Patterns and drivers of glacier debris-cover development in the Afghanistan Hindu Kush Himalaya

Jamal A. N. Shokory and Stuart N. Lane

Institute of Earth Surface Dynamics (IDYST), University of Lausanne, CH-1015 Lausanne, Switzerland

Abstract

Debris-covered ice is widespread in mountain regions with debris an important control on surface ice melt and glacier retreat. Quantifying debris cover extent and its evolution through time over large regions remains a challenge. This study develops two Normalized Difference Supraglacial Debris Indices for mapping debris-covered ice based on thermal and near infrared Landsat 8 bands. They were calibrated with field data. Validation suggests that they have a high level of accuracy. They are then applied to Landsat data for 2016 to produce the first detailed glacier inventory of the Afghanistan Hindu Kush Himalaya that includes debris cover. 3408 glaciers were identified which, for those ≥ 0.01 km2 in area, gives an ice cover of 2.222 ± 11 km2 and a debris cover of 619 ± 40 km2. Principal components analysis was used to identify the most influential drivers of debris-covered ice extent. Lower proportions of debris cover were associated with glaciers with a higher elevation range, that were larger, longer and wider. These relations were statistically clearer when the dataset was broken down into climate and geological zones. A glaciers continue to shrink, the proportion of debris cover will become higher, making it more important to map debris cover reliably.

1. Introduction

Glacier inventories exist for most regions of the world (e.g. Bajracharya and Shrestha, 2011; Pfeffer and others, 2014; Nuimura and others, 2015; Mölg and others, 2018; Scherler and others, 2018; Herreid and Pellicciotti, 2020). These are generally based upon satellite imagery (Racoviteanu and others, 2009; Shukla and others, 2010). Clean ice can be mapped relatively easily, notably using thermal bands, though the threshold used to define ice cover needs calibration as they can vary both spatially and temporally (Veettil and others, 2014; Robson and others, 2015; Haireti and others, 2016). However, mapping debris covered ice remains a challenge (Bolch and Kamp, 2005; Raup and others, 2007; Racoviteanu and others, 2009; Mölg and others, 2018). Mountain glaciers can develop significant debris cover that can substantially modify glacier melt processes and response to climate warming (Nicholson and Benn, 2006; Jouvet and others, 2011; Scherler and others, 2011; Zhang and others, 2011; Pratap and others, 2015; Rowan and others, 2015; Vincent and others, 2016; Nicholson and others, 2018; Ferguson and Vieli, 2021).

Mapping debris covered ice from satellite imagery has made use of two primary approaches. The first is geomorphometric (e.g. Paul, 2003; Paul and others, 2004; Bolch and Kamp, 2006; Shukla and others, 2010; Bhardwaj and others, 2014; Veettil and others, 2014) where debris in ice marginal zones is classified as ice cored if local slope is below a certain threshold (the critical slope angle for debris movement). This may be problematic in some regions, such as where the transition from a glacier margin to an unglaciated region is gentle but still relatively debris free (Paul, 2003; Bolch and Kamp, 2006). In addition, no detectable change in surface slope may occur at the interface between clean-ice and debris-cover (Bhambri and others, 2011); post-depositional sedimentation by mass movement, a commonly found process in the polygenetic environment of the Himalaya (Benn and Owen, 2002; Bhambri and others, 2011), may cause confusion (Bhambri and others, 2011); and the available topographic data may not have the right resolution (Bolch and Kamp, 2006; Racoviteanu and others, 2009).

One alternative is to use differences in temperature between debris-covered ice and the temperature of the surrounding ice-free zones. Taschner and Ranzi (2002) analyzed the surface temperature and physical properties of both debris layers on glaciers and non ice containing zones (debris, rocks, grass) using ground measurements obtained for temperature and heat flux. They found significant temperature differences between debris-covered ice and other land surfaces with higher temperatures on average for surfaces without underlying ice. Amschwand and others (2021) recorded such differences to a debris thickness of 5 m. Subsequent studies have exploited this observation in satellite data. Scherler and others (2018), Herreid and Pellicciotti (2020) and Fleischer and others (2021) have used the proportion of near infrared (NIR) and shortwave infrared (SWIR) to map debris cover on glaciers. Stewart and others (2021) attempted to estimate debris thickness on glaciers using 60 m × 60 m Landsat Enhanced Thematic Mapper + data resampled to 30 m by 30 m. Herreid (2021) used ASTER data processed to give surface kinetic temperature at a 90 m resolution
and then used an unmixing approach to estimate the extent of debris-covered ice within a pixel, emphasizing the need for downscaling of the generally coarse thermal bands especially for mountain glaciers.

There are three issues that follow from these thermal band satellite-based approaches. First, with very thick debris cover, the signal of ice temperature will diminish (Racoviteanu and others, 2009; Shukla and others, 2010) resulting in zones of debris-covered ice being classed as nonglacier. We assume that the importance of this problem is likely to increase with rapid glacier retreat, leading to potentially extensive areas of debris-covered ice that may be patchy and/or disconnected from the glacier itself. It emphasizes the need for further research to identify the limits of satellite-based estimation of debris-cover thickness. Second, following from the typical resolutions reported above, satellite-based studies have struggled to map small glaciers. Herreid and Pellicciotti (2020), for instance, excluded glaciers <1 km² even if for some mountainous regions a large proportion of glaciers fall in this class (Maharjan and others, 2018). One solution could be to downscale coarser thermal using higher resolution panchromatic bands as has been done in other applications (Choi, 2006; Aiazzi and others, 2007; Choi and others, 2010; Jung and Park, 2014; Rai and Mukherjee, 2021). Third, it is not yet clear whether or not a single index can map ice-covered debris regardless of the geological composition of such debris. If weathering processes lead to significant accumulation of fine-grained sediments on debris-covered glaciers then the debris cover will have small void spaces. This may result in greater capacity for water retention leading to wet surfaces (Juen and others, 2013; Blum and others, 2018) with different thermal properties to dry ones. As water and ice affect the thermal properties of a debris layer (Giese and others, 2020) more than one index may be needed to capture the spatial extent of debris-covered ice fully.

