ^ ( F ) , 

where p ranges over the values for which &p Ç @, and where the bp
(a) are 

rational integers independent of P . Applying the same method for the element 
F G 33, we see that 

(3.10) yf{V) - e(F(âa))(\^a)*(V) s xfi"\PV) - e(F(#a))(\e&a)*(PV) 

mod pn in the ring of all algebraic integers. 
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If XM is a non-exceptional character of ®, we apply (2.10). It follows that 
we have formulae 

(3.H) xAPV) = E b,J,(V) 
p 

for P 7* 1 in $ and V in 25, where p has the same range as in (3.9) and where 
the by.p are rational integers. Also 

(3.12) Xfi(PV) = 30,(7) ( m o d ^ ) . 

4. The decomposition numbers. We now study the ^-blocks B of groups 
© which satisfy the assumption (*). If 35 is the defect group of B, we may 
assume 35 C $. There exist ^-regular elements G Ç ® such that 35 is a £-Sylow 
subgroup of S(G) (6, § 8). It follows from (*) that either 35 = f or 35 = {1}. 
Hence 

(4A) If ® satisfies assumption (*) /or a prime p then every p-block B of © 
fezs eiJAer /«// defect n or defect 0. 

We investigate the blocks B of full defect further. Here 35 = $ , 
35(5(35) = £ = $ X 25 by (3.1), and 35Ê(35)/35 9Ë 25 is of order prime to p. 
The number 5 of blocks B of full defect is equal to the number of classes {#} 
of irreducible characters of 25 associated in ^(35)/35 = § / $ (6, § 12), that 
is, classes {&} of irreducible characters associated in § . Thus 5 is the number 
of &a e ©. 

On the other hand we use the main result of (7). As is easily seen, each 
block b of S consists of the pn irreducible characters X^ ; for some fixed j . We 
shall denote this block by b(#y). There is only one modular irreducible character 
in b(&j), and it may be identified with ûj. If x* is an irreducible character of ® 
belonging to a block B, then 

(4.i) XiiPV) = E <*?A(n (P ey,p*i,v e 25), 

where the dtj
p are the generalized decomposition numbers and where dif ^ 0 

only for values of j for which 

(4.2) H*,)® = B. 

For each block B of defect n, there exist &j for which (4.2) holds. Indeed, if 
this were not so, then by (4.1) Xi(P) — 0 for all P ^ 1. If x* is non-exceptional 
then by (3.12) x*(l) = 0 (mod pn), that is, x% would be of defect 0, a contra
diction. If Xi is exceptional then taking V = 1 and summing in (3.10) over 
the classes relative to § of elements P ^ l in $, again we would have 
X<(1) s O ( m o d ^ ) . 

Let F(&a) be a proper family, take x* as an exceptional character x/sCa) and 
let B be the block to which x/s(a) belongs. Comparison of (4.1) with (3.9) yields 

(4.3) e(F(êa)) S \£(P)e?(V) + £ 6^,(7) = £ ^ ( F ) , 
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where fp is given by (3.5*). Since this holds for all V £ 3S, each irreducible 
character $ of 25 appears with the same coefficient on both sides. The co
efficient of êa

N is 

T 

where T ranges over a residue system of $(&a) (mod 6). This expression would 
vanish for all P 7e 1 in $ only if all irreducible characters X ^ 1 appeared 
among the \fi

TN. This would mean that sa = pn - 1. But then (3.3) and (3.4) 
would imply that wra = 1, a contradiction since F(êa) consists of wra elements 
and would not be a proper family. Hence each &a

N Ç {#«} must appear among 
the ûj on the right in (4.3), that is, (4.2) holds for all ûj £ {#«}. 

