Canad. J. Math. Vol. 51 (3), 1999 pp. 523-545

Representations of Virasoro-Heisenberg Algebras and Virasoro-Toroidal Algebras

Marc A. Fabbri and Frank Okoh

Abstract. Virasoro-toroidal algebras, $\tilde{\mathcal{T}}_{[n]}$, are semi-direct products of toroidal algebras $\mathcal{T}_{[n]}$ and the Virasoro algebra. The toroidal algebras are, in turn, multi-loop versions of affine Kac-Moody algebras. Let Γ be an extension of a simply laced lattice \dot{Q} by a hyperbolic lattice of rank two. There is a Fock space $V(\Gamma)$ corresponding to Γ with a decomposition as a complex vector space: $V(\Gamma) = \coprod_{m \in \mathbb{Z}} K(m)$. Fabbri and Moody have shown that when $m \neq 0$, K(m) is an irreducible representation of $\tilde{\mathcal{T}}_{[2]}$. In this paper we produce a filtration of $\tilde{\mathcal{T}}_{[2]}$ -submodules of K(0). When L is an arbitrary geometric lattice and n is a positive integer, we construct a Virasoro-Heisenberg algebra $\tilde{\mathcal{H}}(L, n)$. Let Q be an extension of \dot{Q} by a degenerate rank one lattice. We determine the components of $V(\Gamma)$ that are irreducible $\tilde{\mathcal{H}}(Q, 1)$ -modules and we show that the reducible components have a filtration of $\tilde{\mathcal{H}}(Q, 1)$ -submodules with completely reducible quotients. Analogous results are obtained for $\tilde{\mathcal{H}}(\dot{Q}, 2)$. These results complement and extend results of Fabbri and Moody.

0 Introduction

Toroidal algebras, $\mathcal{T}_{[n]}$, are the universal central extensions of the iterated loop algebra $\dot{\mathcal{G}} \otimes_{\mathbb{C}} \mathbb{C}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ where $\dot{\mathcal{G}}$ is a simple finite-dimensional complex Lie algebra. They were introduced by R. Moody, Eswara Rao, and T. Yokonuma in [MEY]. They also produced indecomposable representations of $\mathcal{T}_{[2]}$. The results in [MEY] were extended to arbitrary *n* in [EM]. The authors in [MEY] remark on the difficulty of producing irreducible representations of $\mathcal{T}_{[n]}$ in a natural way. It is implicit in [MEY] that the authors consider an irreducible of $\mathcal{T}_{[n]}$ to be natural if it is a direct summand of some Fock space. Let us call an irreducible representation of $\mathcal{T}_{[n]}$ good if a subspace of the centre of $\mathcal{T}_{[n]}$ does not act as multiplication by a scalar. See p. 284 of [MEY] for comments on good representations. Until [E1] there were no known good representations of $\mathcal{T}_{[n]}$.

Starting with tensor products of highest weight modules, Eswara Rao constructs in [E1] a family of completely reducible representations of $\mathcal{T}_{[n]}$. He also shows that the indecomposable $\mathcal{T}_{[n]}$ -modules constructed in [MEY] and [EM] admit a filtration of submodules such that the successive irreducible quotient modules are isomorphic to the irreducible modules in [E1] up to an automorphism of the toroidal algebra. Note that $\tilde{\mathcal{T}}_{[n]}$ in [E1] is $\mathcal{T}_{[n]} \oplus D$ where *D* is the linear span of *n* derivations on $\mathcal{T}_{[n]}$ and so is entirely different from $\tilde{\mathcal{T}}_{[n]}$ in this paper. We refer to [E2] for comments and results on good representations of affine algebras.

A different tack is taken in [BC]. They factor out all but a finite-dimensional piece of the centre of $\mathcal{T}_{[n]}$. This enables them to establish an irreducibility criterion for Verma-type modules for the resulting algebra. Results and references on connections between toroidal

Received by the editors January 15, 1998; revised September 12, 1998.

AMS subject classification: 17B65, 17B68.

[©]Canadian Mathematical Society 1999.

algebras and other classes of Lie algebras, for instance P. Slodowy's GIM algebras, can also be found in [BC].

Fabbri and Moody initiated a third approach in [FM]. They enlarged the algebra $\mathcal{T}_{[2]}$ to the semi-direct algebra $\tilde{\mathcal{T}}_{[2]} = \text{Vir} \propto \mathcal{T}_{[2]}$. This is the route we shall follow in this paper. We extend the toroidal algebra in two directions to obtain Virasoro-Heisenberg algebras and Virasoro-toroidal algebras. We shall be more precise after we develop the requisite notation. Here is a summary of the sections of the paper.

In Section 1 we recall the definition of the toroidal algebra, Virasoro algebra, the oscillator operators, and the generalized Heisenberg algebras. The construction of the generalized Heisenberg algebras requires three ingredients: a free Z-module, Zⁿ of finite rank n, where Z is the ring of integers, Cⁿ, the n-dimensional complex vector space, and a geometric lattice L, *i.e.*; a free Z-module of finite rank, not necessarily n, together with a non-trivial symmetric Z-bilinear form. The notation $\mathcal{H}(L, n)$ for generalized Heisenberg algebras attempts to capture these ingredients. The Fock spaces crucial for this paper are obtained from the generalized Heisenberg algebras with n = 1. We now define the lattice Γ that gives the most pervasive Fock space, $V(\Gamma)$.

In this paper \dot{Q} will denote a lattice of type A_m , D_m or E_m with root lengths normalized to two. Let

(1)
$$Q = \dot{Q} \oplus \mathbf{Z}\delta$$

(2)
$$\Gamma = Q \oplus \mathbf{Z}\mu$$

(3)
$$\Lambda = \mathbf{Z}\delta \oplus \mathbf{Z}\mu$$

where $(Q \mid \delta) = (\dot{Q} \mid \mu) = (\mu \mid \mu) = 0$ and $(\delta \mid \mu) = 1$.

In Section 2 we obtain simpler expressions for the oscillator operators for the hyperbolic lattice Λ in (3). We then obtain a family of completely reducible representations of the Virasoro algebra. The results on $V(\Lambda)$ are used in Sections 4 and 5 of the paper where we deal with reducible representations of a Virasoro-Heisenberg algebra and a Virasoro-toroidal algebra.

In Section 3 we use the algebras from Section 1 to construct the Virasoro-Heisenberg algebras, $\tilde{\mathcal{H}}(L, n)$, and the Virasoro-toroidal algebras, $\tilde{\mathcal{T}}_{[n]}$. We then show that the Fock space $V(\Gamma)$ from Section 1 are representations of $\tilde{\mathcal{T}}_{[2]}$ and $\tilde{\mathcal{H}}(L, n)$ for some restricted choices of L and $n \leq 2$.

Let \dot{Q} and Q be the lattices in (1). We give decompositions of $V(\Gamma)$ as representations of $\tilde{\mathcal{H}}(Q, 1)$ and $\tilde{\mathcal{H}}(\dot{Q}, 2)$. In [FM] the components of $V(\Gamma)$ that afford irreducible representations of $\tilde{\mathcal{H}}(Q, 1)$ are identified. Using the irreducible representations of the Virasoro algebra from Section 2, we show in Section 4 that the reducible components have a filtration of $\tilde{\mathcal{H}}(Q, 1)$ -submodules with completely reducible quotients.

In Section 4 we also identify the components of the Fock space that afford irreducible representations of $\tilde{\mathcal{H}}(\dot{Q}, 2)$. The components that are reducible as representations of $\tilde{\mathcal{H}}(\dot{Q}, 2)$ are shown in Section 5 to have a filtration of subrepresentations.

As a $\tilde{\mathcal{T}}_{[2]}$ -representation the Fock space $V(\Gamma)$ decomposes as $\prod_{m \in \mathbb{Z}} K(m)$, for some subrepresentations K(m). In [FM] it is shown that K(m) is an irreducible representation of $\tilde{\mathcal{T}}_{[2]}$ when $m \neq 0$. In Section 5 we show that K(0) has a filtration of subrepresentations of $\tilde{\mathcal{T}}_{[2]}$.

The introduction ends with a list of the main objects of the paper. The object is defined in or near (n). Other objects are defined as they occur. All vector spaces are over **C**, the field of complex numbers.

• $\tilde{\mathcal{T}}_{[n]}$ is the Virasoro-toroidal algebra, where $\mathcal{T}_{[n]}$ is the toroidal algebra, *i.e.*, the universal central extension of $\dot{\mathcal{G}} \otimes_{\mathbb{C}} \mathbb{C}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$, while $\dot{\mathcal{G}}$ is a simple finite-dimensional complex Lie algebra. (4) and (58).

• $\overline{\mathcal{H}}(L, n)$ is the Virasoro-Heisenberg algebra attached to the lattice *L* and **Z**^{*n*}, where $\mathcal{H}(L, n)$ is the corresponding generalized Heisenberg algebra. (9) and (59).

• $\tilde{\mathcal{A}}(L)$ is $\tilde{\mathcal{H}}(L, 1)$. (12) and (33).

• $S(\mathcal{A}(L)_{-})$ is the symmetric algebra of $\mathcal{A}(L)_{-}$, where $\mathcal{A}(L)_{-}$ is the lower subalgebra in a triangular decomposition of $\mathcal{A}(L)$. (15) and (24).

• $V_L(\lambda) = \mathbf{C}e^{\lambda} \otimes_{\mathbf{C}} S(\mathcal{A}(L)_-)$ is a canonical representation of $\mathcal{A}(L)$, where λ is an element in the complexification of a nondegenerate lattice containing L. (20).

• $V(\Gamma) = \mathbf{C}[\Gamma] \otimes_{\mathbf{C}} S(\mathcal{A}(\Gamma)_{-})$ is the *full Fock space* corresponding to Γ in (3). (38).

1 The Canonical Representations

We begin by recalling the construction of the toroidal algebras $\mathcal{T}_{[n]}$.

Let *A* be any commutative **C**-algebra with identity element. Let $\dot{\mathcal{G}}$ be a simple finitedimensional complex Lie algebra. The structure of the universal covering algebra of $\dot{\mathcal{G}} \otimes_{\mathbf{C}} A$ has been determined by Kassel in [KS]. Let Ω_A be the *A*-module of differentials of *A*. Let $d: A \to \Omega_A$ be the differential map. Let $-: \Omega_A \to \Omega_A/dA$ be the canonical map.

Theorem 1.1 ([KS, Proposition 2.2], [MEY]) The Lie algebra $\mathcal{G} = \dot{\mathcal{G}} \otimes_{\mathbf{C}} A \oplus \Omega_A/dA$ with Ω_A/dA central and multiplication given by

(4)
$$[x \otimes a, y \otimes b] = [x, y] \otimes ab + \langle x, y \rangle \overline{(da)b}$$

where \langle , \rangle is the Killing form, is the universal covering algebra of $\dot{9} \otimes_{\mathbf{C}} A$.

When $A = \mathbf{C}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ in Theorem 1.1, the algebra \mathcal{G} is the *toroidal* algebra of *rank* n or the *n*-toroidal algebra. We denote it by $\mathcal{T}_{[n]}$. In this case a basis of Ω_A is $\{t_1^{r_1}t_2^{r_2}\cdots t_{i-1}^{r_{i-1}}t_i^{r_{i-1}}t_{i+1}^{r_{i-1}}\cdots t_n^{r_n} dt_i: 1 \le i \le n, r = (r_1, \ldots, r_n) \in \mathbf{Z}^n\}$.

It is noted in [MEY] that the toroidal Lie algebra contains a generalized Heisenberg algebra. To introduce the latter, let (L, (|)) be a geometric lattice, that is, a free **Z**-module *L* of finite rank together with a non-trivial symmetric **Z**-bilinear form $(|): L \times L \rightarrow \mathbf{Z}$. Let $\mathcal{L} = \mathbf{C} \otimes_{\mathbf{Z}} L$, the *complexification of L*. Extend (|) to a symmetric bilinear form on \mathcal{L} also denoted by (|). We say that *L* is *nondegenerate* if (|) is nondegenerate on \mathcal{L} .