Given that debris cover remains a major cause of uncertainty in quantifying the retreat of glaciers in mountain regions (Scherler and others, 2011), there is a need for further development and testing of indices that can be used to map debris-covered ice in mountain regions, notably ones that can address the three issues identified above. Thus, the primary aim of this paper is to develop indices for mapping ice and debris-covered ice extent for mountainous regions that: (a) yield sufficient spatial resolution for mapping of valley-confined glaciers, including those <1 km² in size; (b) are sensitive to geological controls on the caliber of accumulated sediment; (c) are suitable for long-term analyses so as to quantify change; and (d) use freely-available datasets.

The focus is on Afghanistan in the western part of Hindu Kush Himalaya where there remains only a poorly-developed understanding of the cryosphere despite its impact on both water resources and environmental hazards (Shokory and others, 2023). Most glaciological studies in Afghanistan are for the period 1965 to 1980 and are in Russian, Dutch and very occasionally English, and most are not available online (Shroder and Bishop, 2010). In 1980, Shroder initiated a glacier inventory for Afghanistan supported by the U.S. Geological Survey using Landsat-3 satellite imagery (40 m ground resolution), and field observations (Shroder and Bishop, 2010). This research identified about. 3000 separate glaciers in Afghanistan with an estimated area of about 2700 km² (Shroder, 1980; Shroder and Bishop, 2010; Shroder and Ahmadzai, 2016). A glacier inventory of Afghanistan was published by the Afghanistan Ministry of Energy and Water and International Centre for Integrated Mountain Development using satellite Landsat imagery (Maharjan and others, 2018). Glaciers were mapped using semi-automatic object-based image analysis methods and debris-covered ice was mapped using slope thresholds (0–24°). Maharjan and others (2018) identified 3782 glaciers, covering a total area of about 2540 km² (excluding glaciers with an area of less than 0.01 km²) concentrated at elevations between 3200 and 6900 m a.s.l. Thus, a subsidiary aim of the work is to produce a new glacier inventory for Afghanistan. As our method leads to one of the first inventories that can map very small (<1 km²) glaciers, we seek to identify the regional-scale, systematic controls that explain spatial variation in debris-covered ice extent for Afghanistan using our inventory.

2. Study area

Afghanistan is a mountainous country located in the subtropics, extending from 29°21′N to 38°30′N latitude and from 60°31′E to 75°E longitude (Gopalakrishnan, 1982) (Fig. 1). It has an arid and semi-arid continental climate, characterized by temperature and precipitation regimes characteristic of deserts, steppe and highland environments (Humlum and others, 1959; Shroder, 2014). It has four main glacier regions (Fig. 1). We aim to produce a glacier inventory for all of Afghanistan. To support this work, we looked at two cases within Afghanistan in greater detail.

We undertook field data collection at the Mir Samir Glacier (Fig. 1) for index calibration and validation, which is the only glacier monitored by the Ministry of Energy and Water (MEW) of Afghanistan. This glacier is located at 70.171°N longitude and 35.596°E latitude (Fig. 1). Its highest altitude is 5060 m and it extends over a distance of 2.9 km to 4200 m altitude. The Mir Samir Glacier was mostly debris-covered in its snout zone, with some large boulders present. The proglacial margin also contains debris-covered ice. The geology around and under the glacier varies from slightly metamorphosed sedimentary rocks to hard gneisses and schists (Gilbert and others, 1969). This glacier was the primary focus of the first index we develop for mapping debris cover.

A second case, the Noshaq glacier range (Fig. 1) was also studied more intensively, albeit without a field visit. This glacier range was identified during the study as having debris-covered ice that was not being detected using our first index and so became the focus of the second index we developed. The Noshaq glacier range was studied in detail by Shroder (1978) (Fig. 1, Fig. S1, Supplementary Material). It contains one of the longest and largest glaciers in Afghanistan, starting from Noshaq peak, the highest peak in Afghanistan (7492 m) and extending for 14 km to an elevation of about 3580 m (Shroder, 1978) (location 36° 25′ N, 71° 47′ E).

3. Methodology

The approach makes use of freely available imagery from the Landsat 8 Operational Land Imager. The spatial resolution of its thermal bands is 90–120 m which creates particular uncertainty where clean ice and debris-covered ice are in juxtaposition (Bhamri and others, 2011; Kääb and others, 2014) or glaciers are small in size (<1 km²). Thus, the two indices developed herein aim to improve the spatial resolution of thermal-based mapping and to resolve debris-covered ice where there is only a weak thermal signal.

3.1 Datasets

Data were obtained for ten L8 image tiles for the end of the 2016 ablation season (primarily in September) from http://earthexplorer.usgs.gov/ (Fig. S2, Supplementary Material), and on dates with no seasonal snow or cloud cover present in the scenes. The indices we developed used bands directly provided by
Landsat 8; blue-B2, near infrared (NIR)-B5, shortwave infrared (SWIR)-B6, panchromatic (PAN)-B8 and thermal (TIR)-B10. The B2, B5 and B6 bands have 30 m resolution, the B8 band 15 m resolution and the B10 band 100 m resolution that supplied already downscaled to 30 m. To correct for top of atmosphere reflectance, before all further analyses, we applied the radiometric rescaling coefficients provided in the associated metadata files delivered with the Landsat Level-1 NIR and SWIR products. We address the correction of PAN and TIR bands below.

Digital elevation models (DEMs) with resolutions of 5 m or 10 m (according to region) were provided by the Department of Statistics, Ministry of Agriculture Irrigation and Livestock of Afghanistan (MAIL, 2020). In areas where no Afghan DEMs were available we used 30 m resolution DEMs downloaded from the ALOS global digital surface model (ALOS, 2022). The Russian geological vector map of Afghanistan and high resolution (0.29 m) 2016-RGB images were obtained from Ministry of Mines and Petroleum of Afghanistan (MoMP, 2020).

