Representations of Virasoro-Heisenberg Algebras and Virasoro-Toroidal Algebras

Marc A. Fabbri and Frank Okoh

Abstract

Virasoro-toroidal algebras, $\tilde{\mathcal{T}}_{[n]}$, are semi-direct products of toroidal algebras $\mathcal{T}_{[n]}$ and the Virasoro algebra. The toroidal algebras are, in turn, multi-loop versions of affine Kac-Moody algebras. Let Γ be an extension of a simply laced lattice \dot{Q} by a hyperbolic lattice of rank two. There is a Fock space $V(\Gamma)$ corresponding to Γ with a decomposition as a complex vector space: $V(\Gamma)=\coprod_{m \in \mathbf{Z}} K(m)$. Fabbri and Moody have shown that when $m \neq 0, K(m)$ is an irreducible representation of $\tilde{\mathcal{T}}_{[2]}$. In this paper we produce a filtration of $\tilde{\mathcal{T}}_{[2]}$-submodules of $K(0)$. When L is an arbitrary geometric lattice and n is a positive integer, we construct a Virasoro-Heisenberg algebra $\mathcal{H}(L, n)$. Let Q be an extension of Q by a degenerate rank one lattice. We determine the components of $V(\Gamma)$ that are irreducible $\tilde{\mathcal{H}}(Q, 1)$-modules and we show that the reducible components have a filtration of $\tilde{\mathcal{H}}(Q, 1)$-submodules with completely reducible quotients. Analogous results are obtained for $\tilde{\mathcal{H}}(\dot{Q}, 2)$. These results complement and extend results of Fabbri and Moody.

0 Introduction

Toroidal algebras, $\mathcal{T}_{[n]}$, are the universal central extensions of the iterated loop algebra $\dot{\mathcal{G}} \otimes_{\mathrm{C}} \mathbf{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ where $\dot{\mathcal{G}}$ is a simple finite-dimensional complex Lie algebra. They were introduced by R. Moody, Eswara Rao, and T. Yokonuma in [MEY]. They also produced indecomposable representations of $\mathcal{T}_{[2]}$. The results in $[\mathrm{MEY}]$ were extended to arbitrary n in [EM]. The authors in [MEY] remark on the difficulty of producing irreducible representations of $\mathcal{T}_{[n]}$ in a natural way. It is implicit in [MEY] that the authors consider an irreducible of $\mathcal{T}_{[n]}$ to be natural if it is a direct summand of some Fock space. Let us call an irreducible representation of $\mathcal{T}_{[n]}$ good if a subspace of the centre of $\mathcal{T}_{[n]}$ does not act as multiplication by a scalar. See p. 284 of [MEY] for comments on good representations. Until [E1] there were no known good representations of $\mathcal{T}_{[n]}$.

Starting with tensor products of highest weight modules, Eswara Rao constructs in [E1] a family of completely reducible representations of $\mathcal{T}_{[n]}$. He also shows that the indecomposable $\mathcal{T}_{[n]}$-modules constructed in [MEY] and [EM] admit a filtration of submodules such that the successive irreducible quotient modules are isomorphic to the irreducible modules in [E1] up to an automorphism of the toroidal algebra. Note that $\tilde{\mathcal{T}}_{[n]}$ in [E1] is $\mathcal{T}_{[n]} \oplus D$ where D is the linear span of n derivations on $\mathcal{T}_{[n]}$ and so is entirely different from $\tilde{\mathfrak{T}}_{[n]}$ in this paper. We refer to [E2] for comments and results on good representations of affine algebras.

A different tack is taken in [BC]. They factor out all but a finite-dimensional piece of the centre of $\mathcal{T}_{[n]}$. This enables them to establish an irreducibility criterion for Verma-type modules for the resulting algebra. Results and references on connections between toroidal

[^0]algebras and other classes of Lie algebras, for instance P. Slodowy's GIM algebras, can also be found in [BC].

Fabbri and Moody initiated a third approach in [FM]. They enlarged the algebra $\mathcal{T}_{[2]}$ to the semi-direct algebra $\tilde{T}_{[2]}=\operatorname{Vir} \propto \mathcal{T}_{[2]}$. This is the route we shall follow in this paper. We extend the toroidal algebra in two directions to obtain Virasoro-Heisenberg algebras and Virasoro-toroidal algebras. We shall be more precise after we develop the requisite notation. Here is a summary of the sections of the paper.

In Section 1 we recall the definition of the toroidal algebra, Virasoro algebra, the oscillator operators, and the generalized Heisenberg algebras. The construction of the generalized Heisenberg algebras requires three ingredients: a free \mathbf{Z}-module, \mathbf{Z}^{n} of finite rank n, where \mathbf{Z} is the ring of integers, \mathbf{C}^{n}, the n-dimensional complex vector space, and a geometric lattice L, i.e.; a free Z-module of finite rank, not necessarily n, together with a non-trivial symmetric Z-bilinear form. The notation $\mathcal{H}(L, n)$ for generalized Heisenberg algebras attempts to capture these ingredients. The Fock spaces crucial for this paper are obtained from the generalized Heisenberg algebras with $n=1$. We now define the lattice Γ that gives the most pervasive Fock space, $V(\Gamma)$.

In this paper \dot{Q} will denote a lattice of type A_{m}, D_{m} or E_{m} with root lengths normalized to two. Let

$$
\begin{align*}
& Q=\dot{Q} \oplus \mathbf{Z} \delta \tag{1}\\
& \Gamma=Q \oplus \mathbf{Z} \mu \tag{2}\\
& \Lambda=\mathbf{Z} \delta \oplus \mathbf{Z} \mu \tag{3}
\end{align*}
$$

where $(Q \mid \delta)=(\dot{Q} \mid \mu)=(\mu \mid \mu)=0$ and $(\delta \mid \mu)=1$.
In Section 2 we obtain simpler expressions for the oscillator operators for the hyperbolic lattice Λ in (3). We then obtain a family of completely reducible representations of the Virasoro algebra. The results on $V(\Lambda)$ are used in Sections 4 and 5 of the paper where we deal with reducible representations of a Virasoro-Heisenberg algebra and a Virasorotoroidal algebra.

In Section 3 we use the algebras from Section 1 to construct the Virasoro-Heisenberg algebras, $\tilde{\mathcal{H}}(L, n)$, and the Virasoro-toroidal algebras, $\tilde{\mathcal{T}}_{[n]}$. We then show that the Fock space $V(\Gamma)$ from Section 1 are representations of $\tilde{\mathcal{T}}_{[2]}$ and $\tilde{\mathcal{H}}(L, n)$ for some restricted choices of L and $n \leq 2$.

Let \dot{Q} and Q be the lattices in (1). We give decompositions of $V(\Gamma)$ as representations of $\tilde{\mathcal{H}}(Q, 1)$ and $\tilde{\mathcal{H}}(\dot{Q}, 2)$. In [FM] the components of $V(\Gamma)$ that afford irreducible representations of $\tilde{\mathcal{H}}(Q, 1)$ are identified. Using the irreducible representations of the Virasoro algebra from Section 2, we show in Section 4 that the reducible components have a filtration of $\tilde{\mathcal{H}}(Q, 1)$-submodules with completely reducible quotients.

In Section 4 we also identify the components of the Fock space that afford irreducible representations of $\tilde{\mathcal{H}}(\dot{Q}, 2)$. The components that are reducible as representations of $\tilde{\mathcal{H}}(\dot{Q}, 2)$ are shown in Section 5 to have a filtration of subrepresentations.

As a $\tilde{\mathcal{T}}_{[2]}$-representation the Fock space $V(\Gamma)$ decomposes as $\prod_{m \in Z} K(m)$, for some subrepresentations $K(m)$. In [FM] it is shown that $K(m)$ is an irreducible representation of $\tilde{\mathcal{T}}_{\text {[2] }}$ when $m \neq 0$. In Section 5 we show that $K(0)$ has a filtration of subrepresentations of $\tilde{\mathcal{T}}_{[2]}$.

The introduction ends with a list of the main objects of the paper. The object is defined in or near (n). Other objects are defined as they occur. All vector spaces are over \mathbf{C}, the field of complex numbers.

- $\tilde{\mathcal{T}}_{[n]}$ is the Virasoro-toroidal algebra, where $\mathcal{T}_{[n]}$ is the toroidal algebra, i.e., the universal central extension of $\dot{\mathcal{G}} \otimes_{\mathbf{C}} \mathbf{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$, while $\dot{\mathcal{G}}$ is a simple finite-dimensional complex Lie algebra. (4) and (58).
- $\tilde{\mathcal{H}}(L, n)$ is the Virasoro-Heisenberg algebra attached to the lattice L and \mathbf{Z}^{n}, where $\mathcal{H}(L, n)$ is the corresponding generalized Heisenberg algebra. (9) and (59).
- $\tilde{\mathcal{A}}(L)$ is $\tilde{\mathcal{H}}(L, 1)$. (12) and (33).
- $S\left(\mathcal{A}(L)_{-}\right)$is the symmetric algebra of $\mathcal{A}(L)_{-}$, where $\mathcal{A}(L)_{-}$is the lower subalgebra in a triangular decomposition of $\mathcal{A}(L)$. (15) and (24).
- $V_{L}(\lambda)=\mathbf{C} e^{\lambda} \otimes_{\mathbf{C}} S\left(\mathcal{A}(L)_{-}\right)$is a canonical representation of $\mathcal{A}(L)$, where λ is an element in the complexification of a nondegenerate lattice containing L. (20).
- $V(\Gamma)=\mathbf{C}[\Gamma] \otimes_{\mathbf{C}} S\left(\mathcal{A}(\Gamma)_{-}\right)$is the full Fock space corresponding to Γ in (3). (38).

1 The Canonical Representations

We begin by recalling the construction of the toroidal algebras $\mathcal{T}_{[n]}$.
Let A be any commutative \mathbf{C}-algebra with identity element. Let $\dot{\mathcal{G}}$ be a simple finitedimensional complex Lie algebra. The structure of the universal covering algebra of $\dot{\mathcal{G}} \otimes_{\mathrm{C}} A$ has been determined by Kassel in [KS]. Let Ω_{A} be the A-module of differentials of A. Let $d: A \rightarrow \Omega_{A}$ be the differential map. Let $-: \Omega_{A} \rightarrow \Omega_{A} / d A$ be the canonical map.
Theorem 1.1 ([KS, Proposition 2.2], [MEY]) The Lie algebra $\mathcal{G}=\dot{\mathcal{G}} \otimes_{\mathbf{C}} A \oplus \Omega_{A} /$ dA with $\Omega_{A} / d A$ central and multiplication given by

$$
\begin{equation*}
[x \otimes a, y \otimes b]=[x, y] \otimes a b+\langle x, y\rangle \overline{(d a) b} \tag{4}
\end{equation*}
$$

where \langle,$\rangle is the Killing form, is the universal covering algebra of \dot{\mathcal{G}} \otimes_{\mathbf{C}} A$.
When $A=\mathbf{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ in Theorem 1.1, the algebra \mathcal{G} is the toroidal algebra of rank n or the n-toroidal algebra. We denote it by $\mathcal{T}_{[n]}$. In this case a basis of Ω_{A} is $\left\{t_{1}^{r_{1}} t_{2}^{r_{2}} \cdots\right.$ $\left.t_{i-1}^{r_{i-1}} t_{i}^{r_{i}-1} t_{i+1}^{r_{i+1}} \cdots t_{n}^{r_{n}} d t_{i}: 1 \leq i \leq n, r=\left(r_{1}, \ldots, r_{n}\right) \in \mathbf{Z}^{n}\right\}$.

It is noted in [MEY] that the toroidal Lie algebra contains a generalized Heisenberg algebra. To introduce the latter, let $(L,(\mid))$ be a geometric lattice, that is, a free Z-module L of finite rank together with a non-trivial symmetric Z-bilinear form (\mid): $L \times L \rightarrow \mathbf{Z}$. Let $\mathcal{L}=\mathbf{C} \otimes_{\mathbf{Z}} L$, the complexification of L. Extend (\mid) to a symmetric bilinear form on \mathcal{L} also denoted by (\mid). We say that L is nondegenerate if (\mid) is nondegenerate on \mathcal{L}.

For each $r \in \mathbf{Z}^{n} \subset \mathbf{C}^{n}$, let $\mathcal{L}(r)$ be an isomorphic copy of \mathcal{L} while $\mathbf{C}^{n}(r)$ is an isomorphic copy of \mathbf{C}^{n}. The isomorphism is given by $x \mapsto x(r)$. If $x \in \mathbf{C}^{n}, z_{x}(r)$ will denote the element $x(r)$ to distinguish it from elements of $\mathcal{L}(r)$. For $r \in \mathbf{Z}^{n}, \gamma, \gamma^{\prime} \in \mathcal{L}, s, s^{\prime} \in \mathbf{C}^{n}$ and $\alpha \in \mathbf{C}$ we have

$$
\begin{gather*}
z_{s}(r)+z_{s^{\prime}}(r)=z_{s+s^{\prime}}(r) \tag{5}\\
\alpha z_{s}(r)=z_{\alpha s}(r) \tag{6}\\
\gamma(r)+\gamma^{\prime}(r)=\left(\gamma+\gamma^{\prime}\right)(r) \tag{7}\\
\alpha \gamma(r)=(\alpha \gamma)(r) \tag{8}
\end{gather*}
$$

Now, let $\mathcal{C}_{n}=\bigoplus_{r \in \mathbf{Z}^{n}} \mathbf{C}^{n}(r), \mathcal{D}_{n}=\bigoplus_{r \in \mathbf{Z}^{n}} \mathbf{C} z_{r}(r)$, where $\mathbf{C} z_{r}(r)$ is the one-dimensional complex vector space with basis $z_{r}(r)$. Let $\mathcal{Z}_{n}=\mathcal{C}_{n} / \mathcal{D}_{n}$. Consider the \mathbf{C}-space

$$
\begin{equation*}
\mathcal{H}(L, n)=\left(\bigoplus_{r \in \mathbf{Z}^{n}} \mathcal{L}(r)\right) \oplus \mathcal{Z}_{n} \tag{9}
\end{equation*}
$$

Introduce a bracket operation on $\mathcal{H}(L, n)$ as follows

$$
\begin{gather*}
{\left[\gamma\left(r_{1}\right), \eta\left(r_{2}\right)\right]=(\gamma \mid \eta) z_{r_{1}}\left(r_{1}+r_{2}\right)} \tag{10}\\
Z_{n} \text { central. } \tag{11}
\end{gather*}
$$

By (10) and (11), $\mathcal{H}(L, n)$ is a two-step nilpotent algebra and hence the multiplication satisfies the Jacobi identity. From (5), (6), (10), and (11) we deduce that $\mathcal{H}(L, n)$ is a Lie algebra. We call it the generalized Heisenberg algebra associated to L and n.