For each $r \in \mathbb{Z}^n \subset \mathbb{C}^n$, let $\mathcal{L}(r)$ be an isomorphic copy of \mathcal{L} while $\mathbb{C}^n(r)$ is an isomorphic copy of \mathbb{C}^n . The isomorphism is given by $x \mapsto x(r)$. If $x \in \mathbb{C}^n$, $z_x(r)$ will denote the element x(r) to distinguish it from elements of $\mathcal{L}(r)$. For $r \in \mathbb{Z}^n$, $\gamma, \gamma' \in \mathcal{L}$, $s, s' \in \mathbb{C}^n$ and $\alpha \in \mathbb{C}$ we have

(5)
$$z_s(r) + z_{s'}(r) = z_{s+s'}(r)$$

(6)
$$\alpha z_s(r) = z_{\alpha s}(r).$$

(7)
$$\gamma(r) + \gamma'(r) = (\gamma + \gamma')(r)$$

(8)
$$\alpha \gamma(r) = (\alpha \gamma)(r).$$

Now, let $\mathcal{C}_n = \bigoplus_{r \in \mathbb{Z}^n} \mathbb{C}^n(r)$, $\mathcal{D}_n = \bigoplus_{r \in \mathbb{Z}^n} \mathbb{C}z_r(r)$, where $\mathbb{C}z_r(r)$ is the one-dimensional complex vector space with basis $z_r(r)$. Let $\mathcal{Z}_n = \mathcal{C}_n/\mathcal{D}_n$. Consider the C-space

(9)
$$\mathcal{H}(L,n) = \left(\bigoplus_{r \in \mathbf{Z}^n} \mathcal{L}(r)\right) \oplus \mathcal{Z}_n.$$

Introduce a bracket operation on $\mathcal{H}(L, n)$ as follows

(10)
$$[\gamma(r_1), \eta(r_2)] = (\gamma \mid \eta) z_{r_1}(r_1 + r_2)$$

(11)
$$Z_n$$
 central.

By (10) and (11), $\mathcal{H}(L, n)$ is a two-step nilpotent algebra and hence the multiplication satisfies the Jacobi identity. From (5), (6), (10), and (11) we deduce that $\mathcal{H}(L, n)$ is a Lie algebra. We call it the *generalized Heisenberg algebra associated to L and n*.

The proofs of the next two propositions rely on (5) to (11). Denote vector space dimension by dim.

Proposition 1.2

(a)

$$\dim \mathcal{Z}_n = \begin{cases} 1 & \text{if } n = 1\\ \infty & \text{if } n \ge 2. \end{cases}$$

(b) Let n = 2. Then the collection of elements $\{z_{(0,1)}(m,0), z_{(1,0)}(0,0) : m \in \mathbb{Z}\} \cup \{z_{(1,0)}(m,n) : m \in \mathbb{Z}, n \in \mathbb{Z} \setminus \{0\}\}$ is a basis for \mathcal{Z}_2 over \mathbb{C} .

Proposition 1.3 The centre of $\mathcal{H}(L, n)$ is $\mathcal{L}(0) \oplus \mathcal{Z}_n \oplus (\bigoplus_{r \in \mathbb{Z}^n \setminus \{0\} \gamma \in rad(|)} \mathbb{C}\gamma(r))$, where rad is radical.

Proposition 1.4 gives a realisation of $\mathcal{H}(L, n)$ when *L* is the root lattice of a simple finitedimensional complex Lie algebra, see Section 3 of [MEY].

Proposition 1.4 Let $\dot{\mathcal{G}}$ be a simple finite-dimensional Lie algebra with root lattice $\dot{\mathcal{Q}}$. Let $\dot{\mathcal{H}}$ be a fixed Cartan subalgebra of $\dot{\mathcal{G}}$. Let \mathcal{X} be the subalgebra of $\mathcal{T}_{[n]}$ generated by the subspace $\dot{\mathcal{H}} \otimes_{\mathbf{C}} \mathbf{C}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$. Then $\mathcal{H}(\dot{Q}, n)$ and \mathcal{X} are isomorphic Lie algebras.

The Heisenberg algebra $\mathcal{H}(L, 1)$ is the linchpin of most of the representations in this paper. We use the following simpler notation for it.

(12)
$$\mathcal{H}(L,1) = \mathcal{A}(L).$$

By Proposition 1.2(a), \mathcal{Z}_1 is one-dimensional. Let *c* denote a fixed generator of \mathcal{Z}_1 . Then $\mathcal{A}(L) = \left(\bigoplus_{k \in \mathbb{Z}} \mathcal{L}(k)\right) \oplus \mathbb{C}c$. In $\mathcal{A}(L)$ Equations (10) and (11) assume the more familiar form

- (13) $[a(k_1), b(k_2)] = k_1 \delta_{k_1 + k_2, 0}(a \mid b)c$
- (14) c central

where δ denotes Kronecker delta.

Observe that $\mathcal{L}(0)$ is an abelian subalgebra of $\mathcal{A}(L)$. It has a complement = $\left(\bigoplus_{n \in \mathbb{Z} \setminus \{0\}} \mathcal{L}(n)\right) \oplus \mathbb{C}c$ satisfying $\mathcal{A}(L) = \left(\left(\bigoplus_{n \in \mathbb{Z} \setminus \{0\}} \mathcal{L}(n)\right) \oplus \mathbb{C}c\right) \times \mathcal{L}(0)$ where \times denotes the direct product of Lie algebras. We shall construct a canonical representation of $\mathcal{A}(L)$ by first defining a representation of the subalgebra $\left(\bigoplus_{n \in \mathbb{Z} \setminus \{0\}} \mathcal{L}(n)\right) \oplus \mathbb{C}c$. Let

(15)
$$\mathcal{A}(L)_{-} = \prod_{n>0} \mathcal{L}(-n)$$

with corresponding symmetric algebra $S(\mathcal{A}(L)_{-})$. We may think of $S(\mathcal{A}(L)_{-})$ as the polynomial ring in the indeterminates $\{a_i(-n) : 1 \leq i \leq m, n > 0\}$, where $\{a_i\}_{i=1}^m$ is an orthonormal basis of $\mathcal{L} = \mathbb{C} \otimes_{\mathbb{Z}} L$. By replacing n > 0 with n < 0 in (15) we get $\mathcal{A}(L)_{+}$ with corresponding symmetric algebra $S(\mathcal{A}(L)_{+})$.

Let $a, b \in \mathcal{L}$. Let m, n be positive integers. Denote by $\partial_{a(n)}$ the unique derivation of $S(\mathcal{A}(L)_{-})$ satisfying

(16)
$$\partial_{a(n)}(b(-m)) = n\delta_{n,m}(a \mid b)$$

where $\delta_{n,m}$ is Kronecker delta. Let $l_{a(-n)}$ be the map on $S(\mathcal{A}(L)_{-})$ defined by $f \mapsto a(-n)f$, multiplication by a(-n). We then get the following representation on $S(\mathcal{A}(L)_{-})$ of the Lie algebra $(\bigoplus_{n \in \mathbb{Z} \setminus \{0\}} \mathcal{L}(n)) \oplus \mathbb{C}c$.

$$(17) cf = f$$

$$(18) a(-n)f = l_{a(-n)}f$$

(19)
$$a(n)f = \partial_{a(n)}f$$

We see from (16) that the derivation $\partial_{a_i(n)}$ corresponds to the partial differentiation operator $n \frac{\partial}{\partial_{a_i(n)}}$ on $S(\mathcal{A}(L)_-)$.

Let M be any nondegenerate lattice containing L. Let M be the complexification of M. Fix $\lambda \in M$ and let $\mathbf{C}e^{\lambda}$ be the one-dimensional \mathbf{C} -space. Consider the \mathbf{C} -space

(20)
$$V_L(\lambda) = \mathbf{C}e^{\lambda} \otimes_{\mathbf{C}} S(\mathcal{A}(L)_{-})$$

We make $V_L(\lambda)$ an $\mathcal{A}(L)$ -module by defining

(21)
$$c(e^{\lambda} \otimes f) = e^{\lambda} \otimes f$$

(22)
$$a(n)(e^{\lambda} \otimes f) = e^{\lambda} \otimes a(n)f, \quad n \neq 0$$

(23)
$$a(0)(e^{\lambda} \otimes f) = (a \mid \lambda)e^{\lambda} \otimes f.$$

where $a(n)f, n \neq 0$ is given by (18) and (19). As in Section 2 of [KR] one proves the next proposition.

Proposition 1.5 $V_L(\lambda)$ is affords a representation of A(L) which is irreducible if and only if *L* is a nondegenerate lattice.

Since by (21) and (23) $(a \mid \lambda)c - a(0)(e^{\lambda} \otimes f) = 0$, $V_L(\lambda)$ is never a faithful $\mathcal{A}(L)$ -module. The module $V_L(\lambda)$ is called a *canonical* representation of $\mathcal{A}(L)$.

We shall now realise $V_L(\lambda)$ as an induced module relative to a triangular decomposition of $\mathcal{A}(L)$ in the sense of [MP2]. To that end, let *L* be a nondegenerate geometric lattice with complexification, \mathcal{L} . Define $\mathcal{A}(L)_- = \coprod_{n>0} \mathcal{L}(-n)$, $\mathcal{A}(L)_+ = \coprod_{n>0} \mathcal{L}(n)$, and $\mathcal{A}(L)_0 = \mathcal{L}(0) \oplus \mathbf{C}c$. Then we have

(24)
$$\mathcal{A}(L) = \mathcal{A}(L)_{-} \oplus \mathcal{A}(L)_{0} \oplus \mathcal{A}(L)_{+}.$$

Next let $\sigma: \mathcal{A}(L) \to \mathcal{A}(L)$ be the unique linear map satisfying $\sigma(a(n)) = a(-n)$, $a \in \mathcal{L}$, $n \in \mathbb{Z}$, and $\sigma(c) = c$. Then σ fixes $\mathcal{A}(L)_0$, and interchanges $\mathcal{A}(L)_+$ and $\mathcal{A}(L)_-$. So σ is an involution. This makes (24) a triangular decomposition of $\mathcal{A}(L)$ in the sense of [MP2].

Let α be a linear functional on $\mathcal{A}(L)_0$ and consider the one-dimensional vector space $\mathbf{C}v_+$. Let $\mathcal{B} = \mathcal{A}(L)_0 \oplus \mathcal{A}(L)_+$. We make $\mathbf{C}v_+$ into a \mathcal{B} -module by setting

$$(25) \qquad \qquad \mathcal{A}(L)_+ \nu_+ = 0$$

(26)
$$\mathcal{A}(L)_0 v_+ = \alpha \big(a(0) \big) v_+$$

$$(27) cv_+ = v_+.$$

Finally, we define the induced $\mathcal{A}(L)$ -module $M(\alpha) = \mathcal{U}(\mathcal{A}(L)) \otimes_{\mathcal{U}(\mathcal{B})} \mathbb{C}\nu_+$ where $\mathcal{U}(X)$ denotes the universal enveloping algebra of the Lie algebra X. Let $\lambda \in \mathcal{L}$ and let α be the linear functional on $\mathcal{A}(L)_0$ defined by

(28)
$$\alpha(a(0)) = (\lambda \mid a)$$

$$(29) \qquad \qquad \alpha(c) = 1.$$

The map $e^{\lambda} \otimes u \mapsto u \otimes v_{\pm}$ gives the the isomorphism of the next proposition.

Proposition 1.6 Let α be the linear functional in (28) and (29). Then $M(\alpha)$ and $V_L(\lambda)$ are isomorphic as A(L)-modules.

Vir *and its oscillator operators* The Virasoro algebra Vir is an infinite-dimensional Lie algebra with generators $\{d_k : k \in \mathbb{Z}\}$ and bracket relations

(30)
$$[d_k, d_l] = (k - l)d_{k+l} + \frac{1}{12}\delta_{k+l,0}(k^3 - k)\zeta$$

where ζ is a central symbol.

Let *L* be a geometric lattice of rank *m*. Define a representation of Vir on A(L) as follows. For every $k \in \mathbb{Z}$, let

(31)
$$d_k(a(n)) = -na(n+k)$$

(32)
$$d_k(c) = 0 = \zeta \big(\mathcal{A}(L) \big).$$

One checks that $(\zeta d_k - d_k \zeta)(a(n)) = 0 = [d_k, \zeta](a(n))$ and $[d_k, d_l](a(n)) = (d_k d_l - d_l d_k)(a(n))$. This means that $\mathcal{A}(L)$ affords a representation of Vir. This representation is a special case of a class of well-known representations of Vir. It is a direct sum of *m* copies of $V_{0,0}$ in the notation of Proposition 1.1 of [KR]. See also [Z]. We now construct a new Lie algebra, $\tilde{\mathcal{A}}(L)$, from this representation. As a **C**-space,

(33)
$$\hat{\mathcal{A}}(L) = \operatorname{Vir} \oplus \mathcal{A}(L)$$

We use (31) and (32) to make $\tilde{A}(L)$ a Lie algebra. For instance,

(34)
$$[d_k, a(n)] = d_k(a(n)) = -na(n+k).$$

With Q as the lattice in (1), let $\varepsilon \colon Q \times Q \to \{\pm 1\}$ be a bimultiplicative map satisfying, for $\alpha, \beta \in Q$,

(35)
$$\varepsilon(\alpha, \alpha) = (-1)^{(\alpha|\alpha)/2}$$

(36)
$$\varepsilon(\alpha,\beta)\varepsilon(\beta,\alpha) = (-1)^{(\alpha|\beta)}$$

(37)
$$\varepsilon(\alpha, \delta) = 1$$

Extend ε to a bimultiplicative map $\varepsilon: Q \times \Gamma \to \{\pm 1\}$. For $\gamma \in \Gamma$, let e^{γ} be a symbol. Let $\mathbb{C}[\Gamma]$ be the complex vector space with \mathbb{C} -basis $\{e^{\gamma} : \gamma \in \Gamma\}$. Then $\mathbb{C}[\Gamma]$ contains the subspace $\mathbb{C}[Q] = \coprod_{\gamma \in Q} \mathbb{C}e^{\gamma}$. We equip $\mathbb{C}[Q]$, as in [BO] and [MEY], with a twisted group algebra structure by defining $e^{\alpha}e^{\beta} = \varepsilon(\alpha, \beta)e^{\alpha+\beta}, \alpha, \beta \in Q$. Then $\mathbb{C}[\Gamma]$ becomes a $\mathbb{C}[Q]$ -module in such a way that $e^{\alpha}e^{\gamma} = \varepsilon(\alpha, \gamma)e^{\alpha+\gamma}, \alpha \in Q, \gamma \in \Gamma$. Here now is the *full Fock space* associated to Γ .