If F(iïa) is not a proper family, we have ra = 1 (in addition to w = 1). 
Then the class {âa} consists only of #a. We may therefore say for all classes 
{#«} that if êj in (4.2) ranges over {#«}, the block B on the right is the same 
for all j . Thus (4.2) establishes a mapping of the set of classes {#«} into the 
set of blocks B of full defect. We have already noted that the mapping is 
onto and that the number of classes {êa\ and of blocks B of full defect are 
equal. Hence we have a (1 — 1) correspondence. We shall now denote the 
block B corresponding to the class {âa\ by B(&a). Then we have shown: 

(4B) Every block B of & of full defect is obtained exactly once in the form 
B{êa) when #« ranges over ©. If wra > 1, the wra exceptional characters x/s(a) 

belong to B(âa). 

(4C) For Xi € B(êa), we have formulae 

Xi(PV) = Z <*Wn (P e %P * i, v e »), 

where êj ranges over the class {âa}> 

It follows from (4C) that in (3.9) and (4.3) 6p
(a) = 0 for p ^ a. Thus 

(4D) If Xi is an exceptional character x/3(a) then for ûj = &a
M we have 

(4.4) dï, = ea E XjM(P) + b{
a
a\ (P e%P^ 1). 

T 

Here T ranges over a residue system of S(#«) (mod E), ba
(a) is a rational integer 

which does not depend on P, and ea = e(F(âa)) is a sign ± 1 depending only 
on a. Hence 

xt\PV) = Z U E *™(P) + ti?) »?(V) 
M \ T / 

for P (z ty, P 5e 1, F Ç 33, with M ranging over a residue system of § (mod 

We may also take for xi a non-exceptional irreducible character of © of 
positive defect and apply (4C) to (3.11). It follows that if xi £ B(ûa) then 
bip = 0 for p 7e a. Hence 
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(4E) If Xi is a non-exceptional irreducible character of @ belonging to B(&a) 
and êj = &a

M, then daP is a rational integer bt = bia which depends neither 
on P for P j£ 1 nor on M. Hence 

Xi{PV) = bt Z *?(V), (P e %P * l, v e » ) , 
M 

where M ranges over a residue system of !Q (mod 3(#«)> that is, êa
M ranges over 

the distinct associates of ûa in ^>. 

If w = 1, that is, if (9^(93) : S(^) ) has the maximal value pn — 1 possible 
when assumption (*) is satisfied, we may have blocks B($a) which do not 
contain any exceptional character of ®. Indeed, this will be so if ra = 1 since, 
by (4B), the exceptional characters belong to the blocks B(âa) with wra > 1. 
If w — 1 and ra = 1 we shall now pick an irreducible character arbitrarily 
from B(ûa), denote it by x(a\ and from now on count it as the exceptional 
character of B(&a). We show that (4D) remains valid. Since ra = 1, we have 
§($«) = §• Then T in (4.4) ranges over a complete residue system of § 
(mod S), \p™ ranges over all irreducible characters 9^ 1 of $, and 
ZT^™(P) = - 1 for every P ^ 1 in $. By (4E) applied to Xi = X(a\ dtj

p 

is a rational integer which for &j = ûa
M is independent of P (P ^ 1) and M. 

Hence (4.4) is true, if we take ea = 1 and 

b? = dp
i3 +1. 

(4F) If B (ûa) is a block of @ of full defect and if B (#«) contains la modular 
irreducible characters of @, then B(êa) contains wra + L ordinary irreducible 
characters: wra exceptional ones and la non-exceptional ones. 

Proof. As shown in (7, (7D)), the total number of irreducible characters 
in B(&a) is obtained by letting P range over a system of representatives of 
the conjugate classes of order a power of p, determining for each the number 
la{P) of modular irreducible characters of E(P) corresponding to B(êa) and 
taking £ p t ( ^ ) - We know that for P ^ 1 the modular irreducible characters 
of S(P) corresponding to B(êa) are the ra characters &a

N £ {#«}• By (3.3) 
there are w such representatives P. For P = 1 we have /« = 4(1) by defini
tion. Thus J^pla(P) = wra + la- This yields the first statement. According 
to (4B), wra of these characters are exceptional; in the case wra = 1 this was 
a matter of definition. The remaining la characters then must be non-excep
tional. 