The proofs of the next two propositions rely on (5) to (11). Denote vector space dimension by dim.

Proposition 1.2

(a)

$$
\operatorname{dim} z_{n}= \begin{cases}1 & \text { if } n=1 \\ \infty & \text { if } n \geq 2\end{cases}
$$

(b) Let $n=2$. Then the collection of elements $\left\{z_{(0,1)}(m, 0), z_{(1,0)}(0,0): m \in \mathbf{Z}\right\} \cup$ $\left\{z_{(1,0)}(m, n): m \in \mathbf{Z}, n \in \mathbf{Z} \backslash\{0\}\right\}$ is a basis for Z_{2} over \mathbf{C}.

Proposition 1.3 The centre of $\mathcal{H}(L, n)$ is $\mathcal{L}(0) \oplus \mathcal{Z}_{n} \oplus\left(\bigoplus_{r \in \mathbf{Z}^{n} \backslash\{0\} \gamma \in \operatorname{rad}(\mid)} \mathbf{C} \gamma(r)\right)$, where rad is radical.

Proposition 1.4 gives a realisation of $\mathcal{H}(L, n)$ when L is the root lattice of a simple finitedimensional complex Lie algebra, see Section 3 of [MEY].
Proposition 1.4 Let $\dot{\mathcal{G}}$ be a simple finite-dimensional Lie algebra with root lattice \dot{Q}. Let $\dot{\mathcal{H}}$ be a fixed Cartan subalgebra of $\dot{\mathcal{G}}$. Let \mathcal{X} be the subalgebra of $\mathcal{T}_{[n]}$ generated by the subspace $\dot{\mathcal{H}} \otimes_{\mathbf{C}} \mathbf{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$. Then $\mathcal{H}(\dot{Q}, n)$ and \mathcal{X} are isomorphic Lie algebras.

The Heisenberg algebra $\mathcal{H}(L, 1)$ is the linchpin of most of the representations in this paper. We use the following simpler notation for it.

$$
\begin{equation*}
\mathcal{H}(L, 1)=\mathcal{A}(L) \tag{12}
\end{equation*}
$$

By Proposition 1.2(a), \mathcal{Z}_{1} is one-dimensional. Let c denote a fixed generator of \mathcal{Z}_{1}. Then $\mathcal{A}(L)=\left(\bigoplus_{k \in \mathbf{Z}} \mathcal{L}(k)\right) \oplus \mathbf{C} c$. In $\mathcal{A}(L)$ Equations (10) and (11) assume the more familiar form

$$
\begin{gather*}
{\left[a\left(k_{1}\right), b\left(k_{2}\right)\right]=k_{1} \delta_{k_{1}+k_{2}, 0}(a \mid b) c} \tag{13}\\
c \text { central } \tag{14}
\end{gather*}
$$

where δ denotes Kronecker delta.
Observe that $\mathcal{L}(0)$ is an abelian subalgebra of $\mathcal{A}(L)$. It has a complement $=$ $\left(\bigoplus_{n \in \mathbf{Z} \backslash\{0\}} \mathcal{L}(n)\right) \oplus \mathbf{C} c$ satisfying $\mathcal{A}(L)=\left(\left(\bigoplus_{n \in \mathbf{Z} \backslash\{0\}} \mathcal{L}(n)\right) \oplus \mathbf{C} c\right) \times \mathcal{L}(0)$ where \times denotes the direct product of Lie algebras. We shall construct a canonical representation of $\mathcal{A}(L)$ by first defining a representation of the subalgebra $\left(\bigoplus_{n \in \mathbf{Z} \backslash\{0\}} \mathcal{L}(n)\right) \oplus \mathbf{C} c$. Let

$$
\begin{equation*}
\mathcal{A}(L)_{-}=\coprod_{n>0} \mathcal{L}(-n) \tag{15}
\end{equation*}
$$

with corresponding symmetric algebra $S\left(\mathcal{A}\left(L_{-}\right)\right.$. We may think of $S\left(\mathcal{A}(L)_{-}\right)$as the polynomial ring in the indeterminates $\left\{a_{i}(-n): 1 \leq i \leq m, n>0\right\}$, where $\left\{a_{i}\right\}_{i=1}^{m}$ is an orthonormal basis of $\mathcal{L}=\mathbf{C} \otimes_{\mathbf{z}} L$. By replacing $n>0$ with $n<0$ in (15) we get $\mathcal{A}(L)_{+}$ with corresponding symmetric algebra $S\left(\mathcal{A}(L)_{+}\right)$.

Let $a, b \in \mathcal{L}$. Let m, n be positive integers. Denote by $\partial_{a(n)}$ the unique derivation of $S\left(\mathcal{A}(L)_{-}\right)$satisfying

$$
\begin{equation*}
\partial_{a(n)}(b(-m))=n \delta_{n, m}(a \mid b) \tag{16}
\end{equation*}
$$

where $\delta_{n, m}$ is Kronecker delta. Let $l_{a(-n)}$ be the map on $S\left(\mathcal{A}(L)_{-}\right)$defined by $f \mapsto a(-n) f$, multiplication by $a(-n)$. We then get the following representation on $S\left(\mathcal{A}(L)_{-}\right)$of the Lie algebra $\left(\bigoplus_{n \in \mathbf{Z} \backslash\{0\}} \mathcal{L}(n)\right) \oplus \mathbf{C} c$.

$$
\begin{gather*}
c f=f \tag{17}\\
a(-n) f=l_{a(-n)} f \tag{18}\\
a(n) f=\partial_{a(n)} f \tag{19}
\end{gather*}
$$

We see from (16) that the derivation $\partial_{a_{i}(n)}$ corresponds to the partial differentiation operator $n \frac{\partial}{\partial_{a_{i}(n)}}$ on $S\left(\mathcal{A}(L)_{-}\right)$.

Let M be any nondegenerate lattice containing L. Let \mathcal{M} be the complexification of M. Fix $\lambda \in \mathcal{M}$ and let $\mathbf{C} e^{\lambda}$ be the one-dimensional \mathbf{C}-space. Consider the \mathbf{C}-space

$$
\begin{equation*}
V_{L}(\lambda)=\mathbf{C} e^{\lambda} \otimes_{\mathbf{C}} S\left(\mathcal{A}(L)_{-}\right) \tag{20}
\end{equation*}
$$

We make $V_{L}(\lambda)$ an $\mathcal{A}(L)$-module by defining

$$
\begin{gather*}
c\left(e^{\lambda} \otimes f\right)=e^{\lambda} \otimes f \tag{21}\\
a(n)\left(e^{\lambda} \otimes f\right)=e^{\lambda} \otimes a(n) f, \quad n \neq 0 \tag{22}\\
a(0)\left(e^{\lambda} \otimes f\right)=(a \mid \lambda) e^{\lambda} \otimes f . \tag{23}
\end{gather*}
$$

where $a(n) f, n \neq 0$ is given by (18) and (19). As in Section 2 of $[\mathrm{KR}]$ one proves the next proposition.
Proposition 1.5 $V_{L}(\lambda)$ is affords a representation of $\mathcal{A}(L)$ which is irreducible if and only if L is a nondegenerate lattice.

Since by (21) and (23) $(a \mid \lambda) c-a(0)\left(e^{\lambda} \otimes f\right)=0, V_{L}(\lambda)$ is never a faithful $\mathcal{A}(L)$-module. The module $V_{L}(\lambda)$ is called a canonical representation of $\mathcal{A}(L)$.
We shall now realise $V_{L}(\lambda)$ as an induced module relative to a triangular decomposition of $\mathcal{A}(L)$ in the sense of [MP2]. To that end, let L be a nondegenerate geometric lattice with complexification, \mathcal{L}. Define $\mathcal{A}(L)_{-}=\coprod_{n>0} \mathcal{L}(-n), \mathcal{A}(L)_{+}=\coprod_{n>0} \mathcal{L}(n)$, and $\mathcal{A}(L)_{0}=$ $\mathcal{L}(0) \oplus \mathbf{C}$. Then we have

$$
\begin{equation*}
\mathcal{A}(L)=\mathcal{A}(L)_{-} \oplus \mathcal{A}(L)_{0} \oplus \mathcal{A}(L)_{+} \tag{24}
\end{equation*}
$$

Next let $\sigma: \mathcal{A}(L) \rightarrow \mathcal{A}(L)$ be the unique linear map satisfying $\sigma(a(n))=a(-n), a \in \mathcal{L}$, $n \in \mathbf{Z}$, and $\sigma(c)=c$. Then σ fixes $\mathcal{A}(L)_{0}$, and interchanges $\mathcal{A}(L)_{+}$and $\mathcal{A}(L)_{-}$. So σ is an involution. This makes (24) a triangular decomposition of $\mathcal{A}(L)$ in the sense of [MP2].

Let α be a linear functional on $\mathcal{A}(L)_{0}$ and consider the one-dimensional vector space $\mathrm{C} v_{+}$. Let $\mathcal{B}=\mathcal{A}(L)_{0} \oplus \mathcal{A}(L)_{+}$. We make $\mathbf{C} v_{+}$into a \mathcal{B}-module by setting

$$
\begin{gather*}
\mathcal{A}(L)_{+} v_{+}=0 \tag{25}\\
\mathcal{A}(L)_{0} v_{+}=\alpha(a(0)) v_{+} \tag{26}\\
c v_{+}=v_{+} . \tag{27}
\end{gather*}
$$

Finally, we define the induced $\mathcal{A}(L)$-module $M(\alpha)=\mathcal{U}(\mathcal{A}(L)) \otimes_{\mathcal{U}_{(\mathcal{B})} \mathbf{C} v_{+} \text {where } \mathcal{U}(X), ~(X)}$ denotes the universal enveloping algebra of the Lie algebra X. Let $\lambda \in \mathcal{L}$ and let α be the linear functional on $\mathcal{A}(L)_{0}$ defined by

$$
\begin{gather*}
\alpha(a(0))=(\lambda \mid a) \tag{28}\\
\alpha(c)=1 . \tag{29}
\end{gather*}
$$

The map $e^{\lambda} \otimes u \mapsto u \otimes v_{+}$gives the the isomorphism of the next proposition.
Proposition 1.6 Let α be the linear functional in (28) and (29). Then $M(\alpha)$ and $V_{L}(\lambda)$ are isomorphic as $\mathcal{A}(L)$-modules.

Vir and its oscillator operators The Virasoro algebra Vir is an infinite-dimensional Lie algebra with generators $\left\{d_{k}: k \in \mathbf{Z}\right\}$ and bracket relations

$$
\begin{equation*}
\left[d_{k}, d_{l}\right]=(k-l) d_{k+l}+\frac{1}{12} \delta_{k+l, 0}\left(k^{3}-k\right) \zeta \tag{30}
\end{equation*}
$$

where ζ is a central symbol.
Let L be a geometric lattice of rank m. Define a representation of Vir on $\mathcal{A}(L)$ as follows. For every $k \in \mathbf{Z}$, let

$$
\begin{gather*}
d_{k}(a(n))=-n a(n+k) \tag{31}\\
d_{k}(c)=0=\zeta(\mathcal{A}(L)) \tag{32}
\end{gather*}
$$

One checks that $\left(\zeta d_{k}-d_{k} \zeta\right)(a(n))=0=\left[d_{k}, \zeta\right](a(n))$ and $\left[d_{k}, d_{l}\right](a(n))=$ $\left(d_{k} d_{l}-d_{l} d_{k}\right)(a(n))$. This means that $\mathcal{A}(L)$ affords a representation of Vir. This representation is a special case of a class of well-known representations of Vir. It is a direct sum of m copies of $V_{0,0}$ in the notation of Proposition 1.1 of [KR]. See also [Z]. We now construct a new Lie algebra, $\tilde{\mathcal{A}}(L)$, from this representation. As a C-space,

$$
\begin{equation*}
\tilde{\mathcal{A}}(L)=\operatorname{Vir} \oplus \mathcal{A}(L) \tag{33}
\end{equation*}
$$

We use (31) and (32) to make $\tilde{\mathcal{A}}(L)$ a Lie algebra. For instance,

$$
\begin{equation*}
\left[d_{k}, a(n)\right]=d_{k}(a(n))=-n a(n+k) \tag{34}
\end{equation*}
$$

With Q as the lattice in (1), let $\varepsilon: Q \times Q \rightarrow\{ \pm 1\}$ be a bimultiplicative map satisfying, for $\alpha, \beta \in Q$,

$$
\begin{gather*}
\varepsilon(\alpha, \alpha)=(-1)^{(\alpha \mid \alpha) / 2} \tag{35}\\
\varepsilon(\alpha, \beta) \varepsilon(\beta, \alpha)=(-1)^{(\alpha \mid \beta)} \tag{36}\\
\varepsilon(\alpha, \delta)=1 \tag{37}
\end{gather*}
$$

Extend ε to a bimultiplicative map $\varepsilon: Q \times \Gamma \rightarrow\{ \pm 1\}$. For $\gamma \in \Gamma$, let e^{γ} be a symbol. Let $\mathbf{C}[\Gamma]$ be the complex vector space with \mathbf{C}-basis $\left\{e^{\gamma}: \gamma \in \Gamma\right\}$. Then $\mathbf{C}[\Gamma]$ contains the subspace $\mathbf{C}[Q]=\coprod_{\gamma \in Q} \mathbf{C} e^{\gamma}$. We equip $\mathbf{C}[Q]$, as in [BO] and [MEY], with a twisted group algebra structure by defining $e^{\alpha} e^{\beta}=\varepsilon(\alpha, \beta) e^{\alpha+\beta}, \alpha, \beta \in Q$. Then $\mathbf{C}[\Gamma]$ becomes a $\mathbf{C}[Q]$-module in such a way that $e^{\alpha} e^{\gamma}=\varepsilon(\alpha, \gamma) e^{\alpha+\gamma}, \alpha \in Q, \gamma \in \Gamma$. Here now is the full Fock space associated to Γ.

$$
\begin{equation*}
V(\Gamma)=\mathbf{C}[\Gamma] \otimes_{\mathbf{C}} S\left(\mathcal{A}(\Gamma)_{-}\right) \tag{38}
\end{equation*}
$$

As C-spaces, $V(\Gamma)=\coprod_{\lambda \in \Gamma} \mathbf{C} e^{\lambda} \otimes_{\mathbf{C}} S\left(\mathcal{A}(\Gamma)_{-}\right)=\coprod_{\lambda \in \Gamma} V_{\Gamma}(\lambda)$, where $V_{\Gamma}(\lambda)$ is a canonical representation of $\mathcal{A}(\Gamma)$.