(38)
$$V(\Gamma) = \mathbf{C}[\Gamma] \otimes_{\mathbf{C}} S(\mathcal{A}(\Gamma)_{-}).$$

As C-spaces, $V(\Gamma) = \coprod_{\lambda \in \Gamma} Ce^{\lambda} \otimes_{C} S(\mathcal{A}(\Gamma)_{-}) = \coprod_{\lambda \in \Gamma} V_{\Gamma}(\lambda)$, where $V_{\Gamma}(\lambda)$ is a canonical representation of $\mathcal{A}(\Gamma)$.

By Proposition 1.5, $V_{\Gamma}(\lambda)$ affords a representation of $\mathcal{A}(\Gamma)$. Componentwise action makes $V(\Gamma)$ an $\mathcal{A}(\Gamma)$ -module. Since $Q \subset \Gamma$, $V_{\Gamma}(\lambda)$ also affords a representation of $\mathcal{A}(Q)$. Hence we have:

Proposition 1.7 $V(\Gamma) = \mathbf{C}[\Gamma] \otimes_{\mathbf{C}} S(\mathcal{A}(\Gamma)_{-})$ affords a representation of $\mathcal{A}(\Gamma)$, hence of $\mathcal{A}(Q)$.

In order to make $V(\Gamma)$ a representation of the algebras in Section 3 we recall the oscillator representation of Vir.

Let *L* be an arbitrary non-degenerate geometric lattice of rank *m* with complexification $\mathcal{L} = \mathbf{C} \otimes_{\mathbf{Z}} L$. Let $\{a_i\}_{i=1}^m$ be an orthonormal basis for \mathcal{L} over **C**. We want to define a representation of Vir on $V_L(\lambda)$. For $r, s \in \mathbf{Z}$ we define a *normal ordering* : : of $a_i(r)a_i(s)$, as in [KR], by

(40)
$$: a_i(r)a_i(s) := a_i(s)a_i(r) \text{ if } r > s.$$

Now for $k \in \mathbb{Z}$ consider the infinite quadratic expression, L_k , defined as follows

(41)
$$L_k = \frac{1}{2} \sum_{j \in \mathbb{Z}} \sum_{i=1}^m : a_i(-j)a_i(j+k) :.$$

Due to the normal ordering each L_k is an operator of $V_L(\lambda)$ using (21) to (23). The operator L_k is called a *Virasoro operator* or *oscillator operator*. A proof of Proposition 1.8 can be obtained along similar lines as the proof of Proposition 2.3 of [KR]. The following formula is obtained along the way, see Lemma 2.2 of [KR].

$$[L_k, a(n)] = -na(n+k)$$

where *k* and *n* are integers and *a* is an arbitrary element of \mathcal{L} .

Proposition 1.8 The assignment $d_k \mapsto L_k$, $\zeta \mapsto mI$, where *m* is the rank of *L* and *I* is the identity operator, gives a representation of Vir on $V_L(\lambda)$.

2 Oscillator Representations of Vir Over Λ

In order to facilitate the computations we shall need notations specific to the hyperbolic lattice Λ in (3). Recalling (15), let

(43)
$$S = S(\mathcal{A}(\Lambda)_{-}).$$

The set $\{\alpha_1, \alpha_2\}$, where $\alpha_1 = \frac{\delta}{2} + \mu$ and $\alpha_2 = i(\frac{\delta}{2} - \mu)$, $i^2 = -1$, is an orthonormal basis for $\mathbf{C} \otimes_{\mathbf{Z}} \Lambda$. We use the notation H_k , $k \in \mathbf{Z}$, for the corresponding oscillator operators. So (41) becomes

(44)
$$H_k = \frac{1}{2} \sum_{j \in \mathbf{Z}} : \alpha_1(-j)\alpha_1(j+k) : + : \alpha_2(-j)\alpha_2(j+k) :$$

Proposition 2.1 For every $n \in \mathbb{Z}$ we have that

(*i*)
$$H_n = \frac{1}{2} \sum_{j \in \mathbb{Z}} (: \mu(-j)\delta(j+n) :+ : \delta(-j)\mu(j+n) :)$$

(*ii*) $H_n = H_n^- + H_n^+$ where

$$\begin{split} H_n^- &= \frac{\epsilon}{2} \mu(n/2) \delta(n/2) + \sum_{j > -n/2} \mu(-j) \delta(j+n), \\ H_n^+ &= \frac{\epsilon}{2} \delta(n/2) \mu(n/2) + \sum_{j > -n/2} \delta(-j) \mu(j+n), \end{split}$$

where

$$\epsilon = \begin{cases} 1 & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd.} \end{cases}$$

Proof For any $j \in \mathbf{Z}$, $: \alpha_1(-j)\alpha_1(j+n): +: \alpha_2(-j)\alpha_2(j+n): = \alpha_1(-j)\alpha_1(j+n) + \alpha_2(-j)\alpha_2(j+n)$ if $-j \leq j+n$ or $\alpha_1(j+n)\alpha_1(-j) + \alpha_2(j+n)\alpha_2(-j)$ if -j > j+n. Thus for (i), it suffices to show that $\alpha_1(-j)\alpha_1(j+n) + \alpha_2(-j)\alpha_2(j+n) = \mu(-j)\delta(j+n) + \delta(-j)\mu(j+n)$ and $\alpha_1(j+n)\alpha_1(-j) + \alpha_2(j+n)\alpha_2(-j) = \mu(j+n)\delta(-j) + \delta(j+n)\mu(-j)$. We show only the first since the second is similar. Since (a+b)(n) = a(n) + b(n), we have $\alpha_1(-j)\alpha_1(j+n) + \alpha_2(-j)\alpha_2(j+n) = (\frac{\delta(-j)}{2} + \mu(-j))(\frac{\delta(j+n)}{2} + \mu(j+n)) - (\frac{\delta(-j)}{2} - \mu(-j))(\frac{\delta(j+n)}{2} - \mu(j+n)) = \frac{1}{4}\delta(-j)\delta(j+n) + \frac{1}{2}\delta(-j)\mu(j+n) + \frac{1}{2}\mu(-j)\delta(j+n) - \mu(-j)\mu(j+n) = \delta(-j)\mu(j+n) + \mu(-j)\delta(j+n)$. This proves (i).

For (ii), we first use (i) and then use the definition of normal ordering. Hence $H_n = \frac{1}{2} \sum_{-j \le j+n} (\mu(-j)\delta(j+n)+\delta(-j)\mu(j+n)) + \frac{1}{2} \sum_{-j>j+n} (\delta(j+n)\mu(-j)+\mu(j+n)\delta(-j)) = \frac{1}{2} \sum_{j>-n/2} (\mu(-j)\delta(j+n) + \delta(-j)\mu(j+n)) + \frac{1}{2} \sum_{j>-n/2} (\delta(-j)\mu(j+n) + \mu(-j)\delta(j+n)) + \frac{\epsilon}{2} (\mu(n/2)\delta(n/2) + \delta(n/2)\mu(n/2))$, where we have split the first sum into j = -n/2, j > -n/2 and replaced j by -j - n in the second sum. Regrouping we have $H_n = \sum_{j>-n/2} \mu(-j)\delta(j+n) + \frac{\epsilon}{2} \mu(n/2)\delta(n/2) + \sum_{j>-n/2} \delta(-j)\mu(j+n) + \frac{\epsilon}{2} \delta(n/2)\mu(n/2)$.

If we replace -j by i and j+n by j then we get the following alternative way of expressing H_n^{\pm}

(45)
$$H_n^- = \sum_{\substack{i < j \\ i+j=n}} \mu(i)\delta(j) + \frac{\epsilon}{2}\mu(n/2)\delta(n/2)$$

(46)
$$H_n^+ = \sum_{\substack{i < j \\ i+j=n}} \delta(i)\mu(j) + \frac{\epsilon}{2}\delta(n/2)\mu(n/2).$$

Since $\mathbf{C} \otimes_{\mathbf{Z}} \Lambda = \mathbf{C} \delta \oplus \mathbf{C} \mu$, we have $(\mathbf{C} \otimes_{\mathbf{Z}} \Lambda)(n) = \mathbf{C} \delta(n) \oplus \mathbf{C} \mu(n)$. The algebra \mathcal{S} in (43) contains the following \mathbf{C} -subspaces

(47)
$$M = S\left(\coprod_{n>0} \mathbf{C}\mu(-n)\right), \quad D = S\left(\coprod_{n>0} \mathbf{C}\delta(-n)\right)$$

We have that S = MD and hence for $\lambda \in \mathbb{C} \otimes_{\mathbb{Z}} \Lambda$, we have the following canonical representation of $\mathcal{A}(\Lambda)$.

(48)
$$V_{\Lambda}(\lambda) = \mathbf{C}e^{\lambda} \otimes_{\mathbf{C}} MD.$$

By Proposition 1.8, $V_{\Lambda}(\lambda)$ is a Vir-module via H_n in Proposition 2.1. We shall now show that it has a filtration of Vir-submodules. To that end we note that $M = S(\coprod_{n>0} C\mu(-n))$ has the following **C**-basis:

(49)
$$\{\mu(-\mathbf{n}): \mathbf{n} \in \mathbf{Z}_{+}^{s}, s \geq 1, n_{1} \leq \cdots \leq n_{s}\} \cup \{1\},\$$

where \mathbf{Z}_+ is the set of natural numbers, $\mathbf{n} = (n_1, n_2, \dots, n_s)$, and $\mu(-\mathbf{n}) = \mu(-n_1)\mu(-n_2)\cdots\mu(-n_s)$.

We say that $\mu(-\mathbf{n})$ has μ -length s. By replacing μ by δ we get δ -length. The length of the zero polynomial is taken to be $-\infty <$ the length of every nonzero polynomial.

Let $M_j = 0$, if j < 0, $M_0 = \mathbb{C}$. For j > 0, let $M_j =$ the C-span of all monomials in M of μ -length j. Set $M_{\leq j} = \coprod_{k < j} M_k$. Then $M = \coprod_{j > 0} M_j$.

We use D_j to denote the analogous **C**-spaces with μ replaced by δ . Then $D = \coprod_{j \ge 0} D_j$. With *l* an arbitrary integer, let

(50)
$$S_l = \prod_{j=0}^{\infty} (M_{\leq j+l} D_j) \subset S_l$$

For $\lambda \in \mathbf{Z}\delta$, we let

(51)
$$V_{\Lambda}(\lambda)_{l} = \mathbf{C}e^{\lambda} \otimes_{\mathbf{C}} \mathbb{S}_{l}$$

Sections 4 and 5 pivot around $V_{\Lambda}(\lambda)_l$ and S_l . So we are going to develop their properties in detail. First we note that

(52)
$$M_{\leq j+l} \subseteq M_{\leq j+l+1}, \quad \mathfrak{S}_l \neq \mathfrak{S}, \quad \mathfrak{S}_l \subseteq \mathfrak{S}_{l+1}$$

Lemma 2.2

- (a) Let $x \in S_l$ and let n be a positive integer. Then $\delta(-n)x \in S_l$.
- (b) Let $f \in S(\mathcal{A}(\dot{Q})_{-})S(\mathcal{A}(\mathbf{Z}\delta)_{-})$. Then $fx \in S(\mathcal{A}(\dot{Q})_{-})S_l$ for every $x \in S(\mathcal{A}(\dot{Q})_{-})S_l$
- (c) Let $(\alpha + n\delta)(m) \in S(\mathcal{A}(Q)_+)$, $\alpha \in \dot{Q}$, $f \in S(\mathcal{A}(\dot{Q})_-)S_l$. Then $(\alpha + n\delta)(m)f \in S(\mathcal{A}(\dot{Q})_-)S_l$.

