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1. Introduction

Let k be a finite field withq elements and of characteristicp. Recall that if Sp
is the symplectic group overk, then a pair of reductive subgroups(H1,H2) of
Sp is a dual pair if they are mutual commutants in Sp. Examples of(H1,H2) are
(Sp2n,Om), (GLn,GLm) and(Un,Um). The Weil representation [Ge] then defines
a correspondence between the irreducible representations ofH1 andH2, called
the Howe duality correspondence. A first study of the Howe correspondence over
finite fields was carried out by Srinivasan [Sr], who determined the decomposition
of (the uniform part of) the Weil representation into Deligne–Lusztig characters of
the dual pairH1 × H2. From her results, one sees that the Howe correspondence
respects the correspondence of geometric conjugacy classes [D-L] with respect to
some natural inclusion of dual groupsi:H∨1 ↪→ H∨2 . In particular, the unipotent
representations correspond. In [AM], it was shown by Adams and Moy that the
cuspidal unipotent representations correspond in the case of first occurrence in
their terminology. Finally, the Howe correspondence was completely determined
by Aubertet al. in their recent paper [A-M-R], except in the case(Sp2n,Om)where
they have a conjecture. We remark that the Howe correspondence over local and
global fields has also been extensively studied.

In this paper, we study an analogue of the Howe correspondence over finite
fields in the exceptional groups. So assume thatG is a split simply-laced simple
linear algebraic group overk, and letF be the corresponding Frobenius. We first
need an analogue of the Weil representation. This is the so-called reflection repres-
entation5 [Lu]. 5 can be characterized in various ways, but for now, it suffices to
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324 WEE TECK GAN

say that5 is a unipotent principal series representation ofGF , and its dimension is
the smallest among all nontrivial irreducible representations ofGF (that is, those
of dimension greater than 1). Hence, it is the analogue of the minimal represent-
ation [MS] in thep-adic case. We recall that the character values of irreducible
representations ofGF on semi-simple elements are known through the work of
Lusztig [Lu2]. However, in Section 3, we shall see that the character values of5

on semi-simple elementss can be interpreted neatly in terms of the motiveM(s),
introduced by Gross [Gr], of the connected centralizerCG(s)

0 of s in G. More
precisely, fors a semi-simple element inGF , we have

PROPOSITION 1.1. Tr(s|5) = Tr(F |M(s)).
We shall consider various dual pairs in exceptional groups. As an example,

consider the case whereG is a split adjoint group of typeE6. There is a dual pair
[MS], PGL3×G2 ⊂ E6, which is interesting because there is a natural inclusion of
dual groupsi:SL3 ↪→ G2. For each irreducible representationπ of PGL3, let2(π)
be the set of irreducible representationsπ ′ ofG2, counted with multiplicities, such
thatπ ⊗ π ′ occurs in5, regarded as a PGL3 × G2-module. Also let2gen(π) ⊂
2(π) be the subset of generic representations. Then we shall determine2gen(π)

for each generic representationπ of PGL3. We first prove

THEOREM 1.2. LetU be the unipotent radical of a Borel subgroup ofG2, and
let ψ be a character ofU in general position. Then5U,ψ is the Gelfand–Graev
representation ofPGL3. In particular,

#2gen(π) =
{

1, if π is generic;
0, otherwise.

Now recall that the generic characters of a connected reductive group with con-
nected center can be parametrized by semi-simple classes in the dual group. For
a semi-simple classs in the dual group, we letχ(s) be the corresponding generic
representation. Then we shall show

THEOREM 1.3.2gen(χ(s)) = {χ(i(s))} for each semi-simple classs in SL3, the
dual group ofPGL3.

A check on the dimensions shows that this already accounts for a large part of
5. For non-cuspidal representations, this theorem is proved by the computation of
Jacquet functors. For cuspidal representations, we resort to the use of base change
or Shintani descent, under a suggestion of T. Uzawa. It is interesting to see if it can
be adapted to thep-adic case.

We also have similar results for the dual pairsG2 × PGSp6 ⊂ E7 andG2 ×
PU3 ⊂ 2E6. The results of this paper are in a natural way complement to those
of Magaard and Savin [MS], who considered the exceptional Howe correspond-
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EXCEPTIONAL HOWE CORRESPONDENCES OVER FINITE FIELDS 325

ence over ap-adic field and showed that the correspondence of tempered spherical
representations respects Langlands functoriality.

2. Weyl Group Invariants and Motive of G

In this section,k is any field,ks a separable closure ofk, and0 = Gal(ks/k).
Let G be a connected quasi-split reductive group overk, of rank l. Let T0 be

a maximal torus ofG overk, which is contained in a Borel subgroup overk. The
Weyl group ofG is W = NG(T0)/T0. Suppose thatW has rankr as a reflection
group, i.e.W can be generated byr simple reflections. LetX•(T0) be the cochar-
acter group ofT0, and letE = X•(T0)⊗Q, aQ-vector space of dimensionl. Then
W acts naturally onE, and as aW -module,E is the direct sum of(l− r) copies of
the trivial representation, and one copy of the natural reflection representationEW
of W .