By Proposition 1.5, $V_{\Gamma}(\lambda)$ affords a representation of $\mathcal{A}(\Gamma)$. Componentwise action makes $V(\Gamma)$ an $\mathcal{A}(\Gamma)$-module. Since $Q \subset \Gamma, V_{\Gamma}(\lambda)$ also affords a representation of $\mathcal{A}(Q)$. Hence we have:

Proposition $1.7 V(\Gamma)=\mathbf{C}[\Gamma] \otimes_{\mathbf{C}} S\left(\mathcal{A}(\Gamma)_{-}\right)$affords a representation of $\mathcal{A}(\Gamma)$, hence of $\mathcal{A}(Q)$.

In order to make $V(\Gamma)$ a representation of the algebras in Section 3 we recall the oscillator representation of Vir.

Let L be an arbitrary non-degenerate geometric lattice of rank m with complexification $\mathcal{L}=\mathbf{C} \otimes_{\mathbf{Z}} L$. Let $\left\{a_{i}\right\}_{i=1}^{m}$ be an orthonormal basis for \mathcal{L} over \mathbf{C}. We want to define a representation of Vir on $V_{L}(\lambda)$. For $r, s \in \mathbf{Z}$ we define a normal ordering: : of $a_{i}(r) a_{i}(s)$, as in [KR], by

$$
\begin{array}{ll}
: a_{i}(r) a_{i}(s):=a_{i}(r) a_{i}(s) & \text { if } r \leq s \\
: a_{i}(r) a_{i}(s):=a_{i}(s) a_{i}(r) & \text { if } r>s . \tag{40}
\end{array}
$$

Now for $k \in \mathbf{Z}$ consider the infinite quadratic expression, L_{k}, defined as follows

$$
\begin{equation*}
L_{k}=\frac{1}{2} \sum_{j \in \mathbf{Z}} \sum_{i=1}^{m}: a_{i}(-j) a_{i}(j+k): . \tag{41}
\end{equation*}
$$

Due to the normal ordering each L_{k} is an operator of $V_{L}(\lambda)$ using (21) to (23). The operator L_{k} is called a Virasoro operator or oscillator operator. A proof of Proposition 1.8 can be obtained along similar lines as the proof of Proposition 2.3 of [KR]. The following formula is obtained along the way, see Lemma 2.2 of [KR].

$$
\begin{equation*}
\left[L_{k}, a(n)\right]=-n a(n+k) \tag{42}
\end{equation*}
$$

where k and n are integers and a is an arbitrary element of \mathcal{L}.
Proposition 1.8 The assignment $d_{k} \mapsto L_{k}, \zeta \mapsto m I$, where m is the rank of L and I is the identity operator, gives a representation of Vir on $V_{L}(\lambda)$.

2 Oscillator Representations of Vir Over Λ

In order to facilitate the computations we shall need notations specific to the hyperbolic lattice Λ in (3). Recalling (15), let

$$
\begin{equation*}
\mathcal{S}=S\left(\mathcal{A}(\Lambda)_{-}\right) \tag{43}
\end{equation*}
$$

The set $\left\{\alpha_{1}, \alpha_{2}\right\}$, where $\alpha_{1}=\frac{\delta}{2}+\mu$ and $\alpha_{2}=i\left(\frac{\delta}{2}-\mu\right), i^{2}=-1$, is an orthonormal basis for $\mathbf{C} \otimes_{\mathbf{Z}} \Lambda$. We use the notation $H_{k}, k \in \mathbf{Z}$, for the corresponding oscillator operators. So (41) becomes

$$
\begin{equation*}
H_{k}=\frac{1}{2} \sum_{j \in \mathbf{Z}}: \alpha_{1}(-j) \alpha_{1}(j+k):+: \alpha_{2}(-j) \alpha_{2}(j+k): \tag{44}
\end{equation*}
$$

Proposition 2.1 For every $n \in \mathbf{Z}$ we have that
(i) $H_{n}=\frac{1}{2} \sum_{j \in \mathbf{Z}}(: \mu(-j) \delta(j+n):+: \delta(-j) \mu(j+n):)$
(ii) $H_{n}=H_{n}^{-}+H_{n}^{+}$where

$$
\begin{aligned}
& H_{n}^{-}=\frac{\epsilon}{2} \mu(n / 2) \delta(n / 2)+\sum_{j>-n / 2} \mu(-j) \delta(j+n) \\
& H_{n}^{+}=\frac{\epsilon}{2} \delta(n / 2) \mu(n / 2)+\sum_{j>-n / 2} \delta(-j) \mu(j+n)
\end{aligned}
$$

where

$$
\epsilon= \begin{cases}1 & \text { if } n \text { is even } \\ 0 & \text { ifn is odd }\end{cases}
$$

Proof For any $j \in \mathbf{Z},: \alpha_{1}(-j) \alpha_{1}(j+n):+: \alpha_{2}(-j) \alpha_{2}(j+n):=\alpha_{1}(-j) \alpha_{1}(j+n)+$ $\alpha_{2}(-j) \alpha_{2}(j+n)$ if $-j \leq j+n$ or $\alpha_{1}(j+n) \alpha_{1}(-j)+\alpha_{2}(j+n) \alpha_{2}(-j)$ if $-j>j+n$. Thus for (i), it suffices to show that $\alpha_{1}(-j) \alpha_{1}(j+n)+\alpha_{2}(-j) \alpha_{2}(j+n)=$ $\mu(-j) \delta(j+n)+\delta(-j) \mu(j+n)$ and $\alpha_{1}(j+n) \alpha_{1}(-j)+\alpha_{2}(j+n) \alpha_{2}(-j)=\mu(j+n) \delta(-j)+$ $\delta(j+n) \mu(-j)$. We show only the first since the second is similar. Since $(a+b)(n)=$ $a(n)+b(n)$, we have $\alpha_{1}(-j) \alpha_{1}(j+n)+\alpha_{2}(-j) \alpha_{2}(j+n)=$ $\left(\frac{\delta(-j)}{2}+\mu(-j)\right)\left(\frac{\delta(j+n)}{2}+\mu(j+n)\right)-\left(\frac{\delta(-j)}{2}-\mu(-j)\right)\left(\frac{\delta(j+n)}{2}-\mu(j+n)\right)=$ $\frac{1}{4} \delta(-j) \delta(j+n)+\frac{1}{2} \delta(-j) \mu(j+n)+\frac{1}{2} \mu(-j) \delta(j+n)+\mu(-j) \mu(j+n)-$ $\frac{1}{4} \delta(-j) \delta(j+n)+\frac{1}{2} \delta(-j) \mu(j+n)+\frac{1}{2} \mu(-j) \delta(j+n)-\mu(-j) \mu(j+n)=$ $\delta(-j) \mu(j+n)+\mu(-j) \delta(j+n)$. This proves (i).

For (ii), we first use (i) and then use the definition of normal ordering. Hence $H_{n}=$ $\frac{1}{2} \sum_{-j \leq j+n}(\mu(-j) \delta(j+n)+\delta(-j) \mu(j+n))+\frac{1}{2} \sum_{-j>j+n}(\delta(j+n) \mu(-j)+\mu(j+n) \delta(-j))=$ $\frac{1}{2} \sum_{j>-n / 2}(\mu(-j) \delta(j+n)+\delta(-j) \mu(j+n))+\frac{1}{2} \sum_{j>-n / 2}(\delta(-j) \mu(j+n)+$ $\mu(-j) \delta(j+n))+\frac{\epsilon}{2}(\mu(n / 2) \delta(n / 2)+\delta(n / 2) \mu(n / 2))$, where we have split the first sum into $j=-n / 2, j>-n / 2$ and replaced j by $-j-n$ in the second sum. Regrouping we have $H_{n}=\sum_{j>-n / 2} \mu(-j) \delta(j+n)+\frac{\epsilon}{2} \mu(n / 2) \delta(n / 2)+\sum_{j>-n / 2} \delta(-j) \mu(j+n)+\frac{\epsilon}{2} \delta(n / 2) \mu(n / 2)$.

If we replace $-j$ by i and $j+n$ by j then we get the following alternative way of expressing $H_{n}^{ \pm}$

$$
\begin{align*}
H_{n}^{-} & =\sum_{\substack{i<j \\
i+j=n}} \mu(i) \delta(j)+\frac{\epsilon}{2} \mu(n / 2) \delta(n / 2) \tag{45}\\
H_{n}^{+} & =\sum_{\substack{i<j \\
i+j=n}} \delta(i) \mu(j)+\frac{\epsilon}{2} \delta(n / 2) \mu(n / 2) \tag{46}
\end{align*}
$$

Since $\mathbf{C} \otimes_{\mathbf{Z}} \Lambda=\mathbf{C} \delta \oplus \mathbf{C} \mu$, we have $\left(\mathbf{C} \otimes_{\mathbf{Z}} \Lambda\right)(n)=\mathbf{C} \delta(n) \oplus \mathbf{C} \mu(n)$. The algebra \mathcal{S} in (43) contains the following C -subspaces

$$
\begin{equation*}
M=S\left(\coprod_{n>0} \mathbf{C} \mu(-n)\right), \quad D=S\left(\coprod_{n>0} \mathbf{C} \delta(-n)\right) \tag{47}
\end{equation*}
$$

We have that $\mathcal{S}=M D$ and hence for $\lambda \in \mathbf{C} \otimes_{\mathbf{z}} \Lambda$, we have the following canonical representation of $\mathcal{A}(\Lambda)$.

$$
\begin{equation*}
V_{\Lambda}(\lambda)=\mathbf{C} e^{\lambda} \otimes_{\mathbf{C}} M D \tag{48}
\end{equation*}
$$

By Proposition 1.8, $V_{\Lambda}(\lambda)$ is a Vir-module via H_{n} in Proposition 2.1. We shall now show that it has a filtration of Vir-submodules. To that end we note that $M=S\left(\coprod_{n>0} \mathbf{C} \mu(-n)\right)$ has the following C-basis:

$$
\begin{equation*}
\left\{\mu(-\mathbf{n}): \mathbf{n} \in \mathbf{Z}_{+}^{s}, s \geq 1, n_{1} \leq \cdots \leq n_{s}\right\} \cup\{1\} \tag{49}
\end{equation*}
$$

where \mathbf{Z}_{+}is the set of natural numbers, $\mathbf{n}=\left(n_{1}, n_{2}, \ldots, n_{s}\right)$, and $\mu(-\mathbf{n})=$ $\mu\left(-n_{1}\right) \mu\left(-n_{2}\right) \cdots \mu\left(-n_{s}\right)$.

We say that $\mu(-\mathbf{n})$ has μ-length s. By replacing μ by δ we get δ-length. The length of the zero polynomial is taken to be $-\infty<$ the length of every nonzero polynomial.

Let $M_{j}=0$, if $j<0, M_{0}=\mathbf{C}$. For $j>0$, let $M_{j}=$ the \mathbf{C}-span of all monomials in M of μ-length j. Set $M_{\leq j}=\coprod_{k \leq j} M_{k}$. Then $M=\coprod_{j \geq 0} M_{j}$.

We use D_{j} to denote the analogous \mathbf{C}-spaces with μ replaced by δ. Then $D=\coprod_{j \geq 0} D_{j}$. With l an arbitrary integer, let

$$
\begin{equation*}
\mathcal{S}_{l}=\coprod_{j=0}^{\infty}\left(M_{\leq j+l} D_{j}\right) \subset \mathcal{S} \tag{50}
\end{equation*}
$$

For $\lambda \in \mathbf{Z} \delta$, we let

$$
\begin{equation*}
V_{\Lambda}(\lambda)_{l}=\mathbf{C} e^{\lambda} \otimes_{\mathbf{C}} \mathcal{S}_{l} \tag{51}
\end{equation*}
$$

Sections 4 and 5 pivot around $V_{\Lambda}(\lambda)_{l}$ and ς_{l}. So we are going to develop their properties in detail. First we note that

$$
\begin{equation*}
M_{\leq j+l} \subseteq M_{\leq j+l+1}, \quad \mathcal{S}_{l} \neq \mathcal{S}, \quad \mathcal{S}_{l} \subseteq \mathcal{S}_{l+1} \tag{52}
\end{equation*}
$$

Lemma 2.2

(a) Let $x \in \mathcal{S}_{l}$ and let n be a positive integer. Then $\delta(-n) x \in \mathcal{S}_{l}$.
(b) Let $f \in S\left(\mathcal{A}(\dot{Q})_{-}\right) S\left(\mathcal{A}(\mathbf{Z} \delta)_{-}\right)$. Then $f x \in S\left(\mathcal{A}(\dot{Q})_{-}\right) \mathcal{S}_{l}$ for every $x \in S\left(\mathcal{A}(\dot{Q})_{-}\right) \mathcal{S}_{l}$
(c) Let $(\alpha+n \delta)(m) \in S\left(\mathcal{A}(Q)_{+}\right), \alpha \in \dot{Q}, f \in S\left(\mathcal{A}(\dot{Q})_{-}\right) \mathcal{S}_{l}$. Then $(\alpha+n \delta)(m) f \in$ $S\left(\mathcal{A}(\dot{Q})_{-}\right) \mathcal{S}_{l}$.