In particular, (4F) shows that every block B(&a) contains non-exceptional 
irreducible characters. 

As a corollary of the results of §§ 2 and 3, we have 

(4G) All exceptional characters in a block B(ûa) take the same value for 
p-regular elements G G @. In particular, they all have the same degree. 

For the degrees of the characters, we have congruences moâpn: 
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(4H) If Xi ^ a non-exceptional character in B(ôa) and bi has the same sig
nificance as in (4E), then Dg %% — btra Dgêa (mod pn). In particular bt =̂  0. 
If the notation is as in (4D), then 

Dg xf = earasa Dgâa + bla)ra Dgêa (mod pn). 

Proof. For the non-exceptional character, xu it follows from (4E) for 
F = 1 , ? ^ , P ^ 1 that Xi(P) = btra Dg#«. Now (3.12) can be applied. 
Since Dg xi cannot be divisible by pn

y we must have bt 5̂  0. 
In the case of xpia) we apply (3.10) for V = 1. Since Dg (X^«)* = 

(£ : S) Dg# a , the left side becomes Dg xa(a) — ^rasa Dg# a . Using (3.9) and 
the fact that bp

{a) — 0 for p 5e a, we can write the right side in the form 
&a(o°fa(l) = ba(

a)raDgûa, and the last part of (4H) is obtained. 
We may also use (7, (3A)). Since for P Ç $, P ^ 1, the Cartan matrix 

of each block of S(P) = $ X S3 is (£n), we find for 4>/ = #a
M, 

E K;|2 = />*» 
i 

and because of the orthogonality of these ^-columns, we find 

(4.5) D I E E 4-12 = «*./»", 
f I P j I 

where P ranges over a system of representatives of the ^-classes ^ 1 of @ 
and for each P , j ranges over the ra values belonging to the ra characters 
da1 G {#«}. If Xi is non-exceptional then by (4E) 

(4.6) E E dp
tj = wr«6<. 

For xi = X/3(a\ by (4.4) 

(4.7) E E <#* = ea E E XÎ(P) + wrjb^ 
P j P NeR 

since T in (4.4) ranges over a residue system of 5 (#«) (mod 6) while Tkf has 
to range over a residue system of § (mod 5 (#«))• As iV ranges over a residue 
system P of § (mod Ë), iVPA^-1 ranges over the set of elements of $ conjugate 
to P in ©, and the first term on the right in (4.7) can be written as CalZoA^Ç), 
where Q ranges over $ — {1}. Thus (4.7) becomes 

(4.8) E E dP
tj= - € t t + wrtt6?). 

p j 

Since we have wra characters x/3(a) in B(êa), (4.5) becomes 
2 2 X"̂  / z 2 i / r(a) \ 2 un 

w ra 2_s bt + wra(wraba — e«) = wr af 

where in ^ ' the index i ranges over the la values belonging to the non-excep
tional characters in B(êa). Using (3.3) and (3.4) we can write this in the form 

£ ' fi + wrj£>* - 2eab':) = sa 
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or 

(4.9) £ ' b\ + (wra - l ) & r + $ * - O 2 = Sa + 1. 
i 

At least one of the numbers ba
(a\ ba

(a) — ea is not zero. Since by (4H) bt 9e 0, 
it follows for wra 7̂  1 that Y,/bi2 has at most s« terms. If wra = 1 then 
5« = pn - 1 = - 1 (mod pn), and since Dg x(a) ^ 0 (mod pn), (4H) shows 
that Z>a

(a° — ea 9^ 0 (modpre). Hence the first sum again contains at most sa 

terms. Thus 

(41) The number la of non-exceptional characters Xi in B(&a) is at most sa. 