Proof (a) For some positive integer t, $x = x_0 + \cdots + x_t$, where $x_j \in M_{\leq j+l}D_j$. Then $\delta(-n)x = \sum_{j=0}^t \delta(-n)x_j$. Since $\delta(-n)x_j \in M_{\leq j+l}D_{j+1} \subseteq M_{\leq j+l+1}D_{j+1} \subseteq S_l$ we get that $\delta(-n)x \in S_l$.

(b) The ring $S(\mathcal{A}(\dot{Q})_{-})S(\mathcal{A}(\mathbf{Z}\delta)_{-})$ is commutative. Hence (b) follows from (a).

(c) Since m > 0, $(\alpha + n\delta)(m) = \alpha(m) + n\delta(m)$ acts as differentiation, see the remark after (19). The ring $S(\mathcal{A}(\dot{Q})_{-})$ is closed under differentiation. So it is sufficient to show that $M_{\leq j+l}D_j$ is invariant under $\alpha(m) + n\delta(m)$. Every element in $M_{\leq j+l}D_j$ is a sum of scalar multiples of elements of the form $x = \mu(-n_1) \cdots \mu(-n_s)\delta(\mathbf{k})$ where $\delta(\mathbf{k}) = \delta(-k_1) \cdots \delta(-k_j)$, $s \leq j+l$, and $n_1, \ldots, n_s, k_1, \ldots, k_j$ are positive integers. From (16) and the line after (3) we get that $(\alpha + n\delta)(m)x = mn\sum_{t=1}^{i} \delta_{m,n_t}\mu(-1) \cdots \overline{\mu(-t)} \cdots \mu(-i)\delta(\mathbf{k})$, where overbar denotes omission. So $(\alpha + n\delta)(m)x$ is in $M_{\leq j-1+l}D_j \subseteq M_{\leq j+l}D_j$.

Recall the definition of $V_{\Lambda}(n\delta)$ and $V_{\Lambda}(n\delta)_l$ from (48) and (51) with $\lambda = n\delta$.

Theorem 2.3 For any integers n and l, $V_{\Lambda}(n\delta)_l$ is a proper Vir-submodule of $V_{\Lambda}(n\delta)$ and $V_{\Lambda}(n\delta)_l \subseteq V_{\Lambda}(n\delta)_{l+1}$.

Proof Since $S_l \neq S$, we have that $V_{\Lambda}(n\delta)_l \neq V_{\Lambda}(n\delta)$. The inclusion follows from the definition. We now have to show that $V_{\Lambda}(n\delta)_l$ is closed under the action of H_n^{\pm} . Using (45) and (46) we need only check closure under (a) $\mu(i)\delta(j)$, i < j, (b) $\delta(i)\mu(j)$, i < j,

(c) $\mu(n/2)\delta(n/2)$, and (d) $\delta(n/2)\mu(n/2)$. We proceed as in the proof of Lemma 2.2(c). Let $f = e^{n\delta} \otimes x$, where x is as in the proof of Lemma 2.2(c). Let

$$z = \mu(i)\delta(j), \quad i < j.$$

The element *z* acts on *f* as outlined in (22) and (23). We shall be using (16) to (23) in the proof below. If j > 0 then $\delta(j)(e^{n\delta} \otimes x) = je^{n\delta} \otimes \sum_{t=1}^{s} x_t$, where $x_t = \delta_{j,n_t} \mu(-n_1) \cdots \mu(-n_t) \cdots \mu(-n_s) \delta(\mathbf{k})$, and overbar denotes omission. Each summand is either zero or its μ -length is one less than that of *x*. If i < 0, then the μ -length of $\mu(i)x_t$ is restored to that of *x*. If i > 0, then the effect of $\mu(i)$ on each summand, x_t , is to break it into summands that are 0 or have δ -length one less than the δ -length of x_t . Either way *zx* remains in S_l . So $\mu(i)\delta(j)f \in V_{\Lambda}(n\delta)_l$.

Suppose j < 0. Then $\delta(j)x$ has δ -length one more than that of x. Since i < j we have that i < 0. In that case, the μ -length of $\mu(i)\delta(j)x$ is one more than that of x. So $\mu(i)\delta(j)x$ is in $M_{\leq j+1+l}D_{j+1} \subseteq S_l$.

Suppose j = 0. Since $(\delta \mid n\delta) = 0$ we get from (23) that $\mu(i)\delta(j)f = 0$. Cases (b), (c), and (d) are handled in a similar fashion.

The next goal is to show that $\overline{V_{\Lambda}(n\delta)_l} = V_{\Lambda}(n\delta)_l/V_{\Lambda}(n\delta)_{l-1}$ is a completely reducible representation of the Virasoro algebra. Even though our representations are more complicated than those in [KR] we can still rely on Lectures 2 and 3 of [KR].

Denote the quotient S_l/S_{l-1} by $\overline{S_l}$ and $V_{\Lambda}(\lambda)_l/V_{\Lambda}(\lambda)_{l-1}$ by $\overline{V_{\Lambda}(\lambda)_l}$. We have that $\overline{S_l} \cong \prod_{i=0}^{\infty} M_{j+l}D_j$.

Proposition 2.4 Let n be any integer. The Vir-modules $\overline{V_{\Lambda}(n\delta)_l}$ and $\overline{V_{\Lambda}(0)_l}$ are isomorphic.

Proof Let $f_0 = \sum_{k=0}^r c_k(e^0 \otimes x_k) \in V_{\Lambda}(0)_l$, $c_k \in \mathbb{C}$. One checks using the method in the proof of Theorem 2.3 that $f_0 \mapsto f_{n\delta} = \sum_{k=0}^r c_k(e^{n\delta} \otimes x_k) \in V_{\Lambda}(n\delta)_l$ induces a Vir-module isomorphism between $\overline{V_{\Lambda}(n\delta)_l}$ and $\overline{V_{\Lambda}(0)_l}$.

We now define a positive definite Hermitian form $\langle | \rangle$ on $V_{\Lambda}(\lambda)$ by extending the original **Z**-bilinear form (|) on Λ to a Hermitian form on S: for $a_i, b_i \in \{\delta, \mu\}$, let

(53)
$$(a_1(-n_1)\cdots a_s(-n_s) \mid b_1(-m_1)\cdots b_r(-m_r)) = \delta_{r,s} \sum_{\sigma \in P(r)} \prod_{k=1}^r n_k \delta_{n_k,m_{\sigma(k)}}(a_k \mid b_{\sigma(k)})$$

where $\delta_{x,y}, x, y \in \mathbb{Z}$, denotes the usual Kronecker delta and P(r) denotes the symmetric group on *r* symbols.

We use below the notation in (49) for tuples of integers.

Let $\iota: S \to S$ be the unique anti-linear map satisfying $\iota(\mu(-\mathbf{n})\delta(-\mathbf{m})) = \mu(-\mathbf{m})\delta(-\mathbf{n})$, $\iota(1) = 1$, where $\mathbf{n} \in \mathbf{Z}_{+}^{s}$, $\mathbf{m} \in \mathbf{Z}_{+}^{r}$, $s \ge 1$. The map ι is an involution.

Next we define a Hermitian form on $V_{\Lambda}(\lambda)$ using (53). Let $x, x' \in S, z = e^{\lambda} \otimes x$, $z' = e^{\lambda} \otimes x'$. Set $\langle z \mid z' \rangle = (x \mid \iota(x'))$.

The proof of Proposition 2.2 in [KR] works for the next proposition.

Proposition 2.5 (a) The set $\{z = e^{\lambda} \otimes \mu(-\mathbf{n})\delta(-\mathbf{m}) : \mathbf{n} \in \mathbf{Z}_{+}^{s}, \mathbf{m} \in \mathbf{Z}_{+}^{r}, n_{1} \leq n_{2} \cdots \leq n_{s}, m_{1} \leq m_{2} \cdots \leq m_{r}\} \cup \{e^{\lambda} \otimes 1\}$ is an orthogonal basis of $V_{\Lambda}(\lambda)$ with respect to $\langle | \rangle$.

(b) The form $\langle | \rangle$ is positive definite on $V_{\Lambda}(\lambda)$ and $||z||^2 = c(\mathbf{n})c(\mathbf{m})\prod_{i=1}^{s} n_i \prod_{j=1}^{r} m_j$, where ||z|| is the norm of z and $c(\mathbf{n})$ is the cardinality of the set $\{\sigma \in P(s) : \sigma(\mathbf{n}) = \mathbf{n}\}$ (replace s by r for the definition of $c(\mathbf{m})$.)

The *degree* of *z* in Proposition 2.5 is defined as $\sum_{i=1}^{s} n_i + \sum_{j=1}^{r} m_j$.

Let $\overline{V_{\Lambda}(0)_l}(j)$ denote the subspace of $\overline{V_{\Lambda}(0)_l}$ spanned by elements of degree j. This is a finite-dimensional vector space. One checks that this finite-dimensional space is the eigenspace of the eigenvalue j of the oscillator operator H_0 in Proposition 2.1. In fact $\overline{V_{\Lambda}(0)_l} = \prod_{j\geq 0} \overline{V_{\Lambda}(0)_l}(j)$ is a weight space decomposition of $\overline{V_{\Lambda}(0)_l}$ with respect to the commutative subalgebra of the Virasoro algebra generated by d_0 and the central element ζ . The material above starting from (53) allows us to use Lectures 2 and 3 of [KR], in particular Proposition 3.1 of [KR], as a proof of the next theorem.

Theorem 2.6 Let l be any integer. Then the Vir-module $\overline{V_{\Lambda}(0)_l}$ is completely reducible.

By Proposition 2.4 and Theorem 2.6 we have

Corollary 2.7 For every pair of integers (n, l), the Vir-module $\overline{V_{\Lambda}(n\delta)_l}$ is completely reducible.

3 Virasoro-Heisenberg and Virasoro-Toroidal Algebras

It is well-known that one often gets a more satisfactory representation theory by enlarging the algebra, see for instance the introduction of [MEY]. We shall accomplish our enlargement through semi-direct products. The use of semi-direct products in the representation theory of Lie algebras can be traced back to E. Cartan's thesis. See [COL]. We now recall the essentials from the theory of vertex operators that we need and refer to [MEY], [MP1], and [FLM] for more details.

Let *z* be a complex variable. Let Γ and *Q* be as in (1) and (2). Let $\alpha \in Q$. So for $n \in \mathbb{Z}$, $\alpha(n)$ is the operator on $V_{\Gamma}(\lambda)$ defined in (22) and (23). Define

(54)
$$T_{+}(\alpha, z) = -\sum_{n>0} \frac{1}{n} \alpha(n) z^{-n}.$$

(55)
$$T_{-}(\alpha, z) = -\sum_{n<0} \frac{1}{n} \alpha(n) z^{-n}.$$

The vertex operator, $X(\alpha, z)$, for α on $V(\Gamma)$ is defined by

(56)
$$X(\alpha, z) = z^{(\alpha|\alpha)/2} \exp T(\alpha, z)$$

where $\exp T(\alpha, z) = \exp T_{-}(\alpha, z)e^{\alpha}z^{\alpha(0)}\exp T_{+}(\alpha, z)$ and $z^{\alpha(0)}(e^{\lambda} \otimes f) = z^{(\alpha|\lambda)}(e^{\lambda} \otimes f)$, $f \in S(\mathcal{A}(\Gamma)_{-})$. It is also shown in [MP1] that $X(\alpha, z)$ can be formally expanded in powers of z to give $X(\alpha, z) = \sum_{n \in \mathbb{Z}} X_n(\alpha)z^{-n}$. The coefficients $X_n(\alpha)$ are called *moments* and are operators on $V(\Gamma)$.

Proposition 3.1 ([MP1]) Let $f \in S(\mathcal{A}(\Gamma)_{-})$. Suppose $\alpha \in Q, \lambda \in \Gamma$. Then

(57)
$$X_n(\alpha)(e^{\lambda} \otimes f) = e^{\lambda + \alpha} \otimes f_1$$

where $f_1 \in S(\mathcal{A}(\Gamma)_-)$.

Thus in the decomposition of the full Fock space $V(\Gamma) = \coprod_{\lambda \in \Gamma} V_{\Gamma}(\lambda)$ one can view the moments as operators which move an element in the λ -stalk to an element in the $(\lambda + \alpha)$ -stalk.

The next theorem summarizes the key commutation relations between the moments.

Theorem 3.2 ([FK] and [GO], [MP1]) Let α and β be elements of the lattice Q in (1).