3.2 Indices for mapping ice and debris cover

To map bare ice, we used the NIR to SWIR band ratio (Paul and others, 2002; 2004; Taschner and Ranzi, 2002; Paul, 2003; Bolch and Kamp, 2005; Shukla and others, 2010; Bhardwaj and others, 2014; Veettil and others, 2014). While methods for mapping debris-covered ice are available (see Supplementary Material), we develop a new index based upon a combination of L8 TIR and PAN bands. The principle behind this combination is that the TIR band is the one most likely to contain the thermal signal that allows identification of thicker debris layers. However, the L8 supplied TIR band is coarser (30 m). The PAN band is 15 m and, while theoretically less sensitive to thermal properties, it provides a means of downsampling the coarser TIR band to the resolution needed for mountain valley glaciers. This was done by assigning to each PAN value the nearest TIR value. The structural characteristics of debris-covered ice lead to a unique texture and panchromatic data have the potential to detect it (Bishop and others, 1995).

The PAN band has a reversed reflectance value (lower to higher) over debris to ice compared to TIR (higher to lower) (Fig. S3, Supplementary Material). On this basis we define a Normalized Difference Supraglacial Debris Index (NDSDI_{c1}):

\[
\text{Normalized Difference Supraglacial Debris Index (NDSDI_{c1})} = \frac{\text{PAN} - \text{TIR}}{\text{PAN} + \text{TIR}}
\]

During application we noted for a small number of glaciers in certain geological regions where the NDSDI_{c1} suggested no debris-covered ice when there was likely to be ice present. Looking at the Russian geological map of Afghanistan (MoMP, 2020), we noted such regions were associated with detrital sedimentary rocks (mainly sandstone, siltstone, argillite, shale) (Shroder, 1980; Shroder and Bishop, 2010) which are highly erodible and result in smaller grain-size debris and likely wetter sediment. As the visible to near infrared single band ratio has been
used previously to detect moist surfaces (Lobell and Asner, 2002; Amani and others, 2016), we use this to define a second index to capture ice covered by small-grained and moist debris:

\[
\text{Normalized Difference Supraglacial Debris Index (NDSDI}_{c1}) = \frac{\text{NIR}}{\text{Blue}}
\]

(2)

3.3 Application of the indices

The indices were applied using the eCognition software (Trimble ©). Figure 2 shows the workflow for applying the indices and key steps are illustrated in Supplementary Material, Figure S4.

As an initial step, radiometric calibration was performed to convert digital numbers (DNs) for NIR and SWIR bands to reflectance values to map bare ice. Radiometric calibration and atmospheric correction was necessary for the NIR and SWIR bands (Fig. S4b, Supplementary Material). Radiometric calibration decreased the numerical range of NDSI values during debris-covered ice mapping and also caused loss of resolution (Fig. S5, Supplementary Material). Thus, we used the original band DNs in (1) and (2).

Research has shown that misclassifications of pixels as debris-covered ice (e.g. Supplementary Material, Fig. 5d4) can occur where there are steep debris-free slopes (Zollinger, 2003) and cold-water bodies. Following others (e.g. Bolch and others, 2007; Bhami and others, 2011; Bhargav and others, 2014; Veetil and others, 2014), we first applied a local slope threshold of 37° on a pixel basis to remove bare rock surfaces but this did not eliminate the problem. Hence, we merged pixels into zones (clean ice, debris-covered ice, ice-free) and then calculated the mean slope of each debris-covered ice zone. The average value of slope was calculated by zone and those zones with slopes >24° were reclassified as ice-free.

Even with these thresholds, some areas of supposed debris-covered ice remained that were unlikely to be correct as they were too low in altitude compared with known glacier snout margins (Fig. S4e, Supplementary Material). For this we identified a minimum altitude threshold that differs based on each region (3500–4000 m a.s.l.). Shadowed snow patches and bedrock misclassified as debris-covered were identified by using a minimum area (<0.01 km²) of debris cover (following Tielidze and others, 2018). Lastly, some snow cover was mapped as ice (e.g. Fig. 5h, Supplementary Material) and more recent imagery was used to identify and to remove such errors.

In summary, the following parameters need to be calculated and calibrated in our analyses: (1) a threshold for the NIR/ SWIR ratio to identify clean ice; (2) threshold ranges for the two new indices of debris cover ice NDSDI_{c1} and NDSDI_{c2}; (3) a slope threshold applied to merged debris-covered glacier zones to remove those erroneously identified as debris-covered ice; (4) a minimum altitude threshold; and (5) a minimum area threshold.

3.4 Calibration, validation and inventory comparison

Our approach to calibration and validation had six steps. First, we visually identified plausible parameter values and ranges by looking across a set of glaciers using the high resolution RGB image. For all parameters except the two NDSI indices, the result was a set of plausible parameter values. For the two NDSI indices it was plausible parameter ranges.

Second, we formally acquired field data for the Mir Samir glacier (Fig. 1) in September 2020, and randomly-selected a subset of this dataset to calibrate the ranges for the NDSDI_{c1} index (Eqn (1)). Security issues meant we could only map one glacier, and even then we had to undertake field data collection with the support of armed guards. The Mir Samir Glacier is mostly debris-covered at its snout, with bigger boulders and potentially iced debris in the proglacial margin. A total of 219 GPS points were collected under a stratified-random sampling approach using a Garmin GPSMAP 64s GPS (±3 meter positional uncertainty) from three ground types: clean ice zones, debris-covered ice and nonice zones (Fig. S6, Supplementary Material). Thin and partially debris-covered ice was determined visually. Thicker debris-covered ice was identified by the presence of ice under large boulders. The full dataset was randomly divided in half for calibration and validation.

Third, as the field validation site for NDSDI_{c1} did not include fine-grained sedimentary debris-cover, and required to validate NDSDI_{c2} debris-cover classifications, we turned to the Noah range (Fig. 1). High resolution MoMP (2020) imagery was used to visually identify debris-covered ice by the presence of supraglacial ponds and crevasses (Bodin and others, 2010; Mölg and others, 2018). We then randomly selected points from ice-covered, debris-covered ice and nonice zones, which were also randomly separated into calibration and validation datasets.