Proof (a) For some positive integer $t, x=x_{0}+\cdots+x_{t}$, where $x_{j} \in M_{\leq j+l} D_{j}$. Then $\delta(-n) x=\sum_{j=0}^{t} \delta(-n) x_{j}$. Since $\delta(-n) x_{j} \in M_{\leq j+l} D_{j+1} \subseteq M_{\leq j+l+1} D_{j+1} \subseteq \mathcal{S}_{l}$ we get that $\delta(-n) x \in \mathcal{S}_{l}$.
(b) The ring $S\left(\mathcal{A}(\dot{Q})_{-}\right) S\left(\mathcal{A}(\mathbf{Z} \delta)_{-}\right)$is commutative. Hence (b) follows from (a).
(c) Since $m>0,(\alpha+n \delta)(m)=\alpha(m)+n \delta(m)$ acts as differentiation, see the remark after (19). The $\operatorname{ring} S\left(\mathcal{A}(\dot{Q})_{-}\right)$is closed under differentiation. So it is sufficient to show that $M_{\leq j+l} D_{j}$ is invariant under $\alpha(m)+n \delta(m)$. Every element in $M_{\leq j+l} D_{j}$ is a sum of scalar multiples of elements of the form $x=\mu\left(-n_{1}\right) \cdots \mu\left(-n_{s}\right) \delta(\mathbf{k})$ where $\delta(\mathbf{k})=\delta\left(-k_{1}\right) \cdots \delta\left(-k_{j}\right)$, $s \leq j+l$, and $n_{1}, \ldots, n_{s}, k_{1}, \ldots, k_{j}$ are positive integers. From (16) and the line after (3) we get that $(\alpha+n \delta)(m) x=m n \sum_{t=1}^{i} \delta_{m, n_{t}} \mu(-1) \cdots \overline{\mu(-t)} \cdots \mu(-i) \delta(\mathbf{k})$, where overbar denotes omission. So $(\alpha+n \delta)(m) x$ is in $M_{\leq j-1+l} D_{j} \subseteq M_{\leq j+l} D_{j}$.

Recall the definition of $V_{\Lambda}(n \delta)$ and $V_{\Lambda}(n \delta)_{l}$ from (48) and (51) with $\lambda=n \delta$.
Theorem 2.3 For any integers n and $l, V_{\Lambda}(n \delta)_{l}$ is a proper Vir-submodule of $V_{\Lambda}(n \delta)$ and $V_{\Lambda}(n \delta)_{l} \subseteq V_{\Lambda}(n \delta)_{l+1}$.

Proof Since $\mathcal{S}_{l} \neq \mathcal{S}$, we have that $V_{\Lambda}(n \delta)_{l} \neq V_{\Lambda}(n \delta)$. The inclusion follows from the definition. We now have to show that $V_{\Lambda}(n \delta)_{l}$ is closed under the action of $H_{n}^{ \pm}$. Using (45) and (46) we need only check closure under (a) $\mu(i) \delta(j), i<j$, (b) $\delta(i) \mu(j), i<j$,
(c) $\mu(n / 2) \delta(n / 2)$, and (d) $\delta(n / 2) \mu(n / 2)$. We proceed as in the proof of Lemma 2.2(c). Let $f=e^{n \delta} \otimes x$, where x is as in the proof of Lemma 2.2(c). Let

$$
z=\mu(i) \delta(j), \quad i<j .
$$

The element z acts on f as outlined in (22) and (23). We shall be using (16) to (23) in the proof below. If $j>0$ then $\delta(j)\left(e^{n \delta} \otimes x\right)=j e^{n \delta} \otimes \sum_{t=1}^{s} x_{t}$, where $x_{t}=\delta_{j, n_{t}} \mu\left(-n_{1}\right) \cdots$ $\overline{\mu\left(-n_{t}\right)} \cdots \mu\left(-n_{s}\right) \delta(\mathbf{k})$, and overbar denotes omission. Each summand is either zero or its μ-length is one less than that of x. If $i<0$, then the μ-length of $\mu(i) x_{t}$ is restored to that of x. If $i>0$, then the effect of $\mu(i)$ on each summand, x_{t}, is to break it into summands that are 0 or have δ-length one less than the δ-length of x_{t}. Either way $z x$ remains in \mathcal{S}_{l}. So $\mu(i) \delta(j) f \in V_{\Lambda}(n \delta)_{l}$.

Suppose $j<0$. Then $\delta(j) x$ has δ-length one more than that of x. Since $i<j$ we have that $i<0$. In that case, the μ-length of $\mu(i) \delta(j) x$ is one more than that of x. So $\mu(i) \delta(j) x$ is in $M_{\leq j+1+l} D_{j+1} \subseteq \mathcal{S}_{l}$.

Suppose $j=0$. Since $(\delta \mid n \delta)=0$ we get from (23) that $\mu(i) \delta(j) f=0$. Cases (b), (c), and (d) are handled in a similar fashion.

The next goal is to show that $\overline{V_{\Lambda}(n \delta)_{l}}=V_{\Lambda}(n \delta)_{l} / V_{\Lambda}(n \delta)_{l-1}$ is a completely reducible representation of the Virasoro algebra. Even though our representations are more complicated than those in [KR] we can still rely on Lectures 2 and 3 of [KR].

Denote the quotient $\mathcal{S}_{l} / \mathcal{S}_{l-1}$ by $\overline{\mathcal{S}_{l}}$ and $V_{\Lambda}(\lambda)_{l} / V_{\Lambda}(\lambda)_{l-1}$ by $\overline{V_{\Lambda}(\lambda)_{l}}$. We have that $\overline{\mathcal{S}_{l}} \cong$ $\prod_{j=0}^{\infty} M_{j+l} D_{j}$.
Proposition 2.4 Let n be any integer. The Vir-modules $\overline{V_{\Lambda}(n \delta)_{l}}$ and $\overline{V_{\Lambda}(0)_{l}}$ are isomorphic.

Proof Let $f_{0}=\sum_{k=0}^{r} c_{k}\left(e^{0} \otimes x_{k}\right) \in V_{\Lambda}(0)_{l}, c_{k} \in \mathbf{C}$. One checks using the method in the proof of Theorem 2.3 that $f_{0} \mapsto f_{n \delta}=\sum_{k=0}^{r} c_{k}\left(e^{n \delta} \otimes x_{k}\right) \in V_{\Lambda}(n \delta)_{l}$ induces a Vir-module isomorphism between $\overline{V_{\Lambda}(n \delta)_{l}}$ and $\overline{V_{\Lambda}(0)_{l}}$.

We now define a positive definite Hermitian form $\langle\mid\rangle$ on $V_{\Lambda}(\lambda)$ by extending the original Z-bilinear form (\mid) on Λ to a Hermitian form on \mathcal{S} : for $a_{i}, b_{i} \in\{\delta, \mu\}$, let

$$
\begin{equation*}
\left(a_{1}\left(-n_{1}\right) \cdots a_{s}\left(-n_{s}\right) \mid b_{1}\left(-m_{1}\right) \cdots b_{r}\left(-m_{r}\right)\right)=\delta_{r, s} \sum_{\sigma \in P(r)} \prod_{k=1}^{r} n_{k} \delta_{n_{k}, m_{\sigma(k)}}\left(a_{k} \mid b_{\sigma(k)}\right) \tag{53}
\end{equation*}
$$

where $\delta_{x, y}, x, y \in \mathbf{Z}$, denotes the usual Kronecker delta and $P(r)$ denotes the symmetric group on r symbols.

We use below the notation in (49) for tuples of integers.
Let $\iota: \mathcal{S} \rightarrow \mathcal{S}$ be the unique anti-linear map satisfying $\iota(\mu(-\mathbf{n}) \delta(-\mathbf{m}))=\mu(-\mathbf{m}) \delta(-\mathbf{n})$, $\iota(1)=1$, where $\mathbf{n} \in \mathbf{Z}_{+}^{s}, \mathbf{m} \in \mathbf{Z}_{+}^{r} r, s \geq 1$. The map ι is an involution.

Next we define a Hermitian form on $V_{\Lambda}(\lambda)$ using (53). Let $x, x^{\prime} \in \mathcal{S}, z=e^{\lambda} \otimes x$, $z^{\prime}=e^{\lambda} \otimes x^{\prime}$. Set $\left\langle z \mid z^{\prime}\right\rangle=\left(x \mid \iota\left(x^{\prime}\right)\right)$.

The proof of Proposition 2.2 in [KR] works for the next proposition.
Proposition 2.5 (a) The set $\left\{z=e^{\lambda} \otimes \mu(-\mathbf{n}) \delta(-\mathbf{m}): \mathbf{n} \in \mathbf{Z}_{+}^{s}, \mathbf{m} \in \mathbf{Z}_{+}^{r}, n_{1} \leq n_{2} \cdots \leq\right.$ $\left.n_{s}, m_{1} \leq m_{2} \cdots \leq m_{r}\right\} \cup\left\{e^{\lambda} \otimes 1\right\}$ is an orthogonal basis of $V_{\Lambda}(\lambda)$ with respect to $\langle\mid\rangle$.
(b) The form $\langle\mid\rangle$ is positive definite on $V_{\Lambda}(\lambda)$ and $\|z\|^{2}=c(\mathbf{n}) c(\mathbf{m}) \prod_{i=1}^{s} n_{i} \prod_{j=1}^{r} m_{j}$, where $\|z\|$ is the norm of z and $c(\mathbf{n})$ is the cardinality of the set $\{\sigma \in P(s): \sigma(\mathbf{n})=\mathbf{n}\}$ (replace s by r for the definition of $c(\mathbf{m})$.)

The degree of z in Proposition 2.5 is defined as $\sum_{i=1}^{s} n_{i}+\sum_{j=1}^{r} m_{j}$.
Let $\overline{V_{\Lambda}(0)_{l}}(j)$ denote the subspace of $\overline{V_{\Lambda}(0)_{l}}$ spanned by elements of degree j. This is a finite-dimensional vector space. One checks that this finite-dimensional space is the eigenspace of the eigenvalue j of the oscillator operator H_{0} in Proposition 2.1. In fact $\overline{V_{\Lambda}(0)_{l}}=\coprod_{j \geq 0} \overline{V_{\Lambda}(0)_{l}}(j)$ is a weight space decomposition of $\overline{V_{\Lambda}(0)_{l}}$ with respect to the commutative subalgebra of the Virasoro algebra generated by d_{0} and the central element ζ. The material above starting from (53) allows us to use Lectures 2 and 3 of [KR], in particular Proposition 3.1 of $[\mathrm{KR}]$, as a proof of the next theorem.
Theorem 2.6 Let l be any integer. Then the Vir-module $\overline{V_{\Lambda}(0)_{l}}$ is completely reducible.
By Proposition 2.4 and Theorem 2.6 we have
Corollary 2.7 For every pair of integers (n, l), the Vir-module $\overline{V_{\Lambda}(n \delta)_{l}}$ is completely reducible.

3 Virasoro-Heisenberg and Virasoro-Toroidal Algebras

It is well-known that one often gets a more satisfactory representation theory by enlarging the algebra, see for instance the introduction of [MEY]. We shall accomplish our enlargement through semi-direct products. The use of semi-direct products in the representation theory of Lie algebras can be traced back to E. Cartan's thesis. See [COL]. We now recall the essentials from the theory of vertex operators that we need and refer to [MEY], [MP1], and [FLM] for more details.

Let z be a complex variable. Let Γ and Q be as in (1) and (2). Let $\alpha \in Q$. So for $n \in \mathbf{Z}$, $\alpha(n)$ is the operator on $V_{\Gamma}(\lambda)$ defined in (22) and (23). Define

$$
\begin{align*}
T_{+}(\alpha, z) & =-\sum_{n>0} \frac{1}{n} \alpha(n) z^{-n} \tag{54}\\
T_{-}(\alpha, z) & =-\sum_{n<0} \frac{1}{n} \alpha(n) z^{-n} \tag{55}
\end{align*}
$$

The vertex operator, $X(\alpha, z)$, for α on $V(\Gamma)$ is defined by

$$
\begin{equation*}
X(\alpha, z)=z^{(\alpha \mid \alpha) / 2} \exp T(\alpha, z) \tag{56}
\end{equation*}
$$

where $\exp T(\alpha, z)=\exp T_{-}(\alpha, z) e^{\alpha} z^{\alpha(0)} \exp T_{+}(\alpha, z)$ and $z^{\alpha(0)}\left(e^{\lambda} \otimes f\right)=z^{(\alpha \mid \lambda)}\left(e^{\lambda} \otimes f\right)$, $f \in S\left(\mathcal{A}(\Gamma)_{-}\right)$. It is also shown in [MP1] that $X(\alpha, z)$ can be formally expanded in powers of z to give $X(\alpha, z)=\sum_{n \in \mathbf{Z}} X_{n}(\alpha) z^{-n}$. The coefficients $X_{n}(\alpha)$ are called moments and are operators on $V(\Gamma)$.
Proposition 3.1 ([MP1]) Let $f \in S\left(\mathcal{A}(\Gamma)_{-}\right)$. Suppose $\alpha \in Q, \lambda \in \Gamma$. Then

$$
\begin{equation*}
X_{n}(\alpha)\left(e^{\lambda} \otimes f\right)=e^{\lambda+\alpha} \otimes f_{1} \tag{57}
\end{equation*}
$$

where $f_{1} \in S\left(\mathcal{A}(\Gamma)_{-}\right)$.

Thus in the decomposition of the full Fock space $V(\Gamma)=\coprod_{\lambda \in \Gamma} V_{\Gamma}(\lambda)$ one can view the moments as operators which move an element in the λ-stalk to an element in the $(\lambda+\alpha)$ stalk.