 $\begin{array}{l} CR0 \quad [\alpha(k), X_n(\beta)] = (\alpha \mid \beta) X_{n+k}(\beta). \\ CR1 \quad If(\alpha \mid \beta) \geq 0 \ then \ [X_m(\alpha), X_n(\beta)] = 0. \\ CR2 \quad If(\alpha \mid \beta) = -1 \ then \ [X_m(\alpha), X_n(\beta)] = \varepsilon(\alpha, \beta) X_{m+n}(\alpha + \beta). \\ CR3 \quad If(\alpha \mid \alpha) = (\beta \mid \beta) = -(\alpha \mid \beta) = 2 \ then \ [X_m(\alpha), X_n(\beta)] = \varepsilon(\alpha, \beta) \{mX_{n+m}(\alpha + \beta) + \sum_{k \in \mathbb{Z}} : \alpha(k) X_{m+n-k}(\alpha + \beta) : \} \ where : \alpha(k) X_{m+n-k}(\beta) := \alpha(k) X_{m+n-k}(\beta) \ if k \leq m+n-k \ and \ X_{m+n-k}(\beta)\alpha(k) \ if k > m+n-k. \\ CR4 \quad [L_k, X(\alpha, z)] = z^k \{ \frac{k}{2}(\alpha \mid \alpha) + z \frac{d}{dz} \} X(\alpha, z). \end{array}$

Let $\{e_{\pm\alpha_i}, h_i : 1 \leq i \leq l\}$ be a Chevalley basis of $\hat{\mathcal{G}}$ in Proposition 1.4. As an addendum to Proposition 1.4 we note that $\mathcal{T}_{[2]}$ contains an affine Kac-Moody algebra $\hat{\mathcal{G}} \otimes_{\mathbb{C}} \mathbb{C}[t_1, t_1^{-1}] \oplus \mathbb{C}c$. Denote its root system by Δ , its set of real roots by Δ^{re} and its root lattice by Q in (1). Now we can state the main result from [MEY] which gives vertex representations of $\mathcal{T}_{[2]}$.

Theorem 3.3 ([MEY]) The assignment

 $e_{\alpha_i} \otimes \pm s^m t^n \mapsto X_m(\alpha_i + n\delta), n, m \in \mathbb{Z}$ $-e_{-\alpha_i} \otimes \pm s^m t^n \mapsto X_m(\pm \alpha_i + n\delta), n, m \in \mathbb{Z}, 1 \le i \le l$ $z_{(1,0)}(m, n) \mapsto X_m(n\delta), n \ne 0$ $z_{(0,1)}(m, 0) \mapsto \delta(m)$ $z_{(1,0)}(0, 0) \mapsto I \text{ where I is the identity map on } V(\Gamma)$

gives an isomorphism ϕ between the Lie algebra of operators \mathfrak{T} on $V(\Gamma)$ generated by the moments $X_m(\alpha), \alpha \in \Delta^{\mathrm{re}}, m \in \mathbb{Z}$, and the toroidal algebra $\mathfrak{T}_{[2]}$.

Let $\{a_i\}_{i=1}^l$ be an orthonormal basis for $\mathbb{C} \otimes_{\mathbb{Z}} \dot{Q}$. Let $\{\alpha_1, \alpha_2\}$ be an orthonormal basis for $\mathbb{C} \otimes_{\mathbb{Z}} \Lambda$ where $\Lambda = \mathbb{Z} \delta \oplus \mathbb{Z} \mu$. Let $u_i = a_i, i = 1, ..., l$ and $u_{l+1} = \alpha_1$ and $u_{l+2} = \alpha_2$. Then $\{u_i\}_{i=1}^{l+2}$ is an orthonormal basis over \mathbb{C} for $\mathbb{C} \otimes_{\mathbb{Z}} \Gamma$. Therefore by Proposition 1.8, the oscillator operators given by this basis affords a representation of Vir on $V_{\Gamma}(\lambda)$ where the centre ζ acts as (l+2)I. So $V_{\Gamma}(\lambda)$ affords a representation of both Vir and $\mathcal{A}(Q)$. However from (42), $[L_k, a(n)] = -na(n+k)$. Therefore, by (34) we have proved that $V_{\Gamma}(\lambda)$ is an $\tilde{\mathcal{A}}(\Gamma)$ -module and consequently we have the next proposition.

Proposition 3.4 $V(\Gamma) = \coprod_{\lambda \in \Gamma} V_{\Gamma}(\lambda)$ is an $\tilde{\mathcal{A}}(\Gamma)$ -module decomposition.

Let $\tilde{\mathfrak{I}}_{[2]}$ be the Lie algebra of operators on $V(\Gamma)$ generated by $X_m(\alpha)$ and L_k where $m, k \in \mathbb{Z}$ and $\alpha \in \Delta^{\text{re}} \subset Q$.

Proposition 3.5 ([FM, Section 4]) $\tilde{T}_{[2]}$ is the semi-direct product of Vir and $T_{[2]}$.

Proof As C-spaces,

(58)
$$\widetilde{T}_{[2]} = \operatorname{Vir} \oplus \widetilde{T}_{[2]}$$

after using Theorem 3.3. A Lie algebra is a semi-direct product $A \propto B$ if A is a subalgebra and B is an ideal. We will show that $\mathcal{T}_{[2]}$ is an ideal in (58). It suffices to show that $[L_k, X_m(\alpha)] \in \mathcal{T}_{[2]}$, where $k, m \in \mathbb{Z}$, and $\alpha \in \Delta^{\text{re}}$. Indeed, by CR4, $\sum_{m \in \mathbb{Z}} [L_k, X_m(\alpha)] z^{-m} = [L_k, X(\alpha, z)] = z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z) = \sum_{n \in \mathbb{Z}} z^k \{ \frac{k}{2}(\alpha, \alpha) + z \frac{d}{dz} \} X(\alpha, z)$ $z\frac{d}{dz}X_n(\alpha)z^{-n} = \sum_{n \in \mathbb{Z}} (\frac{k}{2}(\alpha, \alpha) - n)X_n(\alpha)z^{-n+k}$. Now replacing *n* by m + k and equating coefficients of z^{-m} , we get

(59)
$$[L_k, X_m(\alpha)] = \left\{\frac{k}{2}(\alpha \mid \alpha) - (m+k)\right\} X_{m+k}(\alpha)$$

which is in $\mathcal{T}_{[2]}$.

The Lie algebra $\tilde{T}_{[2]}$ is called the *Virasoro-toroidal algebra* of *rank two*.

A generalization of this situation occurs when we replace Γ by $\dot{Q} \perp \Lambda_{n-1}$ with $\{\delta_1,\ldots,\delta_{n-1},\mu_1,\ldots,\mu_{n-1}\}$ a basis for Λ_{n-1} and $(\delta_i \mid \dot{Q}) = (\mu_j \mid \dot{Q}) = (\delta_i \mid \delta_j) = (\delta_i \mid \delta_j)$ $(\mu_i \mid \mu_j) = 0$ and $(\delta_i \mid \mu_j) = \delta_{i,j} (\delta_{i,j} \text{ is Kronecker delta})$ for all pairs (i, j).

Using this new lattice an analogue of Theorem 3.3 is proved in Theorem 3.14 of [EM] for an arbitrary positive integer *n*. We can now define the Virasoro-toroidal algebra, $\tilde{T}_{[n]}$, of rank *n* for an arbitrary positive integer *n*, as the algebra of operators on $V(\dot{Q} \perp \Lambda_{n-1})$ generated by the moments $X_m(\alpha + \delta)$ in Theorem 3.14 of [EM] and the Virasoro operators on $V(\dot{Q} \perp \Lambda_n)$. The subalgebra of $\tilde{\mathcal{T}}_{[n]}$ generated by the Virasoro operators L_k on $V(\dot{Q} \perp \Lambda_n)$. Λ_n) and the subalgebra $\mathfrak{X} \subset \mathfrak{T}_{[n]}$ in Proposition 1.4 is the Virasoro-Heisenberg algebra $\tilde{\mathcal{H}}(\dot{Q},n).$

We can be explicit when n = 2. To that end we use the basis of \mathbb{Z}_2 given in Proposition 1.2. We let generators of Vir act on $\mathcal{H}(\dot{Q}, 2)$ as follows:

(60)
$$d_k(\gamma(m,n)) = -m\gamma(m+k,n)$$

(60)

$$d_{k}(\gamma(m,n)) = -m\gamma(m+k,n)$$
(61)

$$d_{k}(z_{(1,0)}(m,n)) = -(m+k)z_{(1,0)}(m+k,n), \quad n \neq 0$$
(62)

$$d_{k}(z_{(0,1)}(m,0)) = -mz_{(0,1)}(m+k,0)$$
(63)

$$d_{k}(z_{(1,0)}(0,0)) = 0$$

(62)
$$d_k(z_{(0,1)}(m,0)) = -mz_{(0,1)}(m+k,0)$$

(63)
$$d_k(z_{(1,0)}(0,0)) = 0$$

(64)
$$\zeta \left(\mathcal{H}(\dot{Q},2) \right) = 0$$

We use the above equations to get the Lie bracket in $\tilde{\mathcal{H}}(\dot{Q}, 2)$. So, for instance, $[d_k, \gamma(m, n)] = -m\gamma(m + k, n).$

Let $V(\lambda) = e^{\lambda + Q} \otimes_{\mathbf{C}} S(\mathcal{A}(\Gamma)_{-})$, where $\lambda \in \Gamma$. (This is not to be confused with $V_L(\lambda)$ in (20).) To see how moments act on $V(\lambda)$, set $\tau = X_{-N}(\delta)$ where $N = (\lambda \mid \delta)$.

Proposition 3.6 ([MEY, Proposition 5.3]) Let $k, m \in \mathbb{Z}$.

- (a) The operator $X_{-kN}(k\delta)$ acts on $V(\lambda)$ as multiplication by $\varepsilon(\delta, \lambda)^k e^{k\delta}$. In particular τ acts as multiplication by $\varepsilon(\delta, \lambda)e^{\delta}$ and $X_{-kN}(k\delta)$ acts as τ^k on $V(\lambda)$.
- (b) $X_m(k\delta)$ annihilates $V(\lambda)$ if and only if m + kN > 0.

For $\gamma \in \mathbf{C} \otimes_{\mathbf{Z}} \dot{Q}, m, n \in \mathbf{Z}$, define

(65)
$$T_m^{\gamma}(n\delta) = \sum_{k \in \mathbf{Z}} : \gamma(k) X_{-k+m}(n\delta) :$$

where the normal ordering is defined as in CR3 of Theorem 3.2. It follows from Proposition 3.6 and (16) that only finitely many terms of the infinite sum act non-trivially on any fixed $v \in V(\Gamma)$. We note that $T_m^{\gamma}(n\delta)$ is linear in its superscript.

In the next computation we use Theorem 3.3 with e_{α_i} denoted by e_i , the CR relations, and the properties of the map ε in (35) to (37). We have $[e_i \otimes 1, e_{-i} \otimes s^m t^n] = -[X_0(\alpha_i + 0\delta), X_m(-\alpha_i + n\delta)] = -\varepsilon(\alpha_i, -\alpha_i) \sum_{k \in \mathbb{Z}} : \alpha_i(k) X_{-k+m}(n\delta) := T_m^{\alpha_i}(n\delta)$. Let $\{h_1, \ldots, h_l\}$ be the basis of $\dot{\mathcal{H}}$, the Cartan subalgebra in Proposition 1.4. Let $\gamma \in \dot{\mathcal{H}}$. Then for some complex numbers $c_1, \ldots, c_l, \gamma = \sum_{i=1}^l c_i h_i$. Then in Proposition 1.4, $\gamma(m, n) \mapsto \gamma \otimes s^m t^n = \sum_{i=1}^l c_i(h_i \otimes s^m t^n) \in \mathcal{T}_{[2]}$. Since T_m^{γ} is linear in its superscript, the proof of the next proposition follows from Theorem 3.3 and the above calculation.

Proposition 3.7 $V(\Gamma)$ is an $\mathcal{H}(\dot{Q}, 2)$ -module under the following correspondences.

- (66) $\gamma(m,n) \mapsto T_m^{\gamma}(n\delta)$
- (67) $z_{(1,0)}(m,n) \mapsto X_m(n\delta), n \neq 0$
- (68) $z_{(0,1)}(m,0) \mapsto \delta(m)$

where I is the identity operator on $V(\Gamma)$ and $\delta(m)$ acts on $V(\Gamma)$ as specified in (22) and (23).

We extend the representation of $\mathcal{H}(\dot{Q}, 2)$ in Proposition 3.7 to a representation of $\tilde{\mathcal{H}}(\dot{Q}, 2)$ on $V(\Gamma)$ by letting the Virasoro generator d_k act on each $V_{\Gamma}(\lambda)$ in Proposition 3.4 by the oscillator operator L_k defined just before Proposition 3.4, and extending the action linearly. On each $V_{\Gamma}(\lambda)$, ζ acts as (l + 2)I.

Proposition 3.8 $V(\Gamma)$ is an $\tilde{\mathcal{H}}(\dot{Q}, 2)$ -module.