Fourth, in order to assess the transferability of our approach, we manually mapped four other debris-covered glaciers in Afghanistan from the high resolution RGB imagery. We also tested our approach at the Santopanth Glacier in the central Himalaya, India and the Khumbu Glacier in Nepal (Miles and others, 2018). Both sites have reliable published maps of debris-covered ice. We applied our methodology (Fig. 2) to these glaciers.

Finally, we compared the glacier outlines of our study with datasets published by (1) Maharjan and others (2018) that used only a slope threshold >24° to identify debris-covered ice and the NDSI index for clean ice; (2) Scherler and others (2018) who used the Randolph Glacier Inventory (RGI) version 6.0 outline and then used 2013–2017 Landsat and 2015–2017 Sentinel optical satellite images to map where glaciers were debris-covered; and (3) Herreid and Pellicciotti (2020) who used the NIR/SWIR satellite band ratio to map debris cover and clean ice using Landsat data for 2013–2015. The outlines provided by Herreid and Pellicciotti (2020) came with on-line available datasets and so we also assessed their approach quantitatively for our 8 glaciers (two Afghan glacier used for calibration and validation; four additional glaciers in Afghanistan used for validation; and the Satopanth and Khumbu glaciers) where the datasets were available.

For both calibration and validation we used an error matrix approach (Congalton and Green, 2019) as used to evaluate land-cover classifications based on reference data (Foody, 2002; Congalton and Green, 2019). We calculated classical error statistics (total, user and producer accuracies) but also the Kappa statistic as the latter corrects accuracy assessments for chance agreement between classes (Lillesand and others, 2015). The commission errors define the user accuracy (i.e. the reliability of information derived from the classification; Story and Congalton, 1986) and so they can be used as proportional uncertainties to calculate uncertainty in mapped areas.

3.5 Inventory and exploration of controls on debris cover

We applied our methodology (Fig. 2) to all glaciers in Afghanistan to produce a new inventory. We then explored controls on debris cover percentage using Principal Components Analysis (PCA; Table 1). Catchments were identified using watershed delineation in ArcGIS at the outlet of each glacier. Catchment boundaries were then used to determine catchment area (1), and mean slope (2). Glacier length (3) was calculated following the Machguth and Huss (2014) method that determines and
measures the centerline of the glaciers. However, for smaller glaciers (<0.07 km²) we found that the method miscalculated glacier length as such glaciers often had their long axis tangential to the glacier surface slope rather than along it. For such glaciers, we used ArcGIS to calculate the longest distance between upper and lower points of the glacier. Herreid and Pellicciotti (2020) suggested determining glacier width as the linear distance orthogonal to glacier flow at the widest location of the main centerline. However, considering the complexity of glaciers in Afghanistan (Fig. 3) this method may not represent glacier width correctly. Thus, we calculated an effective glacier width (4) for individual glaciers by dividing glacier area to the glacier length. The debris influence area (5) was determined by intersecting each glacier outline with the glacier catchment outline (using the intersect toolbox in ArcGIS) and defining the influence area as that having altitudes higher than the lowest altitude of debris-covered ice.
The DEM was used with the glacier boundaries to calculate glacier mean elevation (6), glacier elevation range (7) and glacier mean slope (8) using the zonal statistic tool in ArcGIS. The geographical information for each glacier (9) was extracted from the geological map of Afghanistan provided by the Ministry of Mines and Petroleum of Afghanistan (MoMP, 2020). The geological information consists of 27 geological type grouped into 6 geological categories. In addition, the Köppen-Geiger climate classification (Peel and others, 2007) was used to represent the climate characteristics of the glaciers.

Due to potential inter-correlation between these variables, PCA was used to reduce this dataset to a set of linearly independent principal components (PCs) that were then used to explain the statistical controls on debris cover (Gupta and others, 2013; Ghosh and others, 2014). First, we standardized the data by dividing each variable by its standard deviation. Second, the PCA was applied and the variance and factor loadings were calculated (Jensen, 1996; Ghosh and others, 2014). Orthogonal rotation (orthomax) that maximizes a criterion based on the variance of the loadings was used to simplify the interpretation of the resulting factors, and to ensure that the components remained pairwise uncorrelated for subsequent linear modeling. We used a 5% contribution to the original data variance as the cut off for retaining a component. We then interpreted each component with respect to its loadings.

Finally, we established relationships between percentage of debris cover and the new PCs. For this purpose, we used an optimizing stepwise regression where components were added to the model in order of decreasing importance provided that their individual contribution to the total explanation of the model was significant at p < 0.05. We undertook this modeling for both the entire dataset, but also the dataset divided in two ways: by climatic zones and by geological classes.

4. Results

4.1 Index calibration, validation and comparison

For the clean ice NIR/SWIR threshold, visual comparison of results with the imagery suggested that a value of NIR/SWIR ≥ 3 appeared to map clean ice effectively. The mean zonal slope for the removal of zones (not pixels) misclassified as debris-covered ice was 24°. We found that an elevation threshold altitude of <3500 m for regions 2, 3 and 4 and altitude <4000 m for region 1 (Fig. 1) was appropriate for the minimum altitude condition (Supplementary Material, Fig. S4 e,h). Finally, we removed zones classified as glacier or debris-covered glacier <0.01 km² if detached from ice and/or debris-covered ice (Supplementary Material, Fig. S4 e,i). The visual analysis suggested the following two parameter ranges for debris covered ice 0 > NDSDI_{−1} ≥ −0.32; and 0.88 > NDSDI_{>} ≥ 0.70. Based on the ground observations from glacier, pixels with NDSDI_{−1} ≥ −0.37 were classified as debris-covered and was optimal, therefore adopted for this study. The calibration accuracy assessment (Table 2) gave very encouraging results; the overall accuracy was 0.98 and the Kappa coefficient was 0.91. For the second index, a range of 0.92 ≥ NDSDI₊ ≥ 0.70 was chosen to maximize the accuracy of the approach. The overall accuracy for the Noshaq glacier range was 0.92 and the Kappa coefficient for both clean ice and debris-covered ice was 0.91 (Table 2).