The next theorem summarizes the key commutation relations between the moments.
Theorem 3.2 ([FK] and [GO], [MP1]) Let α and β be elements of the lattice Q in (1).

```
CR0 \(\left[\alpha(k), X_{n}(\beta)\right]=(\alpha \mid \beta) X_{n+k}(\beta)\).
CR1 If \((\alpha \mid \beta) \geq 0\) then \(\left[X_{m}(\alpha), X_{n}(\beta)\right]=0\).
CR2 If \((\alpha \mid \beta)=-1\) then \(\left[X_{m}(\alpha), X_{n}(\beta)\right]=\varepsilon(\alpha, \beta) X_{m+n}(\alpha+\beta)\).
CR3 If \((\alpha \mid \alpha)=(\beta \mid \beta)=-(\alpha \mid \beta)=2\) then \(\left[X_{m}(\alpha), X_{n}(\beta)\right]=\varepsilon(\alpha, \beta)\left\{m X_{n+m}(\alpha+\right.\)
    \(\left.\beta)+\sum_{k \in \mathrm{Z}}: \alpha(k) X_{m+n-k}(\alpha+\beta):\right\}\) where : \(\alpha(k) X_{m+n-k}(\beta):=\alpha(k) X_{m+n-k}(\beta)\) if \(k \leq\)
    \(m+n-k\) and \(X_{m+n-k}(\beta) \alpha(k)\) if \(k>m+n-k\).
CR4 \(\left[L_{k}, X(\alpha, z)\right]=z^{k}\left\{\frac{k}{2}(\alpha \mid \alpha)+z \frac{d}{d z}\right\} X(\alpha, z)\).
```

Let $\left\{e_{ \pm \alpha_{i}}, h_{i}: 1 \leq i \leq l\right\}$ be a Chevalley basis of $\dot{\mathcal{G}}$ in Proposition 1.4. As an addendum to Proposition 1.4 we note that $\mathcal{T}_{[2]}$ contains an affine Kac-Moody algebra $\dot{\mathcal{G}} \otimes_{\mathbf{C}} \mathbf{C}\left[t_{1}, t_{1}^{-1}\right] \oplus \mathbf{C} c$. Denote its root system by Δ, its set of real roots by Δ^{re} and its root lattice by Q in (1). Now we can state the main result from [MEY] which gives vertex representations of $\mathcal{T}_{[2]}$.
Theorem 3.3 ([MEY]) The assignment

```
\(e_{\alpha_{i}} \otimes \pm s^{m} t^{n} \mapsto X_{m}\left(\alpha_{i}+n \delta\right), n, m \in \mathbf{Z}\)
\(-e_{-\alpha_{i}} \otimes \pm s^{m} t^{n} \mapsto X_{m}\left( \pm \alpha_{i}+n \delta\right), n, m \in \mathbf{Z}, 1 \leq i \leq l\)
\(z_{(1,0)}(m, n) \mapsto X_{m}(n \delta), n \neq 0\)
\(z_{(0,1)}(m, 0) \mapsto \delta(m)\)
\(z_{(1,0)}(0,0) \mapsto I\) where \(I\) is the identity map on \(V(\Gamma)\)
```

gives an isomorphism ϕ between the Lie algebra of operators \mathcal{T} on $V(\Gamma)$ generated by the moments $X_{m}(\alpha), \alpha \in \Delta^{\mathrm{re}}, m \in \mathbf{Z}$, and the toroidal algebra $\mathcal{T}_{[2]}$.

Let $\left\{a_{i}\right\}_{i=1}^{l}$ be an orthonormal basis for $\mathbf{C} \otimes_{\mathbf{Z}} \dot{Q}$. Let $\left\{\alpha_{1}, \alpha_{2}\right\}$ be an orthonormal basis for $\mathbf{C} \otimes_{\mathbf{Z}} \Lambda$ where $\Lambda=\mathbf{Z} \delta \oplus \mathbf{Z} \mu$. Let $u_{i}=a_{i}, i=1, \ldots, l$ and $u_{l+1}=\alpha_{1}$ and $u_{l+2}=\alpha_{2}$. Then $\left\{u_{i}\right\}_{i=1}^{l+2}$ is an orthonormal basis over \mathbf{C} for $\mathbf{C} \otimes_{\mathbf{Z}} \Gamma$. Therefore by Proposition 1.8, the oscillator operators given by this basis affords a representation of Vir on $V_{\Gamma}(\lambda)$ where the centre ζ acts as $(l+2) I$. So $V_{\Gamma}(\lambda)$ affords a representation of both Vir and $\mathcal{A}(Q)$. However from (42), $\left[L_{k}, a(n)\right]=-n a(n+k)$. Therefore, by (34) we have proved that $V_{\Gamma}(\lambda)$ is an $\tilde{\mathcal{A}}(\Gamma)$-module and consequently we have the next proposition.
Proposition $3.4 V(\Gamma)=\coprod_{\lambda \in \Gamma} V_{\Gamma}(\lambda)$ is an $\tilde{\mathcal{A}}(\Gamma)$-module decomposition.
Let $\tilde{\mathcal{T}}_{[2]}$ be the Lie algebra of operators on $V(\Gamma)$ generated by $X_{m}(\alpha)$ and L_{k} where $m, k \in$ \mathbf{Z} and $\alpha \in \Delta^{\text {re }} \subset Q$.
Proposition 3.5 ([FM, Section 4]) $\tilde{\mathscr{T}}_{[2]}$ is the semi-direct product of Vir and $\mathcal{T}_{[2]}$.

Proof As C-spaces,

$$
\begin{equation*}
\tilde{\mathcal{T}}_{[2]}=\operatorname{Vir} \oplus \mathcal{T}_{[2]} \tag{58}
\end{equation*}
$$

after using Theorem 3.3. A Lie algebra is a semi-direct product $A \propto B$ if A is a subalgebra and B is an ideal. We will show that $\mathcal{T}_{[2]}$ is an ideal in (58). It suffices to show that $\left[L_{k}, X_{m}(\alpha)\right] \in \mathcal{T}_{[2]}$, where $k, m \in \mathbf{Z}$, and $\alpha \in \Delta^{\text {re }}$. Indeed, by CR4, $\sum_{m \in \mathbf{Z}}\left[L_{k}, X_{m}(\alpha)\right] z^{-m}=\left[L_{k}, X(\alpha, z)\right]=z^{k}\left\{\frac{k}{2}(\alpha, \alpha)+z \frac{d}{d z}\right\} X(\alpha, z)=\sum_{n \in \mathbf{Z}} z^{k}\left\{\frac{k}{2}(\alpha, \alpha)+\right.$ $\left.z \frac{d}{d z}\right\} X_{n}(\alpha) z^{-n}=\sum_{n \in \mathbf{Z}}\left(\frac{k}{2}(\alpha, \alpha)-n\right) X_{n}(\alpha) z^{-n+k}$. Now replacing n by $m+k$ and equating coefficients of z^{-m}, we get

$$
\begin{equation*}
\left[L_{k}, X_{m}(\alpha)\right]=\left\{\frac{k}{2}(\alpha \mid \alpha)-(m+k)\right\} X_{m+k}(\alpha) \tag{59}
\end{equation*}
$$

which is in $\mathcal{T}_{[2]}$.
The Lie algebra $\tilde{\mathfrak{T}}_{[2]}$ is called the Virasoro-toroidal algebra of rank two.
A generalization of this situation occurs when we replace Γ by $\dot{Q} \perp \Lambda_{n-1}$ with $\left\{\delta_{1}, \ldots, \delta_{n-1}, \mu_{1}, \ldots, \mu_{n-1}\right\}$ a basis for Λ_{n-1} and $\left(\delta_{i} \mid \dot{Q}\right)=\left(\mu_{j} \mid \dot{Q}\right)=\left(\delta_{i} \mid \delta_{j}\right)=$ $\left(\mu_{i} \mid \mu_{j}\right)=0$ and $\left(\delta_{i} \mid \mu_{j}\right)=\delta_{i, j}\left(\delta_{i, j}\right.$ is Kronecker delta) for all pairs (i, j).

Using this new lattice an analogue of Theorem 3.3 is proved in Theorem 3.14 of [EM] for an arbitrary positive integer n. We can now define the Virasoro-toroidal algebra, $\tilde{T}_{[n]}$, of rank n for an arbitrary positive integer n, as the algebra of operators on $V\left(\dot{Q} \perp \Lambda_{n-1}\right)$ generated by the moments $X_{m}(\alpha+\delta)$ in Theorem 3.14 of [EM] and the Virasoro operators on $V\left(\dot{Q} \perp \Lambda_{n}\right)$. The subalgebra of $\tilde{\mathcal{T}}_{[n]}$ generated by the Virasoro operators L_{k} on $V(\dot{Q} \perp$ Λ_{n}) and the subalgebra $X \subset \mathcal{T}_{[n]}$ in Proposition 1.4 is the Virasoro-Heisenberg algebra $\tilde{\mathcal{H}}(\dot{Q}, n)$.

We can be explicit when $n=2$. To that end we use the basis of Z_{2} given in Proposition 1.2. We let generators of Vir act on $\mathcal{H}(\dot{Q}, 2)$ as follows:

$$
\begin{gather*}
d_{k}(\gamma(m, n))=-m \gamma(m+k, n) \tag{60}\\
d_{k}\left(z_{(1,0)}(m, n)\right)=-(m+k) z_{(1,0)}(m+k, n), \quad n \neq 0 \tag{61}\\
d_{k}\left(z_{(0,1)}(m, 0)\right)=-m z_{(0,1)}(m+k, 0) \tag{62}\\
d_{k}\left(z_{(1,0)}(0,0)\right)=0 \tag{63}\\
\zeta(\mathcal{H}(\dot{Q}, 2))=0 \tag{64}
\end{gather*}
$$

We use the above equations to get the Lie bracket in $\tilde{\mathcal{H}}(\dot{Q}, 2)$. So, for instance, $\left[d_{k}, \gamma(m, n)\right]=-m \gamma(m+k, n)$.

Let $V(\lambda)=e^{\lambda+Q} \otimes_{\mathbf{C}} S\left(\mathcal{A}(\Gamma)_{-}\right)$, where $\lambda \in \Gamma$. (This is not to be confused with $V_{L}(\lambda)$ in (20).) To see how moments act on $V(\lambda)$, set $\tau=X_{-N}(\delta)$ where $N=(\lambda \mid \delta)$.

Proposition 3.6 ([MEY, Proposition 5.3]) Let $k, m \in \mathbf{Z}$.
(a) The operator $X_{-k N}(k \delta)$ acts on $V(\lambda)$ as multiplication by $\varepsilon(\delta, \lambda)^{k} e^{k \delta}$. In particular τ acts as multiplication by $\varepsilon(\delta, \lambda) e^{\delta}$ and $X_{-k N}(k \delta)$ acts as τ^{k} on $V(\lambda)$.
(b) $X_{m}(k \delta)$ annihilates $V(\lambda)$ if and only if $m+k N>0$.

For $\gamma \in \mathbf{C} \otimes_{\mathbf{Z}} \dot{Q}, m, n \in \mathbf{Z}$, define

$$
\begin{equation*}
T_{m}^{\gamma}(n \delta)=\sum_{k \in \mathbf{Z}}: \gamma(k) X_{-k+m}(n \delta): \tag{65}
\end{equation*}
$$

where the normal ordering is defined as in CR3 of Theorem 3.2. It follows from Proposition 3.6 and (16) that only finitely many terms of the infinite sum act non-trivially on any fixed $v \in V(\Gamma)$. We note that $T_{m}^{\gamma}(n \delta)$ is linear in its superscript.

In the next computation we use Theorem 3.3 with $e_{\alpha_{i}}$ denoted by e_{i}, the CR relations, and the properties of the map ε in (35) to (37). We have $\left[e_{i} \otimes 1, e_{-i} \otimes s^{m} t^{n}\right]=$ $-\left[X_{0}\left(\alpha_{i}+0 \delta\right), X_{m}\left(-\alpha_{i}+n \delta\right)\right]=-\varepsilon\left(\alpha_{i},-\alpha_{i}\right) \sum_{k \in \mathbf{Z}}: \alpha_{i}(k) X_{-k+m}(n \delta):=T_{m}^{\alpha_{i}}(n \delta)$. Let $\left\{h_{1}, \ldots, h_{l}\right\}$ be the basis of $\mathscr{\mathcal { H }}$, the Cartan subalgebra in Proposition 1.4. Let $\gamma \in \dot{\mathcal{H}}$. Then for some complex numbers $c_{1}, \ldots, c_{l}, \gamma=\sum_{i=1}^{l} c_{i} h_{i}$. Then in Proposition 1.4, $\gamma(m, n) \mapsto$ $\gamma \otimes s^{m} t^{n}=\sum_{i=1}^{l} c_{i}\left(h_{i} \otimes s^{m} t^{n}\right) \in \mathcal{T}_{[2]}$. Since T_{m}^{γ} is linear in its superscript, the proof of the next proposition follows from Theorem 3.3 and the above calculation.

Proposition 3.7 $V(\Gamma)$ is an $\mathcal{H}(\dot{Q}, 2)$-module under the following correspondences.

$$
\begin{gather*}
\gamma(m, n) \mapsto T_{m}^{\gamma}(n \delta) \tag{66}\\
z_{(1,0)}(m, n) \mapsto X_{m}(n \delta), n \neq 0 \tag{67}\\
z_{(0,1)}(m, 0) \mapsto \delta(m) \tag{68}\\
z_{(1,0)}(0,0) \mapsto I \tag{69}
\end{gather*}
$$

where I is the identity operator on $V(\Gamma)$ and $\delta(m)$ acts on $V(\Gamma)$ as specified in (22) and (23).
We extend the representation of $\mathcal{H}(\dot{Q}, 2)$ in Proposition 3.7 to a representation of $\tilde{\mathcal{H}}(\dot{Q}, 2)$ on $V(\Gamma)$ by letting the Virasoro generator d_{k} act on each $V_{\Gamma}(\lambda)$ in Proposition 3.4 by the oscillator operator L_{k} defined just before Proposition 3.4, and extending the action linearly. On each $V_{\Gamma}(\lambda), \zeta$ acts as $(l+2) I$.

Proposition 3.8 $V(\Gamma)$ is an $\tilde{\mathcal{H}}(\dot{Q}, 2)$-module.