Proof We know from Proposition 1.8 and Proposition 3.7 that $V(\Gamma)$ is both a Vir-module and an $\mathcal{H}(\dot{Q}, 2)$ -module. So we need only check that the operations from both algebras are compatible with the bracket operations in $\tilde{\mathcal{H}}(\dot{Q}, 2)$. By (42), $[L_k, \delta(m)] = -m\delta(m+k)$. By Proposition 3.7 and the remark following it $[L_k, \delta(m)]$ corresponds to $[d_k, z_{(0,1)}(m, 0)] \in \tilde{\mathcal{H}}(\dot{Q}, 2)$. By (61), $[d_k, z_{(0,1)}(m, 0)] = -mz_{(0,1)}(m+k, 0)$, as required.

Since $(n\delta \mid n\delta) = 0$, we get by (59) that $[L_k, X_m(n\delta)] = -(m+k)X_{m+k}(n\delta)$. By (61), $[d_k, z_{(1,0)}(m, n)] = -(m+k)z_{(1,0)}(m+k, n)$. By (67), the latter element gives the operator $-(m+k)X_{m+k}(n\delta)$ as required.

For the next computation, we first justify (70), which will permit us to remove : : in (65).

(70)
$$\sum_{l \in \mathbf{Z}} : a_l a_{-l+m} := \sum_{l \in \mathbf{Z}} a_l a_{-l+m} - \sum_{l > \frac{m}{2}} [a_l, a_{-l+m}].$$

As $-l + m < l \Leftrightarrow l > \frac{m}{2}$, the left hand side of (70) is $\sum_{l \le \frac{m}{2}} a_{l}a_{-l+m} + \sum_{l > \frac{m}{2}} a_{-l+m}a_{l}$, while the right hand side is $\sum_{l \in \mathbb{Z}} a_{l}a_{-l+m} - \sum_{l > \frac{m}{2}} (a_{l}a_{-l+m} - a_{-l+m}a_{l})$. Simplifying this expression gives the above form of the left hand side of (70).

M. A. Fabbri and F. Okoh

By (65) $[L_k, T_m^{\gamma}(n\delta)] = [L_k, \sum_{l \in \mathbb{Z}} : \gamma(l)X_{-l+m}(n\delta) :]$. By (70) the latter is equal to $[L_k, \sum_{l \in \mathbb{Z}} \gamma(l)X_{-l+m}(n\delta)] - \sum_{l > \frac{m}{2}} [L_k, [\gamma(l), X_{-l+m}(n\delta)]] = \sum_{l \in \mathbb{Z}} [L_k, \gamma(l)X_{-l+m}(n\delta)] - \sum_{l > \frac{m}{2}} [L_k, (\gamma \mid n\delta)X_m(n\delta)]$ where the last equality follows from CRO in Theorem 3.2. But $(\gamma \mid n\delta) = 0$ because $\gamma \in Q$ in (3). Hence $[L_k, T_m^{\gamma}(n\delta)] = \sum_{l \in \mathbb{Z}} [L_k, \gamma(l)X_{-l+m}(n\delta)] = \sum_{l \in \mathbb{Z}} \{[L_k, \gamma(l)]X_{-l+m}(n\delta) + \gamma(l)[L_k, X_{-l+m}(n\delta)]\}$, which by (42) and (59) is equal to $\sum_{l \in \mathbb{Z}} \{-l\gamma(k+l)X_{-l+m}(n\delta) + (l-m-k)\gamma(l)X_{k+m-l}(n\delta)\} = \sum_{l \in \mathbb{Z}} \{-l\gamma(k+l)X_{-l+m}(n\delta) + (l-m)\gamma(l+k)X_{-l+m}(n\delta)\} = -m\sum_{l \in \mathbb{Z}} \gamma(k+l)X_{-l+m}(n\delta) = -mT_{m+k}^{\gamma}(n\delta).$

By Proposition 3.7 the operator $[L_k, T_m^{\gamma}(n\delta)]$ comes from $[d_k, \gamma(m, n)]$, which by (60), is $-m\gamma(m+k, n)$. By (66) this gives the operator $-mT_{m+k}^{\gamma}(n\delta)$, as required.

For $\lambda \in \Gamma$, let $H(\lambda)$ be the C-subspace of $V(\Gamma)$ spanned by $C[\lambda + Z\delta] \otimes_C S(\mathcal{A}(\Gamma)_-)$. In multiplicative notation, $C[\lambda + Z\delta]$ has C-basis $\{e^{\lambda + n\delta} : n \in Z\}$. As C-spaces,

(71)
$$V(\Gamma) = \coprod_{\lambda} H(\lambda)$$

where λ ranges over a complete set of representatives of $\Gamma/\mathbf{Z}\delta$. The oscillator operator L_k is a sum of compositions of the operator in (21) to (23). So it follows from Proposition 3.7 and Proposition 3.1 with $\alpha = n\delta$ that $H(\lambda)$ is an $\tilde{\mathcal{H}}(\dot{Q}, 2)$ -submodule of $V(\Gamma)$. We shall study its structure in the next two sections.

4 Irreducible Representations

One of the main result of this section is that $H(\lambda)$ in (71) affords an irreducible representation of $\mathcal{H}(\dot{Q}, 2)$ if $\lambda \notin Q$. We begin by stating the results that we need for its proof.

We use (31) and (32) to extend the action of Vir on $\mathcal{A}(Q)$ to an action on $S(\mathcal{A}(Q))$ so that each d_k acts as a derivation and ζ acts trivially. Then for any homogeneous polynomial $f \in S(\mathcal{A}(Q)_{-}), d_0(f) = (\deg f)f$. It is shown in (16) of [FM] that

(72)
$$d_n(e^{\lambda} \otimes f) = \left(\delta_{n,0} \frac{(\lambda \mid \lambda)}{2} f + d_n(f)\right) (e^{\lambda} \otimes 1)$$

where $\delta_{n,0}$ is Kronecker delta.

Proposition 4.1 The set $A = (\coprod_{m \in \mathbb{Z}} \mathcal{L}(m, 0)) \oplus (\coprod_{m \in \mathbb{Z}} \mathbb{C}z_{(0,1)}(m, 0)) \oplus \mathbb{C}z_{(1,0)}(0, 0)$ is a Lie-subalgebra of $\mathcal{H}(\dot{Q}, 2)$ isomorphic to $\mathcal{A}(Q)$.

Proof We use Proposition 1.2. First, *A* is a subalgebra of $\mathcal{H}(Q, 2)$: For $\gamma, \eta \in \mathcal{L}$, and $m, n \in \mathbb{Z}$ we have, by (10) and (6), that $[\gamma(m, 0), \eta(n, 0)] = (\gamma \mid \eta)z_{(m,0)}(m + n, 0) = m(\gamma \mid \eta)z_{(1,0)}(m + n, 0) = m\delta_{m+n,0}(\gamma \mid \eta)z_{(1,0)}(0, 0)$, where the last equality follows from the fact that if $m + n \neq 0$ then $z_{(1,0)}(m + n, 0) = \frac{1}{m+n}z_{(m+n,0)}(m + n, 0) \in \mathcal{D}_2$. In that case $z_{(1,0)}(m + n, 0) = 0$ in $\mathcal{Z}_2 = \mathcal{C}_2/\mathcal{D}_2$. If m + n = 0 then $z_{(1,0)}(m + n, 0) = z_{(1,0)}(0, 0)$, which is in *A*. Now recall the Heisenberg algebra $\mathcal{A}(Q) = \mathcal{H}(Q, 1)$ in (12) with L = Q. Under the correspondences $\gamma(m, 0) \mapsto \gamma(m), z_{(0,1)}(m, 0) \mapsto \delta(m), z_{(1,0)}(0, 0) \mapsto c$, one checks using (10), (11), (13), and (14) that this yields an isomorphism between *A* and $\mathcal{A}(Q)$.

By Propositions 4.1 and 1.4 we have the following inclusions of Lie algebras

$$\tilde{\mathcal{A}}(Q) \subseteq \tilde{\mathcal{H}}(\dot{Q}, 2) \subseteq \tilde{\mathcal{T}}_{[2]}.$$

Any representation of $\tilde{T}_{[2]}$ is automatically a representation of its subalgebras. This will be useful in the establishment of the irreducibility of some modules.

Proposition 4.2 Let $\lambda \in \Gamma \setminus Q$. Then $H(\lambda)$ is an irreducible $\tilde{H}(\dot{Q}, 2)$ -module.

Proof We will show that (i) $e^{\lambda} \otimes 1$ generates $H(\lambda)$ and (ii) every non-zero submodule of $H(\lambda)$ contains $e^{\lambda} \otimes 1$. First note that as a **C**-space

 $H(\lambda) = \coprod_{n \in \mathbb{Z}} \mathbb{C}e^{\lambda + n\delta} \otimes_{\mathbb{C}} S(\mathcal{A}(\Gamma)_{-}) = \coprod_{n \in \mathbb{Z}} V_{\Gamma}(\lambda + n\delta).$

Since $\lambda \in \Gamma \setminus Q$ it follows that for each $n \in \mathbb{Z}$, $\lambda + n\delta \in \Gamma \setminus Q$. Thus by Proposition 9 of [FM], $Ce^{\lambda+n\delta} \otimes_C S(\mathcal{A}(\Gamma)_-)$ is an irreducible $\tilde{\mathcal{A}}(Q)$ -module generated by $e^{\lambda+n\delta} \otimes 1$. To show (i) it suffices, by Proposition 4.1, to check that for every $n \in \mathbb{Z}$, $e^{\lambda+n\delta} \otimes 1$ is in the $\tilde{\mathcal{H}}(\dot{Q}, 2)$ -submodule generated by $e^{\lambda} \otimes 1$. Indeed given $n \in \mathbb{Z}$ choose $m \in \mathbb{Z}$ so that m + nN = 0 where $N = (\lambda \mid \delta)$. Then by Proposition 3.6(a) we have $X_m(n\delta)(e^{\lambda} \otimes 1) = \pm e^{\lambda+n\delta} \otimes 1$.

Next let *R* be a non-zero submodule of $H(\lambda)$ and let $0 \neq z = \sum_{i=1}^{s} e^{\lambda + k_i \delta} \otimes f_i \in R$, $k_i \in \mathbb{Z}$, $f_i \in S(\mathcal{A}(\Gamma)_{-})$ and $s \geq 1$. We may assume that the k_i 's are distinct. We use (16) to differentiate out all indeterminates of the form $\mu(-n)$, n > 0 using $\delta(n)$ and those of the form $\alpha(-m)$, $\alpha \in \dot{Q}$, m > 0 using $\alpha(m)$. Thus we may assume that $f_i \in S(\coprod_{m>0} \mathbb{C}\delta(-m))$. Now using (31) and (72) as in the proof of Proposition 7 of [FM] we can further reduce *z* to a non-zero element $x = \sum_{i=1}^{r} c_i e^{\lambda + k_i \delta} \otimes 1$ in *R* where c_i 's are non-zero complex numbers and $r \leq s$. We say that *x* has *length r* if it has *r* distinct k_i 's. If r = 1 then by Proposition 3.6, $X_{k_1N}(-k_1\delta)(c_1e^{\lambda + k_1\delta} \otimes 1) = \pm c_1(e^{\lambda} \otimes 1)$ as required. If $r \geq 2$ then by induction it suffices to show that we can shorten the length of *x* by exactly one.

Let $m = \frac{(\lambda|\lambda)}{2} \in \mathbb{Z}$ and choose an integer k so that $n_1 = m + (k - k_1)N < 0$, where $N = (\lambda \mid \delta)$. Write $n_1 = -n$, n > 0. Let $y = L_0\delta(-n)X_{kN}(-k\delta)x$. We claim that y has length r - 1. Write $x = (c_1e^{\lambda+k_1\delta} \otimes 1) + x'$, where $x' = \sum_{i=2}^{r} c_ie^{\lambda+k_i\delta} \otimes 1$. So $y = c_1L_0\delta(-n)X_{kN}(-k\delta)(e^{\lambda+k_1\delta}\otimes 1) + L_0\delta(-n)X_{kN}(-k\delta)x'$. It suffices to show that the first term is zero and no other term is zero. Indeed, for $1 \le i \le r$ and $\epsilon_i = \varepsilon(-k\delta, \lambda+k_i\delta) = \pm 1$, and using Proposition 3.6 and (72), we get

$$\begin{split} L_0\delta(-n)X_{kN}(-k\delta)(e^{\lambda+k_i\delta}\otimes 1) &= \epsilon_i L_0\left(e^{\lambda+(k_i-k)\delta}\otimes\delta(-n)\right) \\ &= \epsilon_i\left(\frac{(\lambda\mid\lambda)}{2} + (k_i-k)(\lambda\mid\delta) + n\right)\left(e^{\lambda+(k_i-k)\delta}\otimes\delta(-n)\right) \\ &= \epsilon_i\left(m + (k_i-k)N + n\right)\left(e^{\lambda+(k_i-k)\delta}\otimes\delta(-n)\right). \end{split}$$

Now the coefficient $m + (k_i - k)N + n = 0 \Leftrightarrow k = k_1$ by the choice of *n*. So the length of *x* has been shortened by one as required.