Table 3 shows the validation results for the Mir Samir and the Noshaq glaciers and also for the four other glaciers considered in Afghanistan and the two outside of Afghanistan (Fig. S7 Supplementary Material). The results are encouraging as there is only a very slight degradation in the overall accuracy and the Kappa coefficient in transferring the calibrated index both within and between glaciers.

For the Afghan glaciers 1–4 (Fig. 3) the extent of debris-covered ice in the glacier marginal zone is revealed by supraglacial ponds and crevasses and these zones tend to be missed in part by other inventories as compared with our method (Fig. 3, Glacier 2). Compared with the Herreid and Pellicciotti (2020) approach, we obtained higher Kappa coefficient accuracy with our method for Glacier 1 (0.95 and 0.96 for clean ice and debris-covered ice respectively as compared to 0.77 and 0.78 respectively) mainly due to better estimation of ice presence in the margin of the glacier (Fig. 3, Glacier 1). Similarly, for Glacier 3, debris cover ice was missed around the terminus and margins by the Herreid and Pellicciotti (2020) index resulting also in lower accuracies and Kappa coefficients (Table 3).

Our method also shows higher accuracies level for those glaciers outside of Afghanistan in the Himalaya (Table 3). We obtained 0.94 Kappa accuracy for clean ice and debris cover ice for both glaciers using our method. The Herreid and Pellicciotti (2020) index gives lower values for both the Satopanth glacier and the Khumbu glacier.

4.2 Glacier inventory

We identified (Table 4) 3408 glaciers which, considering those ≥0.01 km², sums to 2,222 ± 11 km² of ice cover, 619 ± 40 km² of debris-covered ice and glacier surface areas up to 21.2 km². Differences in the number of glaciers by region varied reflecting different climatic, elevation and geological zones. Region 1 has the highest number of glaciers, with a larger mean and variability of glacier area (1.21 ± 2.25 km²). The percentage of debris-covered ice is highest in Region 4 (42%) where there are also fewer and smaller glaciers. Regions 1, 2, 3 and 4 have 69%, 4%, 25% and 2% of the total debris cover. The glaciers differ markedly in altitudinal range (Table 4).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Catchment area</td>
<td>Catchment area is a scale effective variable with catchments with a smaller area likely to be more debris covered</td>
</tr>
<tr>
<td>2 Catchment mean slope</td>
<td>Steeper mean slope is likely to lead to valley sidewalls and headwalls where there is more debris supply by erosion</td>
</tr>
<tr>
<td>3 Glacier length</td>
<td>Longer glaciers are likely to have proportionally less headwall debris delivery</td>
</tr>
<tr>
<td>4 Glacier mean width</td>
<td>Wider glaciers are likely to have proportionally less sidewall debris delivery</td>
</tr>
<tr>
<td>5 Debris influence area</td>
<td>The area of a catchment containing a glacier that is not ice covered or debris-covered ice, representing a measure of potential debris supply</td>
</tr>
<tr>
<td>6 Glacier mean elevation</td>
<td>Higher glaciers have higher accumulation and lower ablation so reducing debris cover at the surface</td>
</tr>
<tr>
<td>7 Glacier elevation range</td>
<td>Glaciers with a bigger elevation range are likely to have a more extensive accumulation zone, so reducing debris cover at the surface</td>
</tr>
<tr>
<td>8 Glacier mean slope</td>
<td>Steeper glaciers are likely to encourage less debris accumulation</td>
</tr>
<tr>
<td>9 Geological hardness grade</td>
<td>A measure of the resistance to erosion and hence inversely related to potential debris supply</td>
</tr>
<tr>
<td>10 Climatic zone</td>
<td>Geographical classification to capture different potential climatic influences on temperature and precipitation and hence accumulation and ablation.</td>
</tr>
</tbody>
</table>
There is a clear regional association in both size and debris cover (Fig. 4) and these associations were significant (Kruskal–Wallis H, p < 0.05).

Hypsometric distributions (Fig. 5) suggest that glaciers are distributed between 3500 and 7380 m a.s.l, but that debris-covered ice is limited to altitudes below 5500 m. There is between region-variability. Glaciers in Region 1 and 3 concentrate on 5000 m a.s.l altitude and Region 2 and 4 on 4500 m a.s.l. Comparing glacier elevation ranges, Region 1 and 3 are at higher elevations than Region 2 and 4 (Table 4). This shows a
clear signal of altitudinal effects on glacier distribution in Afghanistan. Regions 1 and 3 tend to have larger glaciers than 2 and 4 (Fig. 6). The percentage debris-covered ice shows significant correlation with glacier size; smaller glaciers have more debris-covered ice than larger glaciers, notably for Regions 1, 2 and 3. The relation is nonlinear to varying degrees and heteroscedastic (Fig. 5), small glaciers in Region 2 and 3 in particular having disproportionately higher percentage debris cover but also a greater range of debris cover.

The median aspect ratio of glaciers at four sub glacier regions in Afghanistan was oriented towards the northeast and northwest (Fig. S8, Supplementary Material).

4.3 Drivers of debris cover based on PCA-based analysis

The initial attempt to identify controls on debris cover fractions considers the complete glacier database. The PCA identified five PCs that represented 72% of the original dataset (Table 5). Only components with significance loadings were included in the stepwise regression. The latter used percentage debris-covered ice as the dependent variable (Table 5) which had a resultant \(R^2 \) of 43.7%.