It follows from (4.9) that if ba
(a) ^ 0 then 

wra- 1 < 1 - / « + (/>»- l)/(wra). 

Finally, it follows from the orthogonality relations for decomposition 
numbers (7, (3A)) and (4.6), (4.8), and (4G) that we have 

(4J) If G is a p-regular element of ©, then for every /3, 

Z ' biXiiP) + (wrjb? - ea)^
a\G) = 0 

where x% ranges over the non-exceptional characters of B(ûa), 

5. Estimates for the degrees of the representations of ©. We use 
our results to give lower estimates for the degrees of the irreducible repre
sentations of a group @ which satisfies condition (*). The following statement 
is obvious from (4A). 

(5A) If the irreducible character x °f ® does not belong to a block of defect n> 
the degree Dg x is divisible by pn. 

We next consider the irreducible characters x% in the block B(ûa) of full 
defect. 

(5B) Let xi be a non-exceptional character belonging to B(#«). Then either 
Dg Xi > Pn ~~ I or ty is included in the kernel $ ( x 0 of x% {that is, the kernel 
of the representation of @ with the character xt)-

Proof. Let bt have the same significance as in (4E). By (4.9), |ô*| < pn. It 
follows from (4E) that 

Xi(P) = bfaDgûa, (P 6 %P * 1). 

Now the orthogonality relations for group characters show that 

(5.1) x*(l) + (Pn - l)btr« Dg#« = apn 

where a is the multiplicity of the principal character in x*|$î a > 0- If 
bt < 0, it follows from (5.1) that 

X*(l) > (Pn - l)|*<|r«Dgtf„ > pn - 1. 
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If 4, > 0, we have X i ( l) > x«(P) > 0 for ail P G % According to (4H), 
X i ( l ) = Xi(P) (modpn). If x*(l) > Xt(P) for some P , we have Dg Xt > Pn-
On the other hand, if x%{P) = X*(l) f° r all -P € $ , then, as is well known, 
$ is included in the kernel $(x<). 

We now turn to a discussion of the exceptional characters xp(a)- If wra = 1, 
then x#(a) is not truly exceptional and (5B) still applies. 

(5C) Let x — X&(a) be an exceptional character of B(ûa), with wra > 1. If 
ea = - 1 , then Dg x > è(pw - 1). / / «« = 1 and Dg x < />w /fee» bja) > 0 
and 

(5.2) X |S= £ x X + *ia) E *" 

2#&ere M ranges over a residue system of § (mod $(&a))> - ^ particular 

(5.3) D g x = (s« + &ia))r«Dgtf«. 

Pnw/. If €a = - 1 then a(F(âa), F(âa)) > 1 in (3.8). Indeed, in (2.1) 5 
must contain \f/t as a constituent when e = — 1. Since (X^a)* has degree 
rasa Dg #« and since F(&a) consists of wra characters of this degree, 

Dg x > (wr« - l)rasa Dg#a > \wrarasa Dg#« = \{pn - l)ra Dg# a 

whence the first statement. 

Assume now ea = 1. If in (3.8) a(F(&a), F (#«')) ^ 0 for some a , an argu
ment similar to the one used for ea = — 1 shows that Dg x > 1 + (£w — l)=£w-
If this is not so, then in (3.8) a(F(êa), F) vanishes except for families F con
sisting of one irreducible character belonging to a set U(&p). If bp

(a) has the 
same significance as in (3.9), we have here 

xl<£= £ *X+ E tfV, 
NeR p 

and all ip
(a) are non-negative. Since bp

(a) = 0 for p ^ «, this yields (5.2) and 
(5.3). 

(5D) Let @ be a group which satisfies assumption (*) for a prime p and let 
pn be the order of the p-Sylow group. If ® has an irreducible character x ^ 1 
of degree x < {pn — 1)% then either @ has a proper normal subgroup $ 2 ^3, 
or ® /zas a normal subgroup 9JÎ of index pn and x = 1. 