Proof We know from Proposition 1.8 and Proposition 3.7 that $V(\Gamma)$ is both a Vir-module and an $\mathcal{H}(\dot{Q}, 2)$-module. So we need only check that the operations from both algebras are compatible with the bracket operations in $\tilde{\mathcal{H}}(\dot{Q}, 2)$. By (42), $\left[L_{k}, \delta(m)\right]=-m \delta(m+k)$. By Proposition 3.7 and the remark following it $\left[L_{k}, \delta(m)\right]$ corresponds to $\left[d_{k}, z_{(0,1)}(m, 0)\right] \in$ $\tilde{\mathcal{H}}(\dot{Q}, 2)$. $\operatorname{By}(61),\left[d_{k}, z_{(0,1)}(m, 0)\right]=-m z_{(0,1)}(m+k, 0)$, as required.

Since $(n \delta \mid n \delta)=0$, we get by (59) that $\left[L_{k}, X_{m}(n \delta)\right]=-(m+k) X_{m+k}(n \delta)$. By (61), $\left[d_{k}, z_{(1,0)}(m, n)\right]=-(m+k) z_{(1,0)}(m+k, n)$. By (67), the latter element gives the operator $-(m+k) X_{m+k}(n \delta)$ as required.

For the next computation, we first justify (70), which will permit us to remove : : in (65).

$$
\begin{equation*}
\sum_{l \in \mathbf{Z}}: a_{l} a_{-l+m}:=\sum_{l \in \mathbf{Z}} a_{l} a_{-l+m}-\sum_{l>\frac{m}{2}}\left[a_{l}, a_{-l+m}\right] \tag{70}
\end{equation*}
$$

As $-l+m<l \Leftrightarrow l>\frac{m}{2}$, the left hand side of (70) is $\sum_{l \leq \frac{m}{2}} a_{l} a_{-l+m}+\sum_{l>\frac{m}{2}} a_{-l+m} a_{l}$, while the right hand side is $\sum_{l \in \mathbf{Z}} a_{l} a_{-l+m}-\sum_{l>\frac{m}{2}}\left(a_{l} a_{-l+m}-a_{-l+m} a_{l}\right)$. Simplifying this expression gives the above form of the left hand side of (70).

By (65) $\left[L_{k}, T_{m}^{\gamma}(n \delta)\right]=\left[L_{k}, \sum_{l \in \mathbf{Z}}: \gamma(l) X_{-l+m}(n \delta):\right]$. By (70) the latter is equal to $\left[L_{k}, \sum_{l \in \mathbf{Z}} \gamma(l) X_{-l+m}(n \delta)\right]-\sum_{l>\frac{m}{2}}\left[L_{k},\left[\gamma(l), X_{-l+m}(n \delta)\right]\right]=\sum_{l \in \mathbf{Z}}\left[L_{k}, \gamma(l) X_{-l+m}(n \delta)\right]-$ $\sum_{l>\frac{m}{2}}\left[L_{k},(\gamma \mid n \delta) X_{m}(n \delta)\right]$ where the last equality follows from CRO in Theorem 3.2. But $(\gamma \mid n \delta)=0$ because $\gamma \in Q$ in (3). Hence $\left[L_{k}, T_{m}^{\gamma}(n \delta)\right]=\sum_{l \in \mathbf{Z}}\left[L_{k}, \gamma(l) X_{-l+m}(n \delta)\right]=$ $\sum_{l \in \mathbf{Z}}\left\{\left[L_{k}, \gamma(l)\right] X_{-l+m}(n \delta)+\gamma(l)\left[L_{k}, X_{-l+m}(n \delta)\right]\right\}$, which by (42) and (59) is equal to $\sum_{l \in \mathbf{Z}}\left\{-l \gamma(k+l) X_{-l+m}(n \delta)+(l-m-k) \gamma(l) X_{k+m-l}(n \delta)\right\}=\sum_{l \in \mathbf{Z}}\left\{-l \gamma(k+l) X_{-l+m}(n \delta)+\right.$ $\left.(l-m) \gamma(l+k) X_{-l+m}(n \delta)\right\}=-m \sum_{l \in \mathbf{Z}} \gamma(k+l) X_{-l+m}(n \delta)=-m T_{m+k}^{\gamma}(n \delta)$.

By Proposition 3.7 the operator [$L_{k}, T_{m}^{\gamma}(n \delta)$] comes from [$d_{k}, \gamma(m, n)$], which by (60), is $-m \gamma(m+k, n)$. By (66) this gives the operator $-m T_{m+k}^{\gamma}(n \delta)$, as required.

For $\lambda \in \Gamma$, let $H(\lambda)$ be the \mathbf{C}-subspace of $V(\Gamma)$ spanned by $\mathbf{C}[\lambda+\mathbf{Z} \delta] \otimes_{\mathbf{C}} S\left(\mathcal{A}(\Gamma)_{-}\right)$. In multiplicative notation, $\mathbf{C}[\lambda+\mathbf{Z} \delta]$ has \mathbf{C}-basis $\left\{e^{\lambda+n \delta}: n \in \mathbf{Z}\right\}$. As \mathbf{C}-spaces,

$$
\begin{equation*}
V(\Gamma)=\coprod_{\lambda} H(\lambda) \tag{71}
\end{equation*}
$$

where λ ranges over a complete set of representatives of $\Gamma / \mathbf{Z} \delta$. The oscillator operator L_{k} is a sum of compositions of the operator in (21) to (23). So it follows from Proposition 3.7 and Proposition 3.1 with $\alpha=n \delta$ that $H(\lambda)$ is an $\tilde{\mathcal{H}}(\dot{Q}, 2)$-submodule of $V(\Gamma)$. We shall study its structure in the next two sections.

4 Irreducible Representations

One of the main result of this section is that $H(\lambda)$ in (71) affords an irreducible representation of $\mathcal{H}(\dot{Q}, 2)$ if $\lambda \notin Q$. We begin by stating the results that we need for its proof.

We use (31) and (32) to extend the action of Vir on $\mathcal{A}(Q)$ to an action on $S(\mathcal{A}(Q))$ so that each d_{k} acts as a derivation and ζ acts trivially. Then for any homogeneous polynomial $f \in S\left(\mathcal{A}(Q)_{-}\right), d_{0}(f)=(\operatorname{deg} f) f$. It is shown in (16) of [FM] that

$$
\begin{equation*}
d_{n}\left(e^{\lambda} \otimes f\right)=\left(\delta_{n, 0} \frac{(\lambda \mid \lambda)}{2} f+d_{n}(f)\right)\left(e^{\lambda} \otimes 1\right) \tag{72}
\end{equation*}
$$

where $\delta_{n, 0}$ is Kronecker delta.
Proposition 4.1 The set $A=\left(\coprod_{m \in \mathbf{Z}} \mathcal{L}(m, 0)\right) \oplus\left(\coprod_{m \in \mathbf{Z}} \mathbf{C} z_{(0,1)}(m, 0)\right) \oplus \mathbf{C} z_{(1,0)}(0,0)$ is a Lie-subalgebra of $\mathcal{H}(\dot{Q}, 2)$ isomorphic to $\mathcal{A}(Q)$.

Proof We use Proposition 1.2. First, A is a subalgebra of $\mathcal{H}(\dot{Q}, 2)$: For $\gamma, \eta \in \mathcal{L}$, and $m, n \in \mathbf{Z}$ we have, by (10) and (6), that $[\gamma(m, 0), \eta(n, 0)]=(\gamma \mid \eta) z_{(m, 0)}(m+n, 0)=$ $m(\gamma \mid \eta) z_{(1,0)}(m+n, 0)=m \delta_{m+n, 0}(\gamma \mid \eta) z_{(1,0)}(0,0)$, where the last equality follows from the fact that if $m+n \neq 0$ then $z_{(1,0)}(m+n, 0)=\frac{1}{m+n} z_{(m+n, 0)}(m+n, 0) \in \mathcal{D}_{2}$. In that case $z_{(1,0)}(m+n, 0)=0$ in $z_{2}=\mathcal{C}_{2} / \mathcal{D}_{2}$. If $m+n=0$ then $z_{(1,0)}(m+n, 0)=z_{(1,0)}(0,0)$, which is in A. Now recall the Heisenberg algebra $\mathcal{A}(Q)=\mathcal{H}(Q, 1)$ in (12) with $L=Q$. Under the correspondences $\gamma(m, 0) \mapsto \gamma(m), z_{(0,1)}(m, 0) \mapsto \delta(m), z_{(1,0)}(0,0) \mapsto c$, one checks using (10), (11), (13), and (14) that this yields an isomorphism between A and $\mathcal{A}(Q)$.

By Propositions 4.1 and 1.4 we have the following inclusions of Lie algebras

$$
\tilde{\mathcal{A}}(Q) \subseteq \tilde{\mathcal{H}}(\dot{Q}, 2) \subseteq \tilde{\mathcal{T}}_{[2]}
$$

Any representation of $\tilde{\mathcal{T}}_{[2]}$ is automatically a representation of its subalgebras. This will be useful in the establishment of the irreducibility of some modules.

Proposition 4.2 Let $\lambda \in \Gamma \backslash Q$. Then $H(\lambda)$ is an irreducible $\tilde{\mathcal{H}}(\dot{Q}, 2)$-module.

Proof We will show that (i) $e^{\lambda} \otimes 1$ generates $H(\lambda)$ and (ii) every non-zero submodule of $H(\lambda)$ contains $e^{\lambda} \otimes 1$. First note that as a \mathbf{C}-space
$H(\lambda)=\coprod_{n \in \mathbf{Z}} \mathbf{C} e^{\lambda+n \delta} \otimes_{\mathbf{C}} S\left(\mathcal{A}(\Gamma)_{-}\right)=\coprod_{n \in \mathbf{Z}} V_{\Gamma}(\lambda+n \delta)$.
Since $\lambda \in \Gamma \backslash Q$ it follows that for each $n \in \mathbf{Z}, \lambda+n \delta \in \Gamma \backslash Q$. Thus by Proposition 9 of [FM], $\mathbf{C} e^{\lambda+n \delta} \otimes_{\mathbf{C}} S\left(\mathcal{A}(\Gamma)_{-}\right)$is an irreducible $\tilde{\mathcal{A}}(Q)$-module generated by $e^{\lambda+n \delta} \otimes 1$. To show (i) it suffices, by Proposition 4.1, to check that for every $n \in \mathbf{Z}, e^{\lambda+n \delta} \otimes 1$ is in the $\tilde{\mathcal{H}}(\dot{Q}, 2)$ submodule generated by $e^{\lambda} \otimes 1$. Indeed given $n \in \mathbf{Z}$ choose $m \in \mathbf{Z}$ so that $m+n N=0$ where $N=(\lambda \mid \delta)$. Then by Proposition 3.6(a) we have $X_{m}(n \delta)\left(e^{\lambda} \otimes 1\right)= \pm e^{\lambda+n \delta} \otimes 1$.

Next let R be a non-zero submodule of $H(\lambda)$ and let $0 \neq z=\sum_{i=1}^{s} e^{\lambda+k_{i} \delta} \otimes f_{i} \in$ $R, k_{i} \in \mathbf{Z}, f_{i} \in S\left(\mathcal{A}(\Gamma)_{-}\right)$and $s \geq 1$. We may assume that the k_{i} 's are distinct. We use (16) to differentiate out all indeterminates of the form $\mu(-n), n>0$ using $\delta(n)$ and those of the form $\alpha(-m), \alpha \in \dot{Q}, m>0$ using $\alpha(m)$. Thus we may assume that $f_{i} \in$ $S\left(\coprod_{m>0} \mathbf{C} \delta(-m)\right)$. Now using (31) and (72) as in the proof of Proposition 7 of [FM] we can further reduce z to a non-zero element $x=\sum_{i=1}^{r} c_{i} e^{\lambda+k_{i} \delta} \otimes 1$ in R where c_{i} 's are nonzero complex numbers and $r \leq s$. We say that x has length r if it has r distinct k_{i} 's. If $r=1$ then by Proposition 3.6, $X_{k_{1} N}\left(-k_{1} \delta\right)\left(c_{1} e^{\lambda+k_{1} \delta} \otimes 1\right)= \pm c_{1}\left(e^{\lambda} \otimes 1\right)$ as required. If $r \geq 2$ then by induction it suffices to show that we can shorten the length of x by exactly one.

Let $m=\frac{(\lambda \mid \lambda)}{2} \in \mathbf{Z}$ and choose an integer k so that $n_{1}=m+\left(k-k_{1}\right) N<0$, where $N=(\lambda \mid \delta)$. Write $n_{1}=-n, n>0$. Let $y=L_{0} \delta(-n) X_{k N}(-k \delta) x$. We claim that y has length $r-1$. Write $x=\left(c_{1} e^{\lambda+k_{1} \delta} \otimes 1\right)+x^{\prime}$, where $x^{\prime}=\sum_{i=2}^{r} c_{i} e^{\lambda+k_{i} \delta} \otimes 1$. So $y=c_{1} L_{0} \delta(-n) X_{k N}(-k \delta)\left(e^{\lambda+k_{1} \delta} \otimes 1\right)+L_{0} \delta(-n) X_{k N}(-k \delta) x^{\prime}$. It suffices to show that the first term is zero and no other term is zero. Indeed, for $1 \leq i \leq r$ and $\epsilon_{i}=\varepsilon\left(-k \delta, \lambda+k_{i} \delta\right)= \pm 1$, and using Proposition 3.6 and (72), we get

$$
\begin{aligned}
L_{0} \delta(-n) X_{k N}(-k \delta)\left(e^{\lambda+k_{i} \delta} \otimes 1\right) & =\epsilon_{i} L_{0}\left(e^{\lambda+\left(k_{i}-k\right) \delta} \otimes \delta(-n)\right) \\
& =\epsilon_{i}\left(\frac{(\lambda \mid \lambda)}{2}+\left(k_{i}-k\right)(\lambda \mid \delta)+n\right)\left(e^{\lambda+\left(k_{i}-k\right) \delta} \otimes \delta(-n)\right) \\
& =\epsilon_{i}\left(m+\left(k_{i}-k\right) N+n\right)\left(e^{\lambda+\left(k_{i}-k\right) \delta} \otimes \delta(-n)\right) .
\end{aligned}
$$

Now the coefficient $m+\left(k_{i}-k\right) N+n=0 \Leftrightarrow k=k_{1}$ by the choice of n. So the length of x has been shortened by one as required.