When $\lambda \in Q$ we shall see in the next section that $H(\lambda)$ is a reducible $\tilde{\mathcal{H}}(\dot{Q}, 2)$ -module.

Our next batch of irreducible modules will be $\tilde{A}(Q)$ -modules and will come from the completely reducible modules in Theorem 2.6.

Every element λ in the lattice Q of (1) is of the form $\alpha + n\delta$, $\alpha \in \dot{Q}$, $n\delta \in \mathbb{Z}\delta$. Define $\phi: V_{\dot{Q}}(\alpha) \otimes_{\mathbb{C}} V_{\Lambda}(n\delta) \to V_{\Gamma}(\lambda)$ to be the unique linear map satisfying

(73)
$$\phi((e^{\alpha} \otimes f) \otimes (e^{n\delta} \otimes g)) = e^{\lambda} \otimes fg.$$

Since $\Gamma = \dot{Q} \perp \Lambda$, we have that $S(\mathcal{A}(\dot{Q}_{-}))S(\mathcal{A}(\Lambda)_{-})$. Let

$$\dot{L}_k = \frac{1}{2} \sum_{j \in \mathbf{Z}} \sum_{l=1}^{l} : u_i(-j)u_i(j+k) :$$

where $\{u\}_{i=1}^{l}$ is an orthonormal basis for $\mathbf{C} \otimes_{\mathbf{Z}} \dot{\mathbf{Q}}$. Let

$$H_k = \frac{1}{2} \sum_{j \in \mathbf{Z}} \sum_{i=1}^2 : \alpha_i(-j)\alpha_i(j+k) :$$

where $\{\alpha_1, \alpha_2\}$ is an orthonormal basis for $\mathbb{C} \otimes_{\mathbb{Z}} \Lambda$. Now, let $m \in \mathbb{Z}$, $a \in \mathbb{C} \otimes_{\mathbb{Z}} \dot{Q}$. We make $V_{\dot{Q}}(\alpha) \otimes_{\mathbb{C}} V_{\Lambda}(n\delta)$ an $\tilde{\mathcal{A}}(Q)$ -module as follows. We set

$$\begin{aligned} a(m)\big((e^{\alpha} \otimes f) \otimes (e^{n\delta} \otimes g)\big) &= \big(a(m)(e^{\alpha} \otimes f)\big) \otimes (e^{n\delta} \otimes g)\\ \delta(m)\big((e^{\alpha} \otimes f) \otimes (e^{n\delta} \otimes g)\big) &= (e^{\alpha} \otimes f) \otimes \big(\delta(m)(e^{n\delta} \otimes g)\big)\\ d_m\big((e^{\alpha} \otimes f) \otimes (e^{n\delta} \otimes g)\big) &= \big((\dot{L}_m \otimes I) + (I \otimes H_m)\big)\big((e^{\alpha} \otimes f) \otimes (e^{n\delta} \otimes g)\big). \end{aligned}$$

Use ϕ to make both sides of (73) $\tilde{\mathcal{A}}(Q)$ -modules.

Proposition 4.3 The map in (73) is an $\tilde{A}(Q)$ -module isomorphism between $V_{\dot{Q}}(\alpha) \otimes_{\mathbf{C}} V_{\Lambda}(n\delta)$ and $V_{\Gamma}(\lambda)$.

Denote $V_{\dot{O}}(\alpha) \otimes_{\mathbf{C}} V_{\Lambda}(n\delta)_l$ by $V_{\Gamma}(\lambda)_l$.

Proposition 4.4 If $\lambda \in Q$ then the family $\{V_{\Gamma}(\lambda)_l\}_{l \in \mathbb{Z}}$ is a filtration of $\tilde{\mathcal{A}}(Q)$ -submodules of $V_{\Gamma}(\lambda)$.

Proof By Theorem 2.3, $V_{\Lambda}(n\delta)_l$ is a Vir-submodule of $V_{\Lambda}(n\delta)$. We get from (21) to (23), with $L = \Lambda$, and Lemma 2.2 that it is also an $\mathcal{A}(\Lambda)$ -submodule. Hence $V_{\Lambda}(n\delta)_l$ is an $\tilde{\mathcal{A}}(\Lambda)$ -submodule of $V_{\Lambda}(n\delta)$. We get from Proposition 1.7 that $V_{\dot{Q}}(\alpha)$ is an $\tilde{\mathcal{A}}(\dot{Q})$ -module. So Proposition 4.4 follows from Proposition 4.3 and Theorem 2.3.

For each $l \in \mathbb{Z}$, let $\overline{V_{\Gamma}(\lambda)_l}$ denote $V_{\Gamma}(\lambda)_l/V_{\Gamma}(\lambda)_{l-1}$.

Theorem 4.5 If $\lambda \in Q$ then $\{\overline{V_{\Gamma}(\lambda)_l}\}_{l \in \mathbb{Z}}$ is a family of $\tilde{\mathcal{A}}(Q)$ -completely reducible modules.

Proof As C-spaces, the map ϕ in (73) induces a vector space isomorphism $\overline{\phi} \colon \overline{V_{\Gamma}(\lambda)_l} \to V_{\dot{Q}}(\alpha) \otimes \overline{V_{\Lambda}(n\delta)_l}$.

As in (73) we make $\overline{\phi}$ an $\tilde{\mathcal{A}}(Q)$ -module isomorphism. By Corollary 2.7, $X = \overline{V_{\Lambda}(n\delta)_l}$ is a completely reducible Vir-module. Say $X = \coprod_{j \in J} X_j$ with X_j irreducible as a Virmodule. By Proposition 1.5, $V_{\dot{Q}}(\alpha)$ is an irreducible $\mathcal{A}(\dot{Q})$ -module. Using these one shows

that $\coprod_{j \in J} (V_{\dot{Q}}(\alpha) \otimes X_j)$ is a completely reducible decomposition of $V_{\dot{Q}}(\alpha) \otimes \overline{V_{\Lambda}(n\delta)_l}$ as an $\tilde{\mathcal{A}}(Q)$ -module.

Remarks In Proposition 9 of [FM] it is shown that if $\lambda \notin Q$ then $V_{\Gamma}(\lambda)$ is an irreducible $\tilde{\mathcal{A}}(Q)$ -module. Our proof of complete reducibility in Theorem 4.5 depends on the factorisation in (73). The modules in the next section do not have such a factorisation.

5 Reducible Modules

For *m* an integer let K(m) be the C-subspace of $V(\Gamma)$ spanned by $\{C[m\mu + \lambda] \otimes_C S(\mathcal{A}(\Gamma)_-) : \lambda \in Q\}$. From Proposition 1.8, Theorem 3.3, and Proposition 3.1, we deduce that K(m) is a $\tilde{T}_{[2]}$ -submodule of $V(\Gamma)$. We have the decomposition of $\tilde{T}_{[2]}$ -submodules

(74)
$$V(\Gamma) = \prod_{m \in \mathbf{Z}} K(m)$$

In [FM] it was shown that if $m \neq 0$, then K(m) is irreducible as a $\tilde{\mathcal{T}}_{[2]}$ -module. We shall show that both K(0) and $H(\lambda)$ in (71), $\lambda \in Q$, have filtrations of submodules as modules over $\tilde{\mathcal{T}}_{[2]}$ and $\tilde{\mathcal{H}}(\dot{Q}, 2)$ respectively. In order to do that we shall need an explicit expression for $X_m(\alpha + n\delta)(e^{\sigma + p\delta} \otimes f)$, where X_m is a moment as in Proposition 3.1 and

(75)
$$\{\alpha,\sigma\}\subset \dot{Q}, \quad \{m,n,p\}\subset \mathbf{Z},$$

and $f \in S_l$, *l* an arbitrary but fixed integer.

The notation in (75) above will be in force for the rest of the paper.

From the definition of S_l in (50), f is a finite sum of scalar multiples of elements of the form $\mu(-q_1)^{a_1} \cdots \mu(-q_s)^{a_s} \delta(\mathbf{k})$, for various integers j and l, where $a = \sum_{i=1}^{s} a_i \leq j + l$, $\delta(\mathbf{k}) = \delta(-k_1) \cdots \delta(-k_j)$, $a_1, \ldots, a_s, k_1, \ldots, k_j$ are positive integers, while q_1, \ldots, q_s are distinct positive integers. Distributivity of \otimes allows us to take f to be one such summand. So let

(76)
$$f = \mu(-q_1)^{a_1} \cdots \mu(-q_s)^{a_s} \delta(\mathbf{k}).$$

For $\beta \in \Gamma$, define the elementary Schur polynomials $S_r(\beta)$, $r \in \mathbb{Z}$, by the expressions

$$\exp T_{-}(\beta, z) = \sum_{r=0}^{\infty} S_{r}(\beta) z^{r}.$$

If r < 0, put $S_r(\beta) = 0$.

Example 5.1 Let $x \in \Gamma$. The general formula for $S_r(x)$ can be read off from p. 59 of [KR]. For instance $S_4(x) = \frac{1}{24} (x(-1))^4 + \frac{1}{2} (x(-1))^2 x(-2) + x(-1)x(-3) + x(-4)$. The actual coefficients are irrelevant in our computations. We shall be working with $x = \alpha + n\delta$, $\alpha \in \dot{Q}$, $n \in \mathbb{Z}$. Using (7), $((\alpha + n\delta)(-1))^4 = (\alpha(-1) + n\delta(-1))^4$. Since $S(\mathcal{A}(\Gamma)_-)$ is commutative we see that, for all integers r, α and n as in (75), we have that

(77)
$$S_r(\alpha + n\delta) \in S(\mathcal{A}(\dot{Q})_-)S(\mathcal{A}(\mathbf{Z}\delta)_-).$$

Let f be as in (76).

We want to compute $X_m(\alpha + n\delta)(e^{\sigma+p\delta} \otimes f)$. Let $\epsilon = \epsilon(\alpha + n\delta, \sigma + p\delta) = \pm 1$. Suppose f = 1. Then by (19) and (54) $\exp T_+(\alpha + n\delta, z)(1) = 1$. So by (56), $\sum_{m \in \mathbb{Z}} X_m(\alpha + n\delta)z^{-m}(e^{\sigma+p\delta} \otimes 1) = z^{\frac{1}{2}(\alpha+n\delta|\alpha+n\delta)} \exp T_-(\alpha + n\delta, z)e^{\sigma+n\delta}z^{(\alpha+n\delta)(0)}(e^{\sigma+p\delta} \otimes 1) = \epsilon \sum_{r=0}^{\infty} (e^{\sigma+\alpha+(p+n)\delta} \otimes S_r(\alpha + n\delta)z^{r+\frac{1}{2}(\alpha|\alpha)+(\alpha|\sigma)})$. Matching powers of z by putting $-m = r + \frac{1}{2}(\alpha \mid \alpha) + (\alpha \mid \sigma)$ and solving for r, we get from equating coefficients of z^{-m} that

(78)
$$X_m(\alpha + n\delta)(e^{\sigma + p\delta} \otimes 1) = \epsilon e^{\sigma + \alpha + (p+n)\delta} \otimes S_{-m-N}(\alpha + n\delta)$$

where $N = \frac{1}{2}(\alpha \mid \alpha) + (\alpha \mid \sigma)$.

Lemma 5.2 If $e^{\sigma+p\delta} \otimes 1$ is in $e^{\sigma+Z\delta} \otimes S(\mathcal{A}(\dot{Q})_{-})S_l$ or $e^Q \otimes S(\mathcal{A}(\dot{Q})_{-})S_l$ respectively, then $X_m(\alpha + n\delta)(e^{\sigma+p\delta} \otimes 1)$ is in $e^{\sigma+Z\delta} \otimes S(\mathcal{A}(\dot{Q})_{-})S_l$ or $e^Q \otimes S(\mathcal{A}(\dot{Q})_{-})S_l$ respectively.

Proof This follows from (78), (77), and Lemma 2.2.