There are six variables that contribute to the PCs (Table 5) and each PC is then labeled based on these contributions (Table 6). The first most important component identified in the regression was PC2 which is associated with variables that describe glacier length and elevation range. It explained 19.1% of the original data and was negatively associated with percentage debris cover. Thus, larger glaciers with greater elevation ranges tend to have lower percentage debris-covered ice. The second most important component ranked was PC4, which represented glacier width and which explained 12% of total variability in original data (Table 6). This suggests that wider glaciers have lower percentage debris-covered ice. The third most important component ranked was PC3, which represented glacier/catchment slope parameters and which explained 16% of the total variability in the original data (Table 6). The sign of association suggests that steeper glaciers are more prone to higher percentage debris-covered ice. PC1 that corresponds to catchment size explained 22% of total variability in the original data but was not included in the stepwise regression.

Given the possibility of strong spatial dependence in these analyses associated with broad-scale regional controls (e.g. climate, geology), it is possible that analysis of the entire dataset masks underlying drivers of debris cover. Thus, we undertook the same analysis but by climate zone and geological region. The Tables S2 and S3 in Supplementary Material contain the full results and we only present summary tables here.

A consistency and coherence in terms of the sign of the association of individual PCs and debris cover was found in general for all datasets whether classified by climate or geology; although there were some differences, such as in the details of the variables that contributed to each component.

For all climate zones, the PC that is associated with glacier length and elevation range is ranked as the most or second most important component (Table 7). PCs associated with glacier width are ranked as the second or third most important component. They are negatively associated with percentage debris cover through all climate zones and suggest that longer and wider glaciers have less debris-covered ice. Glacier altitude is ranked as the most important in climate zones 2 and 4 and the fourth most important component in climate zone 1, but is not significant in zones 3 and 5. Glacier altitude is negatively associated with percentage debris cover, suggesting higher altitude glaciers have proportionately less debris-covered ice. The glacier/catchment slope component is positively associated with debris cover in all climate zones, ranked as the second most important component in zone 3, the third most important component in zones 1, 4 and 5 and the fourth in zone 2. The sign suggests that steeper ice and catchment slopes lead to greater percentage debris cover. Catchment size in zones 2, 3 and 4 was not included in the stepwise regression. However in zone 1 it was ranked the fifth most important component with a positive association; and in zone 5 it was ranked as the fourth most important component with a negative association. The positive sign of association suggests that bigger catchment areas have higher percentage debris cover. However, the negative sign of association may be due to the fact that catchment size is also related to glacier length, width and elevation range parameters. This indicates that longer and wider glaciers are associated with larger catchments, and therefore negatively associated with percentage debris-covered ice.

Table 8 shows the results when glaciers are classified into the six geological categories. This classification leads to higher levels of explanation (\(R^2 \)) for some classes as compared with modeling using the full dataset or divided into climatic zones. It suggests that the assumed linear ranking of resistance to erosion used for the full dataset does not represent geological effects well and that once divided into geological zones, geological controls on...
where outliers are present, defined as either $Q_{75} + 1.5(Q_{75} - Q_{25})$ for the maximum and Q_{25} for the minimum.

Box plots of glacier ice cover size a) and percentage debris cover b) at four regions. The upper and lower box margins mark the 75th (Q_{75}) and the 25th (Q_{25}) quartiles respectively, with the mid box line showing the median. The whiskers represent the extremes of the data (maximum and minimum) except for situations where outliers are present, defined as either $Q_{75} + 1.5(Q_{75} - Q_{25})$ for the maximum and $Q_{25} - 1.5(Q_{25} - Q_{25})$ for the minimum.

5. Discussion

5.1 Indices of glacier debris cover

Glaciers in the Himalaya are commonly associated with debris-laden ice avalanches and rockfall onto glacier surfaces from steep surrounding slopes (Shroder and others, 2000; Kaushik and others, 2019). Thus, mapping glacier extent and its change through time needs to take into account debris-covered ice. Paul and others (2015) have reported that errors involved in mapping glaciers can be significant when glaciers are heavily debris-covered and that this is a major challenge for glaciological studies (Shukla and others, 2010; Paul and others, 2015). The complex physical characteristics of debris-covered ice make it difficult to map with optical remote sensing (Holobójca and others, 2021). Most studies are limited to small geographical regions and where only a small number of glaciers (<5) are analyzed (Robson and others, 2015; Kaushik and others, 2019). Inventories also exist with more specific region-based calibration and where only a small number of glaciers (<5) are analyzed (Robson and others, 2015; Kaushik and others, 2019). Inventories also exist with more specific region-based calibration but these have tended to focus on glaciers >1 km² in size (e.g. Scherler and others, 2018; Herreid and Pellicciotti, 2020; Fleischer and others, 2021). In this study, a combination of two thermal indices showed encouraging results for remote sensing of debris-covered ice over a spatially extensive zone. While Lougeay (1974) argued that thicker layers of debris may weaken TIR signals, field data for the Mir Samir Glacier clearly show that signals could be captured under thicker debris cover, even if the maximum depth that can be measured was not established in this study. It emphasizes the value of continued research with thermal infrared data and necessary downscaling methods.

As is standard practice, our NIR and SWIR datasets were corrected for top of the atmosphere effects. We can justify the lack of correction in three ways. First, we note that converting TIR DN's to TOA is a linear correction process that should not make much difference and which is also undertaken because it is dependent on local meteorological data that are themselves highly uncertain.

<table>
<thead>
<tr>
<th>Glacier regions</th>
<th>Glacier elevation range (m)</th>
<th>Glacier cover for this elevation range (%)</th>
<th>No. of glaciers</th>
<th>Ice cover (km²)</th>
<th>Debris-covered ice extent (km²)</th>
<th>Mean glacier size (km²)</th>
<th>Percentage debris cover (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1- Northeast</td>
<td>3800-7380</td>
<td>18</td>
<td>1499</td>
<td>1397 ± 7</td>
<td>426 ± 25.6</td>
<td>1.21 ± 0.25</td>
<td>22</td>
</tr>
<tr>
<td>R2- North</td>
<td>3500-5500</td>
<td>6.4</td>
<td>686</td>
<td>399 ± 1.5</td>
<td>23 ± 1.4</td>
<td>0.48 ± 0.09</td>
<td>8</td>
</tr>
<tr>
<td>R3- Center-North</td>
<td>4100-6900</td>
<td>5.9</td>
<td>1336</td>
<td>514 ± 2.6</td>
<td>156 ± 9.3</td>
<td>0.58 ± 0.83</td>
<td>21</td>
</tr>
<tr>
<td>R4- Center-West</td>
<td>4000-5200</td>
<td>0.6</td>
<td>107</td>
<td>12 ± 0.06</td>
<td>15 ± 0.9</td>
<td>0.24 ± 0.29</td>
<td>42</td>
</tr>
</tbody>
</table>