Proof. It follows from (5A), (5B), and (5C), that we may assume x is of 
the form x = Xp(a) and wra > 1. Then by (4G) xi(o° ~ X2(a) vanishes for all 
^-regular elements. Let #i denote the principal character of 33. It follows 
from (4C) that the principal character 1 of © belongs to B(âi). We distinguish 
two cases: 

Case I. J3(#i) contains an irreducible non-exceptional character xi ^ 1. If 
bi has the same significance as in (4E), then xi ~~ bt vanishes for all ^-singular 
elements of ®. Hence 
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(x?-x?))(xi-bt) = 0 
identically; that is, 

(5.4) x?Xi + btx? = xFx< + b{X?. 

If bi > 0 then xi(oc) is a constituent of xi(o0Xi- Using the orthogonality relations, 
we see that x% is a constituent of xi(a)Xi(a)- Hence 

(5.5) Dg Xi < (Vg x)2 = x* < pn - 1. 

Hence by (5B) the kernel $(x*) includes $, and, as %t ** 1> $(x*) ^ ®> we 
have the first alternative in (5D). 

If bt < 0, it follows from (5.4) that xi(a) is a constituent of X2(o°Xz- Then 
Xi is a constituent of xi(a)X2(a). This implies (5.5) and again (5D) holds. 
(Actually, the proof of (5B) shows that this case is impossible under our 
assumptions.) 

Case II. The only irreducible non-exceptional character in B(&i) is the 
principal character of ®. Then (4F) shows that 5(#i) contains only one 
irreducible modular character. This implies that © has a normal subgroup 
m of index pn (8, p. 587). It follows at once that $R($) = (£($), that is, 
that § = S. In particular, 

rp = sp = 1 for all p, w = pn — 1. 

Since s« = 1, (4.9) shows that for pn > 3, we must have ba
{a) = 0. Moreover 

B(&a) then contains only one non-exceptional character xu and for this xt 
we have bt = ± 1 . As shown by (4J) then Dg xt = Dg X/s(a) = *. If #« ^ &lt 

Xi is not the principal character. Since Dg xi < (pn — 1)% (5B) shows that 
@ has a proper normal subgroup $(x*) 3 $ . If #« = #i then x* = 1 and we 
have x = 1. 

It remains to discuss the cases pn < 3. If pn — 2 then wra = 1, a contra
diction. If £n = 3 and ba

(a) = 0, the argument above applies. If ba
(a) ^ 0 then 

(4.9) shows that bja) = ea and that B(&a) still contains only one non-excep
tional Xi and that bt = ± 1 . Then (4J) shows that Dg Xi = * and we can 
conclude the proof as in the case £w > 3. 

(5E) Let © be a finite group which satisfies the assumption (*) for some 
prime p. If the p-Sylow group ty has order pn and if © has a faithful repre
sentation H of degree x < (pn — 1)% then ^ is normal in ®. 

Proof. We may assume that (5E) has been proved for groups of smaller 
order than ®. Since X must have an irreducible constituent which is not the 
principal representation, (5D) applies. If ® has a proper normal subgroup 
$ 3 ty, application of (5E) to Ê shows that $ is normal in $ . Since $ then 
is characteristic in $, it is normal in ®. 

It remains to deal with the case that ® has a normal subgroup 9W of index 
pn and that all irreducible constituents of ï have degree 1. Since X is a faithful 
representation, ® then is abelian, and, of course, 5̂ is normal in ®. 
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The case n = 1 has been studied elsewhere (4). If n > 2, it follows from 
(5E) that if the order g of a finite group ® is divisible by the square p2 of a 
prime p and if © has a faithful representation ï of degree x < p, then either 
the ^-Sylow group 3̂ is normal in ©, or there exist elements P ^ 1 in SJ3 
such that (S(P) ^ SOP). 
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