Now assume that f in (76) is not a constant. The fact that $(\alpha + n\delta \mid \mu) = n$ and $(\alpha + n\delta \mid \delta) = 0$ will be used when applying (56). Since $T_+(\alpha + n\delta, z)(e^{\sigma+p\delta} \otimes f) = -\sum_{r>0} \frac{1}{r}(\alpha+n\delta)(r)z^{-r}(e^{\sigma+p\delta} \otimes f)$ we see from (16), (3), and (76) that only $r \in \{q_1, \ldots, q_s\}$ can contribute a non-zero term. And so

(79)
$$-\sum_{r>0} \frac{1}{r} (\alpha + n\delta)(r) z^{-r} (e^{\sigma + p\delta} \otimes f)$$
$$= -n \sum_{i=1}^{s} \left(e^{\sigma + p\delta} \otimes a_{i} \mu (-q_{1})^{a_{1}} \cdots \mu (-q_{i})^{a_{i}-1} \cdots \mu (-q_{s})^{a_{s}} \delta(k) \right) z^{-q_{i}}.$$

We want to rewrite (79) in a more complicated way that generalises for T_i^l , l a positive integer. First replace $-\sum_{i=1}^s$ by $(-)^1 \sum$ and n by n^1 . Let $w = (w_1, \ldots, w_s) \in \mathbb{Z}_{\geq 0}^s$. Then $(-)^1 \sum$ in (79) ranges over all possible *s*-tuples in $\mathbb{Z}_{\geq 0}^s$ with $\sum_{i=1}^s w_i = 1$. Each such *s*-tuple w gives a term $f_w z^{-\sum_{i=1}^s w_i q_i}$, where the coefficient, f_w , of $z^{-\sum_{i=1}^s w_i q_i}$ has μ -length $\leq (\mu$ -length of f)-1. The polynomial f_w is a scalar multiple of the polynomial obtained by replacing each $\mu(-q_i)^{a_i}$ in (76) by its w_i -th derivative with respect to $\mu(-q_i)$. By replacing 1 by l in this version of (79) we get a Leibniz-rule-type formula for $T_i^l(\alpha + n\delta)(e^{\sigma + p\delta} \otimes f)$. A consequence of this visualised formula for T_i^l is that if $l > a = \sum_{i=1}^s a_i$, the μ -length of f then $T_i^l(\alpha + n\delta)(e^{\sigma + p\delta} \otimes f) = 0$.

Let $\mathcal{W} = \{(w_1, \ldots, w_s) \in \mathbb{Z}_{\geq 0}^s : 0 \leq \sum_{i=1}^s w_i \leq a\}$. Let $F = \exp T_+(\alpha + n\delta, z)$. Then $F(e^{\sigma + p\delta} \otimes f) = \sum_{w \in \mathcal{W}} e^{\sigma + p\delta} \otimes c_w f_w z^{-\sum_{i=1}^s w_i q_i}$ for some scalars c_w , where $c_{(0,0,\ldots,0)} = 1$ and $f_{(0,0,\ldots,0)} = f$.

We now recall (56) to get

$$\sum_{m\in\mathbf{Z}} X_m(\alpha+n\delta) z^{-m} (e^{\sigma+p\delta} \otimes f) = z^{(\alpha|\alpha)/2} \exp T_-(\alpha+n\delta,z) e^{\alpha+n\delta} z^{(\alpha+n\delta)(0)} F(e^{\sigma+p\delta} \otimes f)$$

where $\exp T_{-}(\alpha + n\delta, z) = \sum_{r=0}^{\infty} S_{r}(\alpha + n\delta)z^{r}$. So $X(\alpha + n\delta, z)(e^{\sigma + p\delta} \otimes f) = \epsilon \sum_{r=0}^{\infty} (e^{\sigma + \alpha + (p+n)\delta} \otimes S_{r}(\alpha + n\delta)z^{r + \frac{1}{2}(\alpha|\alpha) + (\alpha|\sigma)})F(e^{\sigma + p\delta} \otimes f)$. Since the constant $\epsilon = \pm 1$ can be absorbed by *F* we shall suppress it. We get that $\sum_{m \in \mathbb{Z}} X_{m}(\alpha + n\delta)z^{-m}(e^{\sigma + p\delta} \otimes f) = \sum_{w \in \mathcal{W}} \sum_{r=0}^{\infty} (e^{\sigma + \alpha + (p+n)\delta} \otimes S_{r}(\alpha + n\delta)c_{w}f_{w}z^{r + \frac{1}{2}(\alpha|\alpha) + (\alpha|\sigma)}z^{-\sum_{i=1}^{s} w_{i}q_{i}}).$

Matching powers of z, we let $r_w = \sum_{i=1}^{s} w_i q_i - m - \frac{1}{2}(\alpha \mid \alpha) - (\alpha \mid \sigma)$. Then equating coefficients of z^{-m} , we get

(80)
$$X_m(\alpha + n\delta)(e^{\sigma + p\delta} \otimes f) = e^{\sigma + \alpha + (p+n)\delta} \otimes \sum_{w \in \mathcal{W}} S_{r_w}(\alpha + n\delta)c_w f_w.$$

The relevant thing about (80) for what follows is that f_w is obtained from f in (76) by lowering the μ -length of f.

Lemma 5.3 If $e^{\sigma+p\delta} \otimes f$ is in $e^{\sigma+Z\delta} \otimes S(\mathcal{A}(\dot{Q})_{-})S_l$ or $e^Q \otimes S(\mathcal{A}(\dot{Q})_{-})S_l$ respectively. Then $X_m(\alpha + n\delta)(e^{\sigma+p\delta} \otimes f)$ is in $e^{\sigma+\alpha+Z\delta} \otimes S(\mathcal{A}(\dot{Q})_{-})S_l$ or $e^Q \otimes S(\mathcal{A}(\dot{Q})_{-})S_l$ respectively.

Proof We saw in the proof of Theorem 2.3 that S_l is invariant under reduction of μ -length. So Lemma 5.3 follows from (80), (77), and Lemma 2.2.

Let $H(\lambda)_l = \mathbf{C}[\lambda + \mathbf{Z}\delta] \otimes_{\mathbf{C}} S(\mathcal{A}(\dot{Q})_-) S_l$ and $K(0)_l = \mathbf{C}[Q] \otimes_{\mathbf{C}} S(\mathcal{A}(\dot{Q})_-) S_l$.

Remark 5.4 In the proof of Propositions 5.5 and 5.6 we shall use the fact that the invariance of $H(\lambda)_l$ and $K(0)_l$ under Vir depends only on the invariance of $S(\mathcal{A}(\dot{Q})_-)S_l$ under the oscillator operators. This follows from (21) to (23). Since $S_l \subseteq S_{l+1}$ we have the inclusions stated in Propositions 5.5 and 5.6.

Proposition 5.5 Let *l* be any integer. Then for every $\lambda \in Q$, $H(\lambda)_l$ is an $\tilde{H}(\dot{Q}, 2)$ -submodule of $H(\lambda)$ and $H(\lambda)_l$ is an $\tilde{H}(\dot{Q}, 2)$ -submodule of $H(\lambda)_{l+1}$.

Proof Just before (60) we saw that $\tilde{\mathcal{H}}(\dot{Q}, 2)$ is generated inside $\tilde{\mathcal{T}}_{[2]}$ by the Virasoro operators L_k on $V(\Gamma)$ and $\mathcal{H}(\dot{Q}, 2)$. As in Lemma 2.2 $S(\mathcal{A}(\dot{Q})_-)S_l$ is closed under L_k and $\delta(m)$. So $H(\lambda)_l$ is closed under Vir and $\delta(m)$. Using Proposition 3.7 we need only check invariance of $H(\lambda)_l$ under $X_m(n\delta)$. This follows from Lemma 5.3 with $\alpha = 0$.

Proposition 5.6 Let l be any integer. Then $K(0)_l$ is a $\tilde{T}_{[2]}$ -submodule of K(0) and $K(0)_l$ is a $\tilde{T}_{[2]}$ -submodule of $K(0)_{l+1}$.

Proof Invariance of $K(0)_l$ under Vir follows from Remark 5.4 and Proposition 5.5 while invariance of $K(0)_l$ under $X_m(\alpha + n\delta)$ and $\delta(m)$ follows from Lemma 5.3 and Lemma 2.2 respectively.

Proposition 5.7 Let $\lambda \in \Gamma$. Then every non-zero submodule of $V_{\Gamma}(\lambda)$ is an indecomposable $\tilde{\mathcal{A}}(Q)$ -module.

Proof Let *M* be a non-zero submodule of $V_{\Gamma}(\lambda)$. Since $\mathcal{A}(Q) \subset \tilde{\mathcal{A}}(Q)$ it is enough to show that *M* is an indecomposable $\mathcal{A}(Q)$ -module. We show that if M = A + B with both *A* and *B* non-zero then $A \cap B \neq 0$. Let $x = e^{\lambda} \otimes f \in A$ and $y = e^{\lambda} \otimes g \in B$. By acting on them with appropriate $\delta(n)$ as specified in (16) we may assume that neither *x* nor *y* has a μ -term, *i.e. f* and *g* are in $S(\mathcal{A}(Q)_{-})$. We then get from (18) that $0 \neq e^{\lambda} \otimes fg \in A \cap B$.

Since $\mathcal{A}(Q)$ is a subalgebra of both $\tilde{\mathcal{H}}(\dot{Q}, 2)$ and $\tilde{\mathcal{T}}_{[2]}$, the proof of Proposition 5.7 gives analogous results for $H(\lambda)$ and K(0) over their respective algebras.

Proposition 5.8 Let $\lambda \in Q$. Then the modules $H(\lambda)$, $V_{\Gamma}(\lambda)$, and K(0) do not contain irreducible submodules over the respective Lie algebras, $\tilde{H}(\dot{Q}, 2)$, $\tilde{A}(Q)$, and $\tilde{T}_{[2]}$.

Proof Fix $X \in \{V_{\Gamma}(\lambda), H(\lambda), K(0)\}$, and let X_l be $V_{\Gamma}(\lambda)_l, H(\lambda)_l$, or $K(0)_l\}$ as the case may be. Now, for m > 0, we have that $0 \neq \delta(-m)X_l \subseteq X_{l-1}$. Let M be a non-zero submodule of X. Then we must have $0 \neq M \cap X_l \neq M$ for some integer l because $X = \bigcup_{l \in \mathbb{Z}} X_l$ and $\bigcap_{l \in \mathbb{Z}} X_l = \{0\}$.

We have been able to do computations in $\tilde{\mathcal{T}}_{[n]}$ and $\tilde{\mathcal{H}}(L, n)$ for $n \leq 2$ and restricted choices of *n*. As can be seen by comparing [EM] and [MEY], the jump from $\mathcal{T}_{[2]}$ to $\mathcal{T}_{[n]}$, *n* arbitrary is fraught with difficulties.

Acknowledgement Some of the results of this paper were obtained by M. A. Fabbri in his thesis summarized in [F]. We thank Eswara Rao for sending us preprints of [E1] and [E2]. We are indebted to the referee for giving us detailed suggestions.

References

- [BC] S. Berman and A. Cox, *Enveloping algebras and representations of toroidal Lie algebras*. Pacific J. Math. **165**(1994), 239–267.
- [BO] R. Borcherds, Vertex algebras, Kac-Moody algebras and the Monster. Proc. Nat. Acad. Sci. U.S.A. 83(1986), 3068–3071.
- [COL] A. J. Coleman, Groups and Physics. Notices Amer. Math. Soc. 44(1997), 8–17.
- [E1] S. Eswara Rao, Iterated loop modules and a filtration for vertex representations of toroidal Lie algebras. Pacific J. Math. 171(1995), 511–528.
- [E2] _____, Classification of loop modules with finite dimensional weight spaces. Math. Ann. **305**(1996), 651–663.
- [EM] S. Eswara Rao and R. V. Moody, Vertex representations for the universal central extensions for the n-toroidal Lie algebras and a generalization of the Virasoro algebra. Comm. Math. Phys. 159(1994), 239–266.
- [F] M. A. Fabbri, Virasoro-toroidal algebras and vertex representations. C. R. Math. Rep. Acad. Sci. Canada 14(1992), 77–82.
- [M] M. A. Fabbri and R. V. Moody, Irreducible representations of Virasoro-toroidal Lie algebras. Comm. Math. Phys. 159(1994), 1–13.
- [FK] I. Frenkel and V. G. Kac, Basic representations of affine Lie algebras and dual resonance models Invent. Math. 63(1980), 23–66.
- [FLM] I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the monster. Academic Press, 1988.
- [GO] P. Goddard and D. Olive, Algebras, lattices, and strings. In: Vertex operators in Mathematics and Physics (eds. J. Lepowsky, S. Mandelstram and I. M. Singer), MSRI Berkeley Publication 3, Berkeley, California, 1984, 51–96.
- [KR] V. G. Kac and A. K. Raina, Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie Algebras. Singapore World Scientific, 1987.
- [KS] C. Kassel, Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra. J. Pure Appl. Algebra 34(1985), 265–275.

- R. V. Moody, S. Eswara Rao and T. Yokonuma, Toroidal Lie algebras and vertex representations. Geom. [MEY] Dedicata 35(1990), 283-307.
- R. V. Moody and A. Pianzola, Infinite-dimensional Lie algebras (a unifying overview). Algebras Groups [MP1] Geom. 4(1987), 211–230.
- [MP2] ___, Lie Algebras with triangular decomposition. J. Wiley, 1995.
- Lie Algebras with triangular aecomposition. J. WHEY, 1225. H. Zhang, A class of representations over the Virasoro algebra. J. Algebra **190**(1997), 1–10. [Z]

Department of Mathematics Arizona State University Tempe, Arizona 85287 U.S.A.

Department of Mathematics Wayne State University Detroit, Michigan 48202 U.S.A.