As is standard practice, our NIR and SWIR datasets were corrected for top of the atmosphere effects. We can justify the lack of correction in three ways. First, we note that converting TIR DN’s to TOA is a linear correction process that should not make much difference and which is also undertaken because it is dependent on local meteorological data that are themselves highly uncertain.
especially in remote regions (USGS, 2022). Second, using non-atmospheric corrected imagery at high altitudes appears to have minimal influences on mapping (Bishop and others, 2000) and other researchers have obtained better results and transferability using DNs for mapping glaciers (Bhambri and others, 2011; Haireti and others, 2016). Third, we undertook checks by comparing the DN-TOA relationships for different images (Supplementary Material). These showed very little variation in the range of ToA values used for image thresholding, suggesting our index is likely less sensitive to ToA variations and the index thresholds should be transferable. By extending validation to multiple glaciers within Afghanistan and beyond might require ToA correction due to use of images obtained at different times/dates. However, even without ToA correction we did not find a clear pattern of degradation in accuracy statistics (Table 3), and the threshold for identifying debris-covered ice seemed to transfer without further calibration. We nonetheless suggest that this conclusion is checked if this index is applied elsewhere.

Most of the TIR signals suggesting debris-covered ice were associated with igneous rocks (mainly granite and granodiorite)
Table 5. Loadings of each original variables (all dataset) on each principal component with more than 5% contribution to the variance of the original data. Important variables are flagged in bold (correlations >0.7 or <−0.7).

<table>
<thead>
<tr>
<th>Interpretation of the PC</th>
<th>% of original data explained by PC</th>
<th>Loading sign</th>
<th>Sign of association in stepwise regression</th>
<th>Order of addition to stepwise regression (Rank)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catchment area</td>
<td>0.760</td>
<td>0.379</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>Catchment mean slope</td>
<td>−0.021</td>
<td>0.063</td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>Glacier length</td>
<td>0.454</td>
<td>0.639</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>Glacier width</td>
<td>0.335</td>
<td>0.367</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>Debris influence area</td>
<td>0.975</td>
<td>0.145</td>
<td>−</td>
<td>19</td>
</tr>
<tr>
<td>Mean altitude</td>
<td>0.029</td>
<td>0.413</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>Elevation range</td>
<td>0.356</td>
<td>0.900</td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>Glacier slope mean</td>
<td>−0.097</td>
<td>0.158</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>Geodetic hardness grade</td>
<td>−0.045</td>
<td>0.204</td>
<td>+</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: Data in bold typeface are identified with correlations >0.7 or <−0.7. (/) indicates variable is not entered into the stepwise regression.

5.2 The glacier inventory

We identified 3408 glaciers (≥0.01 km²) covering 2,841 ± 51.1 km² in area using datasets for 2016. Maharjan and others (2018) identified 3782 glaciers (≥0.01 km²) with 2539 km² of area for 2015. One year is not enough for these differences to be real and we think that they arise because Maharjan and others (2018) used the normalized difference snow index (NDSI) for glacier mapping and a single slope threshold for mapping debris-covered ice. The larger number of glaciers then relates to the fact that they considered glaciers with size ≥ 0.01 km², and underestimation of glacier area corresponds to the fact that the NDSI could not detect zones of glaciers under shadow as well as ice covered by thicker debris. In addition, the slope threshold of <24°, used by Maharjan and others (2018), may not detect debris cover when the glacier tongue transition to the unglaciated zone is gentle (Paul, 2003; Bolch and Kamp, 2005; Frey and others, 2012).

This study estimated 619 ± 40 km² of debris-covered ice for Afghanistan and a total debris cover as a percentage of glacier area of ~22%. This is higher than for south-west Asia as a whole (Herreid and Pellicciotti, 2020) but it also masks substantial within-region variation (Table 4) of between 8 and 42% debris cover. It also reflects the fact that we consider debris-covered ice and not just debris-covered glacier.

5.3 Controls on debris cover

Assessment of debris-cover development on Afghan glaciers by principal component analysis showed that considering all glaciers in a single analysis masked sensitivity to certain drivers. Dividing the dataset into two classes based on climate zones and geological zones produced more clear findings. Components that represented variables related to glacier length, width and elevation
Table 7. PCA results based on climatic zone classifications

<table>
<thead>
<tr>
<th>Interpretation of the PC showing the sign of the loading on each variable</th>
<th>% of original data explained by PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glacier length (+) and Elevation range (+)</td>
<td>21</td>
<td>−</td>
<td>1</td>
<td>26</td>
<td>−</td>
<td>1</td>
<td>21</td>
<td>−</td>
<td>1</td>
</tr>
<tr>
<td>Catchment size (+)</td>
<td>17</td>
<td>+</td>
<td>5</td>
<td>6</td>
<td>−</td>
<td>2</td>
<td>7</td>
<td>−</td>
<td>3</td>
</tr>
<tr>
<td>Glacier width (+)</td>
<td>6</td>
<td>−</td>
<td>2</td>
<td>6</td>
<td>−</td>
<td>2</td>
<td>7</td>
<td>−</td>
<td>3</td>
</tr>
<tr>
<td>Glacier altitude (+)</td>
<td>10</td>
<td>−</td>
<td>4</td>
<td>/</td>
<td>−</td>
<td>1</td>
<td>5</td>
<td>−</td>
<td>1</td>
</tr>
<tr>
<td>Glacier/catchment slope (+)</td>
<td>16</td>
<td>+</td>
<td>3</td>
<td>15</td>
<td>+</td>
<td>4</td>
<td>20</td>
<td>+</td>
<td>2</td>
</tr>
</tbody>
</table>

CZ 1: Climate zone 1 (Arid, desert, cold).
CZ 2: Climate zone 2 (Arid, steppe, cold).
CZ 3: Climate zone 3 (Cold, dry summer, hot summer).
CZ 4: Climate zone 4 (Cold, dry summer, hot summer, Monsoonal Influence).
CZ 5: Climate zone 5 (Temperate, dry summer, hot summer).
N indicates no PC identified with this interpretation. / indicates not added to the stepwise regression.