When $\lambda \in Q$ we shall see in the next section that $H(\lambda)$ is a reducible $\tilde{\mathcal{H}}(\dot{Q}, 2)$-module.
Our next batch of irreducible modules will be $\tilde{\mathcal{A}}(Q)$-modules and will come from the completely reducible modules in Theorem 2.6.

Every element λ in the lattice Q of (1) is of the form $\alpha+n \delta, \alpha \in \dot{Q}, n \delta \in \mathbf{Z} \delta$. Define $\phi: V_{\dot{Q}}(\alpha) \otimes_{\mathbf{C}} V_{\Lambda}(n \delta) \rightarrow V_{\Gamma}(\lambda)$ to be the unique linear map satisfying

$$
\begin{equation*}
\phi\left(\left(e^{\alpha} \otimes f\right) \otimes\left(e^{n \delta} \otimes g\right)\right)=e^{\lambda} \otimes f g \tag{73}
\end{equation*}
$$

Since $\Gamma=\dot{Q} \perp \Lambda$, we have that $S\left(\mathcal{A}\left(\dot{Q}_{-}\right)\right) S\left(\mathcal{A}(\Lambda)_{-}\right)$. Let

$$
\dot{L}_{k}=\frac{1}{2} \sum_{j \in \mathbf{Z}} \sum_{1=1}^{l}: u_{i}(-j) u_{i}(j+k):
$$

where $\{u\}_{i=1}^{l}$ is an orthonormal basis for $\mathbf{C} \otimes_{\mathbf{z}} \dot{Q}$. Let

$$
H_{k}=\frac{1}{2} \sum_{j \in \mathbf{Z}} \sum_{i=1}^{2}: \alpha_{i}(-j) \alpha_{i}(j+k):
$$

where $\left\{\alpha_{1}, \alpha_{2}\right\}$ is an orthonormal basis for $\mathbf{C} \otimes_{\mathbf{Z}} \Lambda$. Now, let $m \in \mathbf{Z}, a \in \mathbf{C} \otimes_{\mathbf{Z}} \dot{Q}$.
We make $V_{\dot{Q}}(\alpha) \otimes_{\mathbf{C}} V_{\Lambda}(n \delta)$ an $\tilde{\mathcal{A}}(Q)$-module as follows. We set

$$
\begin{aligned}
& a(m)\left(\left(e^{\alpha} \otimes f\right) \otimes\left(e^{n \delta} \otimes g\right)\right)=\left(a(m)\left(e^{\alpha} \otimes f\right)\right) \otimes\left(e^{n \delta} \otimes g\right) \\
& \delta(m)\left(\left(e^{\alpha} \otimes f\right) \otimes\left(e^{n \delta} \otimes g\right)\right)=\left(e^{\alpha} \otimes f\right) \otimes\left(\delta(m)\left(e^{n \delta} \otimes g\right)\right) \\
& d_{m}\left(\left(e^{\alpha} \otimes f\right) \otimes\left(e^{n \delta} \otimes g\right)\right)=\left(\left(\dot{L}_{m} \otimes I\right)+\left(I \otimes H_{m}\right)\right)\left(\left(e^{\alpha} \otimes f\right) \otimes\left(e^{n \delta} \otimes g\right)\right) .
\end{aligned}
$$

Use ϕ to make both sides of (73) $\tilde{\mathcal{A}}(Q)$-modules.
Proposition 4.3 The map in (73) is an $\tilde{\mathcal{A}}(Q)$-module isomorphism between $V_{\dot{Q}}(\alpha) \otimes_{\mathbf{C}}$ $V_{\Lambda}(n \delta)$ and $V_{\Gamma}(\lambda)$.

Denote $V_{\dot{Q}}(\alpha) \otimes_{\mathbf{C}} V_{\Lambda}(n \delta)_{l}$ by $V_{\Gamma}(\lambda)_{l}$.
Proposition 4.4 If $\lambda \in Q$ then the family $\left\{V_{\Gamma}(\lambda)_{l}\right\}_{l \in \mathbf{Z}}$ is a filtration of $\tilde{\mathcal{A}}(Q)$-submodules of $V_{\Gamma}(\lambda)$.

Proof By Theorem 2.3, $V_{\Lambda}(n \delta)_{l}$ is a Vir-submodule of $V_{\Lambda}(n \delta)$. We get from (21) to (23), with $L=\Lambda$, and Lemma 2.2 that it is also an $\mathcal{A}(\Lambda)$-submodule. Hence $V_{\Lambda}(n \delta)_{l}$ is an $\tilde{\mathcal{A}}(\Lambda)$ submodule of $V_{\Lambda}(n \delta)$. We get from Proposition 1.7 that $V_{\dot{Q}}(\alpha)$ is an $\tilde{\mathcal{A}}(\dot{Q})$-module. So Proposition 4.4 follows from Proposition 4.3 and Theorem 2.3.

For each $l \in \mathbf{Z}$, let $\overline{V_{\Gamma}(\lambda)_{l}}$ denote $V_{\Gamma}(\lambda)_{l} / V_{\Gamma}(\lambda)_{l-1}$.
Theorem 4.5 If $\lambda \in Q$ then $\left\{\overline{V_{\Gamma}(\lambda)_{l}}\right\}_{l \in \mathbf{Z}}$ is a family of $\tilde{\mathcal{A}}(Q)$-completely reducible modules.

Proof As C-spaces, the map ϕ in (73) induces a vector space isomorphism $\bar{\phi}: \overline{V_{\Gamma}(\lambda)_{l}} \rightarrow$ $V_{\dot{Q}}(\alpha) \otimes \overline{V_{\Lambda}(n \delta)_{l}}$.

As in (73) we make $\bar{\phi}$ an $\tilde{\mathcal{A}}(Q)$-module isomorphism. By Corollary 2.7, $X=\overline{V_{\Lambda}(n \delta)_{l}}$ is a completely reducible Vir-module. Say $X=\coprod_{j \in J} X_{j}$ with X_{j} irreducible as a Virmodule. By Proposition 1.5, $V_{\dot{Q}}(\alpha)$ is an irreducible $\mathcal{A}(\dot{Q})$-module. Using these one shows
that $\coprod_{j \in J}\left(V_{\dot{Q}}(\alpha) \otimes X_{j}\right)$ is a completely reducible decomposition of $V_{\dot{Q}}(\alpha) \otimes \overline{V_{\Lambda}(n \delta)_{l}}$ as an $\tilde{\mathcal{A}}(Q)$-module.

Remarks In Proposition 9 of [FM] it is shown that if $\lambda \notin Q$ then $V_{\Gamma}(\lambda)$ is an irreducible $\tilde{\mathcal{A}}(Q)$-module. Our proof of complete reducibility in Theorem 4.5 depends on the factorisation in (73). The modules in the next section do not have such a factorisation.

5 Reducible Modules

For m an integer let $K(m)$ be the \mathbf{C}-subspace of $V(\Gamma)$ spanned by $\left\{\mathbf{C}[m \mu+\lambda] \otimes_{\mathbf{C}}\right.$ $\left.S\left(\mathcal{A}(\Gamma)_{-}\right): \lambda \in Q\right\}$. From Proposition 1.8, Theorem 3.3, and Proposition 3.1, we deduce that $K(m)$ is a $\tilde{\mathcal{T}}_{[2]}$-submodule of $V(\Gamma)$. We have the decomposition of $\tilde{\mathscr{T}}_{[2]}$-submodules

$$
\begin{equation*}
V(\Gamma)=\coprod_{m \in \mathbf{Z}} K(m) . \tag{74}
\end{equation*}
$$

In [FM] it was shown that if $m \neq 0$, then $K(m)$ is irreducible as a $\tilde{\mathcal{T}}_{[2]}$-module. We shall show that both $K(0)$ and $H(\lambda)$ in (71), $\lambda \in Q$, have filtrations of submodules as modules over $\tilde{\mathcal{T}}_{[2]}$ and $\tilde{\mathcal{H}}(\dot{Q}, 2)$ respectively. In order to do that we shall need an explicit expression for $X_{m}(\alpha+n \delta)\left(e^{\sigma+p \delta} \otimes f\right)$, where X_{m} is a moment as in Proposition 3.1 and

$$
\begin{equation*}
\{\alpha, \sigma\} \subset \dot{Q}, \quad\{m, n, p\} \subset \mathbf{Z} \tag{75}
\end{equation*}
$$

and $f \in \mathcal{S}_{l}, l$ an arbitrary but fixed integer.
The notation in (75) above will be in force for the rest of the paper.
From the definition of S_{l} in (50), f is a finite sum of scalar multiples of elements of the form $\mu\left(-q_{1}\right)^{a_{1}} \cdots \mu\left(-q_{s}\right)^{a_{s}} \delta(\mathbf{k})$, for various integers j and l, where $a=\sum_{i=1}^{s} a_{i} \leq j+l$, $\delta(\mathbf{k})=\delta\left(-k_{1}\right) \cdots \delta\left(-k_{j}\right), a_{1}, \ldots, a_{s}, k_{1}, \ldots, k_{j}$ are positive integers, while q_{1}, \ldots, q_{s} are distinct positive integers. Distributivity of \otimes allows us to take f to be one such summand. So let

$$
\begin{equation*}
f=\mu\left(-q_{1}\right)^{a_{1}} \cdots \mu\left(-q_{s}\right)^{a_{s}} \delta(\mathbf{k}) . \tag{76}
\end{equation*}
$$

For $\beta \in \Gamma$, define the elementary Schur polynomials $S_{r}(\beta), r \in \mathbf{Z}$, by the expressions

$$
\exp T_{-}(\beta, z)=\sum_{r=0}^{\infty} S_{r}(\beta) z^{r}
$$

If $r<0$, put $S_{r}(\beta)=0$.
Example 5.1 Let $x \in \Gamma$. The general formula for $S_{r}(x)$ can be read off from p. 59 of [KR]. For instance $S_{4}(x)=\frac{1}{24}(x(-1))^{4}+\frac{1}{2}(x(-1))^{2} x(-2)+x(-1) x(-3)+x(-4)$. The actual coefficients are irrelevant in our computations. We shall be working with $x=\alpha+n \delta$, $\alpha \in \dot{Q}, n \in \mathbf{Z}$. Using (7), $((\alpha+n \delta)(-1))^{4}=(\alpha(-1)+n \delta(-1))^{4}$. Since $S\left(\mathcal{A}(\Gamma)_{-}\right)$is commutative we see that, for all integers r, α and n as in (75), we have that

$$
\begin{equation*}
S_{r}(\alpha+n \delta) \in S\left(\mathcal{A}(\dot{Q})_{-}\right) S\left(\mathcal{A}(\mathbf{Z} \delta)_{-}\right) \tag{77}
\end{equation*}
$$

Let f be as in (76).
We want to compute $X_{m}(\alpha+n \delta)\left(e^{\sigma+p \delta} \otimes f\right)$. Let $\epsilon=\varepsilon(\alpha+n \delta, \sigma+p \delta)= \pm 1$. Suppose $f=1$. Then by (19) and (54) $\exp T_{+}(\alpha+n \delta, z)(1)=1$. So by (56), $\sum_{m \in \mathbf{Z}} X_{m}(\alpha+n \delta) z^{-m}\left(e^{\sigma+p \delta} \otimes 1\right)=z^{\frac{1}{2}(\alpha+n \delta \mid \alpha+n \delta)} \exp T_{-}(\alpha+n \delta, z) e^{\sigma+n \delta} z^{(\alpha+n \delta)(0)}\left(e^{\sigma+p \delta} \otimes\right.$ 1) $=\epsilon \sum_{r=0}^{\infty}\left(e^{\sigma+\alpha+(p+n) \delta} \otimes S_{r}(\alpha+n \delta) z^{r+\frac{1}{2}(\alpha \mid \alpha)+(\alpha \mid \sigma)}\right)$. Matching powers of z by putting $-m=r+\frac{1}{2}(\alpha \mid \alpha)+(\alpha \mid \sigma)$ and solving for r, we get from equating coefficients of z^{-m} that

$$
\begin{equation*}
X_{m}(\alpha+n \delta)\left(e^{\sigma+p \delta} \otimes 1\right)=\epsilon e^{\sigma+\alpha+(p+n) \delta} \otimes S_{-m-N}(\alpha+n \delta) \tag{78}
\end{equation*}
$$

where $N=\frac{1}{2}(\alpha \mid \alpha)+(\alpha \mid \sigma)$.
Lemma 5.2 If $e^{\sigma+p \delta} \otimes 1$ is in $e^{\sigma+Z \delta} \otimes S\left(\mathcal{A}(\dot{Q})_{-}\right) \mathcal{S}_{l}$ or $e^{Q} \otimes S\left(\mathcal{A}(\dot{Q})_{-}\right) \mathcal{S}_{l}$ respectively, then $X_{m}(\alpha+n \delta)\left(e^{\sigma+p \delta} \otimes 1\right)$ is in $e^{\sigma+Z \delta} \otimes S\left(\mathcal{A}(\dot{Q})_{-}\right) S_{l}$ or $e^{Q} \otimes S\left(\mathcal{A}(\dot{Q})_{-}\right) \mathcal{S}_{l}$ respectively.

Proof This follows from (78), (77), and Lemma 2.2.

Now assume that f in (76) is not a constant. The fact that $(\alpha+n \delta \mid \mu)=n$ and $(\alpha+n \delta \mid \delta)=0$ will be used when applying (56). Since $T_{+}(\alpha+n \delta, z)\left(e^{\sigma+p \delta} \otimes f\right)=$ $-\sum_{r>0} \frac{1}{r}(\alpha+n \delta)(r) z^{-r}\left(e^{\sigma+p \delta} \otimes f\right)$ we see from (16), (3), and (76) that only $r \in\left\{q_{1}, \ldots, q_{s}\right\}$ can contribute a non-zero term. And so

$$
\begin{align*}
& -\sum_{r>0} \frac{1}{r}(\alpha+n \delta)(r) z^{-r}\left(e^{\sigma+p \delta} \otimes f\right) \\
& \quad=-n \sum_{i=1}^{s}\left(e^{\sigma+p \delta} \otimes a_{i} \mu\left(-q_{1}\right)^{a_{1}} \cdots \mu\left(-q_{i}\right)^{a_{i}-1} \cdots \mu\left(-q_{s}\right)^{a_{s}} \delta(k)\right) z^{-q_{i}} \tag{79}
\end{align*}
$$

We want to rewrite (79) in a more complicated way that generalises for T_{+}^{l}, l a positive integer. First replace $-\sum_{i=1}^{s}$ by $(-)^{1} \sum$ and n by n^{1}. Let $w=\left(w_{1}, \ldots, w_{s}\right) \in \mathbf{Z}_{\geq 0}^{s}$. Then $(-)^{1} \sum$ in (79) ranges over all possible s-tuples in $\mathbf{Z}_{\geq 0}^{s}$ with $\sum_{i=1}^{s} w_{i}=1$. Each such s-tuple w gives a term $f_{w} z^{-\sum_{i=1}^{s} w_{i} q_{i}}$, where the coefficient, f_{w}, of $z^{-\sum_{i=1}^{s} w_{i} q_{i}}$ has μ-length $\leq(\mu$-length of $f)-1$. The polynomial f_{w} is a scalar multiple of the polynomial obtained by replacing each $\mu\left(-q_{i}\right)^{a_{i}}$ in (76) by its w_{i}-th derivative with respect to $\mu\left(-q_{i}\right)$. By replacing 1 by l in this version of (79) we get a Leibniz-rule-type formula for $T_{+}^{l}(\alpha+n \delta)\left(e^{\sigma+p \delta} \otimes f\right)$. A consequence of this visualised formula for T_{+}^{l} is that if $l>a=\sum_{i=1}^{s} a_{i}$, the μ-length of f then $T_{+}^{l}(\alpha+n \delta)\left(e^{\sigma+p \delta} \otimes f\right)=0$.

Let $\mathcal{W}=\left\{\left(w_{1}, \ldots, w_{s}\right) \in \mathbf{Z}_{\geq 0}^{s}: 0 \leq \sum_{i=1}^{s} w_{i} \leq a\right\}$. Let $F=\exp T_{+}(\alpha+n \delta, z)$. Then $F\left(e^{\sigma+p \delta} \otimes f\right)=\sum_{w \in \mathcal{W}} e^{\sigma+p \delta} \otimes c_{w} f_{w} z^{-\sum_{i=1}^{s} w_{i} q_{i}}$ for some scalars c_{w}, where $c_{(0,0, \ldots, 0)}=1$ and $f_{(0,0, \ldots, 0)}=f$.

We now recall (56) to get

$$
\sum_{m \in \mathbf{Z}} X_{m}(\alpha+n \delta) z^{-m}\left(e^{\sigma+p \delta} \otimes f\right)=z^{(\alpha \mid \alpha) / 2} \exp T_{-}(\alpha+n \delta, z) e^{\alpha+n \delta} z^{(\alpha+n \delta)(0)} F\left(e^{\sigma+p \delta} \otimes f\right)
$$

where $\exp T_{-}(\alpha+n \delta, z)=\sum_{r=0}^{\infty} S_{r}(\alpha+n \delta) z^{r}$. So $X(\alpha+n \delta, z)\left(e^{\sigma+p \delta} \otimes f\right)=$ $\epsilon \sum_{r=0}^{\infty}\left(e^{\sigma+\alpha+(p+n) \delta} \otimes S_{r}(\alpha+n \delta) z^{r+\frac{1}{2}(\alpha \mid \alpha)+(\alpha \mid \sigma)}\right) F\left(e^{\sigma+p \delta} \otimes f\right)$. Since the constant $\epsilon= \pm 1$ can be absorbed by F we shall suppress it. We get that $\sum_{m \in \mathbf{Z}} X_{m}(\alpha+n \delta) z^{-m}\left(e^{\sigma+p \delta} \otimes f\right)=$ $\sum_{w \in \mathcal{W}} \sum_{r=0}^{\infty}\left(e^{\sigma+\alpha+(p+n) \delta} \otimes S_{r}(\alpha+n \delta) c_{w} f_{w} z^{r+\frac{1}{2}(\alpha \mid \alpha)+(\alpha \mid \sigma)} z^{-\sum_{i=1}^{s} w_{i} q_{i}}\right)$.

Matching powers of z, we let $r_{w}=\sum_{i=1}^{s} w_{i} q_{i}-m-\frac{1}{2}(\alpha \mid \alpha)-(\alpha \mid \sigma)$. Then equating coefficients of z^{-m}, we get

$$
\begin{equation*}
X_{m}(\alpha+n \delta)\left(e^{\sigma+p \delta} \otimes f\right)=e^{\sigma+\alpha+(p+n) \delta} \otimes \sum_{w \in \mathcal{W}} S_{r_{w}}(\alpha+n \delta) c_{w} f_{w} \tag{80}
\end{equation*}
$$

The relevant thing about (80) for what follows is that f_{w} is obtained from f in (76) by lowering the μ-length of f.

Lemma 5.3 If $e^{\sigma+p \delta} \otimes f$ is in $e^{\sigma+\mathbf{Z} \delta} \otimes S\left(\mathcal{A}(\dot{Q})_{-}\right) \mathcal{S}_{l}$ or $e^{Q} \otimes S\left(\mathcal{A}(\dot{Q})_{-}\right) \mathcal{S}_{l}$ respectively. Then $X_{m}(\alpha+n \delta)\left(e^{\sigma+p \delta} \otimes f\right)$ is in $e^{\sigma+\alpha+\mathbf{Z} \delta} \otimes S\left(\mathcal{A}(\dot{Q})_{-}\right) \mathcal{S}_{l}$ or $e^{Q} \otimes S\left(\mathcal{A}(\dot{Q})_{-}\right) \mathcal{S}_{l}$ respectively.

Proof We saw in the proof of Theorem 2.3 that \mathcal{S}_{l} is invariant under reduction of μ-length. So Lemma 5.3 follows from (80), (77), and Lemma 2.2.

$$
\text { Let } H(\lambda)_{l}=\mathbf{C}[\lambda+\mathbf{Z} \delta] \otimes_{\mathbf{C}} S\left(\mathcal{A}(\dot{Q})_{-}\right) \mathcal{S}_{l} \text { and } K(0)_{l}=\mathbf{C}[Q] \otimes_{\mathbf{C}} S\left(\mathcal{A}(\dot{Q})_{-}\right) \mathcal{S}_{l} .
$$

Remark 5.4 In the proof of Propositions 5.5 and 5.6 we shall use the fact that the invariance of $H(\lambda)_{l}$ and $K(0)_{l}$ under Vir depends only on the invariance of $S\left(\mathcal{A}(\dot{Q})_{-}\right) S_{l}$ under the oscillator operators. This follows from (21) to (23). Since $\mathcal{S}_{l} \subseteq \mathcal{S}_{l+1}$ we have the inclusions stated in Propositions 5.5 and 5.6.

Proposition 5.5 Let l be any integer. Then for every $\lambda \in Q, H(\lambda)_{l}$ is an $\tilde{\mathcal{H}}(\dot{Q}, 2)$-submodule of $H(\lambda)$ and $H(\lambda)_{l}$ is an $\tilde{\mathcal{H}}(\dot{Q}, 2)$-submodule of $H(\lambda)_{l+1}$.

Proof Just before (60) we saw that $\tilde{\mathcal{H}}(\dot{Q}, 2)$ is generated inside $\tilde{\mathcal{T}}_{[2]}$ by the Virasoro operators L_{k} on $V(\Gamma)$ and $\mathcal{H}(\dot{Q}, 2)$. As in Lemma $2.2 S\left(\mathcal{A}(\dot{Q})_{-}\right) \mathcal{S}_{l}$ is closed under L_{k} and $\delta(m)$. So $H(\lambda)_{l}$ is closed under Vir and $\delta(m)$. Using Proposition 3.7 we need only check invariance of $H(\lambda)_{l}$ under $X_{m}(n \delta)$. This follows from Lemma 5.3 with $\alpha=0$.

Proposition 5.6 Let l be any integer. Then $K(0)_{l}$ is a $\tilde{\mathcal{T}}_{[2]}$-submodule of $K(0)$ and $K(0)_{l}$ is a $\tilde{\mathfrak{T}}_{[2]}$-submodule of $K(0)_{l+1}$.

Proof Invariance of $K(0)_{l}$ under Vir follows from Remark 5.4 and Proposition 5.5 while invariance of $K(0)_{l}$ under $X_{m}(\alpha+n \delta)$ and $\delta(m)$ follows from Lemma 5.3 and Lemma 2.2 respectively.

Proposition 5.7 Let $\lambda \in \Gamma$. Then every non-zero submodule of $V_{\Gamma}(\lambda)$ is an indecomposable $\tilde{\mathcal{A}}(Q)$-module.

Proof Let M be a non-zero submodule of $V_{\Gamma}(\lambda)$. Since $\mathcal{A}(Q) \subset \tilde{\mathcal{A}}(Q)$ it is enough to show that M is an indecomposable $\mathcal{A}(Q)$-module. We show that if $M=A+B$ with both A and B non-zero then $A \cap B \neq 0$. Let $x=e^{\lambda} \otimes f \in A$ and $y=e^{\lambda} \otimes g \in B$. By acting on them with appropriate $\delta(n)$ as specified in (16) we may assume that neither x nor y has a μ-term, i.e. f and g are in $S\left(\mathcal{A}(Q)_{-}\right)$. We then get from (18) that $0 \neq e^{\lambda} \otimes f g \in A \cap B$.

Since $\mathcal{A}(Q)$ is a subalgebra of both $\tilde{\mathcal{H}}(\dot{Q}, 2)$ and $\tilde{\mathcal{T}}_{[2]}$, the proof of Proposition 5.7 gives analogous results for $H(\lambda)$ and $K(0)$ over their respective algebras.
Proposition 5.8 Let $\lambda \in Q$. Then the modules $H(\lambda), V_{\Gamma}(\lambda)$, and $K(0)$ do not contain irreducible submodules over the respective Lie algebras, $\tilde{\mathcal{H}}(\dot{Q}, 2)$, $\tilde{\mathcal{A}}(Q)$, and $\tilde{\mathcal{T}}_{[2]}$.

Proof Fix $X \in\left\{V_{\Gamma}(\lambda), H(\lambda), K(0)\right\}$, and let X_{l} be $V_{\Gamma}(\lambda)_{l}, H(\lambda)_{l}$, or $\left.K(0)_{l}\right\}$ as the case may be. Now, for $m>0$, we have that $0 \neq \delta(-m) X_{l} \subseteq X_{l-1}$. Let M be a non-zero submodule of X. Then we must have $0 \neq M \cap X_{l} \neq M$ for some integer l because $X=\bigcup_{l \in \mathbf{Z}} X_{l}$ and $\bigcap_{l \in \mathbf{Z}} X_{l}=\{0\}$.

We have been able to do computations in $\tilde{\mathscr{T}}_{[n]}$ and $\tilde{\mathcal{H}}(L, n)$ for $n \leq 2$ and restricted choices of n. As can be seen by comparing [EM] and [MEY], the jump from $\mathcal{T}_{[2]}$ to $\mathcal{T}_{[n]}$, n arbitrary is fraught with difficulties.

Acknowledgement Some of the results of this paper were obtained by M. A. Fabbri in his thesis summarized in [F]. We thank Eswara Rao for sending us preprints of [E1] and [E2]. We are indebted to the referee for giving us detailed suggestions.

References

[BC] S. Berman and A. Cox, Enveloping algebras and representations of toroidal Lie algebras. Pacific J. Math. 165(1994), 239-267.
[BO] R. Borcherds, Vertex algebras, Kac-Moody algebras and the Monster. Proc. Nat. Acad. Sci. U.S.A. 83(1986), 3068-3071.
[COL] A. J. Coleman, Groups and Physics. Notices Amer. Math. Soc. 44(1997), 8-17.
[E1] S. Eswara Rao, Iterated loop modules and a filtration for vertex representations of toroidal Lie algebras. Pacific J. Math. 171(1995), 511-528.
[E2] ,Classification of loop modules with finite dimensional weight spaces. Math. Ann. 305(1996), 651663.
[EM] S. Eswara Rao and R. V. Moody, Vertex representations for the universal central extensions for the n-toroidal Lie algebras and a generalization of the Virasoro algebra. Comm. Math. Phys. 159(1994), 239-266.
[F] M. A. Fabbri, Virasoro-toroidal algebras and vertex representations. C. R. Math. Rep. Acad. Sci. Canada 14(1992), 77-82.
[M] M. A. Fabbri and R. V. Moody, Irreducible representations of Virasoro-toroidal Lie algebras. Comm. Math. Phys. 159(1994), 1-13.
[FK] I. Frenkel and V. G. Kac, Basic representations of affine Lie algebras and dual resonance models Invent. Math. 63(1980), 23-66.
[FLM] I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the monster. Academic Press, 1988.
[GO] P. Goddard and D. Olive, Algebras, lattices, and strings. In: Vertex operators in Mathematics and Physics (eds. J. Lepowsky, S. Mandelstram and I. M. Singer), MSRI Berkeley Publication 3, Berkeley, California, 1984, 51-96.
[KR] V. G. Kac and A. K. Raina, Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie Algebras. Singapore World Scientific, 1987.
[KS] C. Kassel, Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra. J. Pure Appl. Algebra 34(1985), 265-275.
[MEY] R. V. Moody, S. Eswara Rao and T. Yokonuma, Toroidal Lie algebras and vertex representations. Geom. Dedicata 35(1990), 283-307.
[MP1] R. V. Moody and A. Pianzola, Infinite-dimensional Lie algebras (a unifying overview). Algebras Groups Geom. 4(1987), 211-230.
[MP2] , Lie Algebras with triangular decomposition. J. Wiley, 1995.
[Z] H. Zhang, A class of representations over the Virasoro algebra. J. Algebra 190(1997), 1-10.

Department of Mathematics Arizona State University Tempe, Arizona 85287
U.S.A.

Department of Mathematics
Wayne State University
Detroit, Michigan 48202
U.S.A.

[^0]: Received by the editors January 15, 1998; revised September 12, 1998.
 AMS subject classification: 17B65, 17B68.
 (C)Canadian Mathematical Society 1999.