Table 8. PCA results based on glacier geological zones

<table>
<thead>
<tr>
<th>Interpretation of the PC</th>
<th>Geo Z1</th>
<th>Geo Z2</th>
<th>Geo Z3</th>
<th>Geo Z4</th>
<th>Geo Z5</th>
<th>Geo Z6</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of original data explained by PC</td>
</tr>
<tr>
<td>Glacier length (+) and Elevation range (+)</td>
<td>18</td>
<td>23</td>
<td>20</td>
<td>26</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>Catchment size (+)</td>
<td>24</td>
<td>+</td>
<td>4</td>
<td>26</td>
<td>+</td>
<td>4</td>
</tr>
<tr>
<td>Width (+)</td>
<td>22</td>
<td>−</td>
<td>1</td>
<td>11</td>
<td>−</td>
<td>2</td>
</tr>
<tr>
<td>Glacier altitude (+)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>15</td>
<td>−</td>
<td>1</td>
</tr>
<tr>
<td>Glacier/catchment slope (+)</td>
<td>20</td>
<td>+</td>
<td>3</td>
<td>20</td>
<td>+</td>
<td>3</td>
</tr>
</tbody>
</table>

Geo Z1: Geological zone 1 (Chemical organic).
Geo Z2: Geological zone 2 (Detrital sedimentary).
Geo Z3: Geological zone 3 (Igneous).
Geo Z4: Geological zone 4 (Igneous and detrital sedimentary).
Geo Z5: Geological zone 5 (Metamorphic).
Geo Z6: Geological zone 6 (Metamorphic and igneous).
N indicates no PC identified with this interpretation. / indicates not added to the stepwise regression.
range were uniformly found to be highly important, with bigger glaciers (in terms of length/width) inevitably having a higher range and less debris-covered ice.

Components associated with glacier mean altitude were only found to be important for certain climate zones, notably zones 2 and 5 (Table 7), for geological zone 4 (Table 8). The importance of altitude no doubt reflects the fact that the lower glaciers are more ablation prone and so more prone to accumulating debris, as others observed (e.g. Fleischer and others, 2021). However, the relative lack of importance of altitude-related as compared with size-related components, and the relatively low correlation of altitude with width \((r = 0.281)\) and length \((r = 0.233)\) emphasizes that altitude is not a primary driver of the extent of debris cover in Afghanistan.

Geology was rarely correlated with significant PCs for the full dataset. However, separating by geological zones resulted in sets of PCs that explained higher proportions of debris cover (Table 8) and clearer and consistent results across zones in terms of the association between components their most correlated variables and debris cover. Few studies have investigated lithological controls on rockfalls and glacier debris cover at regional scales, and data are usually not available for larger areas (Marquinez and others, 2003; Messenel and others, 2017; Fleischer and others, 2021). Geological drivers of differences in debris-cover development on glaciers merit further work.

Globally, the relative percentage of debris cover areas systematically decreases from 14% to 0% as glacier size increases although this pattern is not the same for all the regions (Scherler and others, 2018). We found a similar association, albeit with a higher percentage debris cover variation (between 0 and 80%) (Fig. 6). Huang and others (2021) suggested a latitudinal variation with the regional percentage of debris cover a negative exponential function of distance from the equator, implying that warmer climatic zones are more dynamic and conducive to supraglacial debris production. However, orographic factors such as mountain-range, age, relief and lithology may cause regional-scale exceptions to this relation (Herreid and Pellicciotti, 2020).

Chowdhury and others (2021) observed that a relatively gentle slope with lower elevations in ablation areas could be favorable for the abundant accumulation of supraglacial debris. However, for all climate zones and geological zones (Tables 7 and 8) while it is clear that low slopes encourage debris accumulation, our results suggest that steep slopes may also lead to high debris cover likely because of their impacts on sediment production.

6. Conclusion

Using field observations and manual glacier maps, we developed two new indices to map glaciers and debris-covered ice in Afghanistan with promising results. During the mapping process, we were able to distinguish between different debris-covered ice in terms of their geological formations and thermal characteristics. The result of the mapping was a new glacier inventory for Afghanistan. Our analysis, based on 3408 glaciers, showed that Afghan glaciers are highly debris-covered, at 21.7 ± 1.4% of total glacier area, although this varies regionally; regions with smaller glaciers tend to have higher percentage debris cover. The characteristics of glaciers in Afghanistan, and their debris cover, are dependent on climate and geology. Debris cover is predominately affected by measures of glacier length, width and elevation range; higher values of these measures tend to be associated with glaciers with less debris cover. Catchment size effects are complex and vary by region. The proportion of non glacier area in a catchment appears to an important influence on debris cover development.

Drier climates tend to produce higher debris cover as do glaciers in geological zones with more readily-weathered sediment.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/jog.2023.14.

Acknowledgements. We greatly appreciate and thank Afghanistan government offices that supported this research, special thanks to the Ministry of Energy and Water (MEW) of Afghanistan for facilitating our fieldwork, Ministry of Mines and Petroleum of Afghanistan and Ministry of Agriculture Irrigation and Livestock of Afghanistan for providing us high-resolution spatial datasets. We acknowledge and appreciate Prof. Horst Machguth’s contribution for calculating the glacier length for our dataset with his method. This research was supported by Swiss Government Excellence Scholarship Program, we thank them for their continued support. We finally would like to thank three anonymous reviewers and the Scientific Editor Prof. Joseph Shea for having contributed to the improvement of the manuscript.

References