The group0 also acts naturally as automorphisms onE, and the action of0
normalizes that ofW . Hence the semi-direct productW o 0 acts onE. Moreover,
0 preserves the decomposition

E = EW ⊕ EW. (2.1)

We shall denote the character ofE asχE.
Let S = Sym•(E). ThenW o 0 acts onS, preserving degrees. LetSW be the

ring ofW -invariants. As is well known,SW is a polynomial ring, withl generators:
SW = Q[I1, . . . , Il]. Let di be the degree of the primitive invariantIi. Then the
numbersdi ’s are well-defined and the numbersei = di −1 will be called theexpo-
nents of the reductive groupG. Note that exactlyl − r of theei ’s, sayer+1, . . . , el ,
are zero, ande1, . . . , er are the exponents of the Coxeter groupW .

Note that0 acts onSW . By complexifyingE, we can choose generatorsIi ’s of
SW ⊗ C such that, for a givenσ ∈ 0,

σ (Ii) = εi(Ii). (2.2)

Now we have the following formula, which can be proved in a similar way to
[Ca, p. 363]

LEMMA 2.3.

1

|W |
∑
w∈W

χ(σw)

detE(1− tσw) =
∑

i εi t
ei∏

i (1− εitei+1)
.

Now we briefly recall the notion of the motive ofG from [Gr]. Consider the
graded0-module

J/J2 := V = ⊕dVd, (2.4)
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whereJ is the ideal ofSW generated by the invariants of positive degrees. Note
thatV is generated by the primitive invariants. It is a theorem of Steinberg [St] that

E ∼= V (2.5)

as a0-module.
For a prime numberl not equal to the characteristic ofk, letQl(1) be the Tate

motive (cf. [Gr]) given by the action of0 on thel-power roots of unity inks . Then
the motive ofG is defined to be the Artin–Tate motive

MG = ⊕dVd(1− d) (2.6)

whereVd(1− d) = Vd ⊗Ql(1)⊗(1−d).
As an example, consider the case whenk = Fq is a finite field, and0 = 〈F 〉.

Then (2.5) says that:

Tr(F |E) = Tr(F |V ). (2.7)

Also, if we takeσ = F , then

Tr(F |MG) =
∑
i

εiq
ei , (2.8)

where theei ’s are the exponents of the reductive groupG.

3. The Reflection Representation

Henceforth, unless otherwise stated, we assume thatk = Fq is a finite field, of
characteristicp, so that0 = 〈F 〉. Also, assume thatG is a split, simply-laced,
simple linear algebraic group overFq of rank l. LetF :G→ G be the correspond-
ing Frobenius map, so thatGF = G(Fq). For eachw ∈ W , Tw will denote an
F -stable maximal torus ofG which is obtained fromT0 by twisting withw.

The reflection representation5 of G is the unipotent principal series repres-
entation corresponding to the reflection representationEW of W . It was shown by
Kilmoyer in his thesis that5 is the unique representation ofG satisfying

〈 IndGP 1,5〉 = l − l′, (3.1)

whereP is any parabolic subgroup, andl′ is the semi-simple rank of the Levi factor
of P .

Let χ5 be the character of5. It was shown by Lusztig ([Lu] and [Lu2]) that

χ5 = 1

|W |
∑
w∈W

χE(w)Rw := RχE, (3.2)
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whereRw = RTw,1 is the character of Deligne–Lusztig [D-L]. From this, he de-
duced that ifs ∈ GF is regular semi-simple, so thats is contained in a unique
maximal torusTw0, then

χ5(s) = χE(w0). (3.3)

We shall use (3.2) to obtain a formula, which may be already well known, for
χ5(s), wheres is any semi-simple element.

Let C0(s) denote the connected component of the centralizer ofs in G. The
value ofRw on semisimple elementss is given by [Ca p. 233]

Rw(s) = εTwεC0(s)

|T Fw ||C0(s)F |q
∑
g∈GF

1(g−1sg ∈ T Fw )

= εTwεC0(s)

|C0(s)F |q · |W(Tw)
F | · |1(s,w)|,

where we let

1(s,w) = {T : T ⊂ C0(s)andT isGF -conjugate toTw}. (3.4)

Note thatW(Tw)F ∼= CW(w), the centralizer ofw in W .
Now suppose thatTw0 is a maximally split torus inC0(s). The Weyl group

WC0(s) of C0(s) can be identified with a reflection subgroupW 0(s) of W , so that
the action ofF onWC0(s) is given by the action ofw−1

0 onW 0(s) by conjugation.
Any T ⊂ C0(s) can be obtained fromTw0 by twisting with an element ofW 0(s).
Hence,Rw(s) is nonzero only if the conjugacy classCw of w in W has nonzero
intersection with the cosetw0W

0(s). Moreover, forw1, w2 ∈ W 0(s), w0w1 and
w0w2 are conjugate inW if and only ifw1 andw2 arew0-conjugate inW . Thus we
see that there is a uniquely determinedw0-conjugacy classYCw in W such that

Cw ∩ w0W
0(s) = w0(YCw ∩W 0(s)).

Note thatYCw ∩W 0(s) is then a union ofw0-conjugacy classes ofW 0(s).
Let 2 be the set of conjugacy classes ofW which have nonzero intersection

with w0W
0(s). For each classC in 2, wC will denote an element ofC such that

TwC ⊂ C0(s). Also, for eachC ∈ 2, let θC be the set ofw0-conjugacy classes of
W 0(s) which are contained inYC ∩ W 0(s). For eachJ ∈ θC, wJ will denote an
element ofJ , andCW0(s),w0

(wJ ) will denote thew0-centralizer ofwJ in W 0(s).
Now we have

RχE(s) =
1

|W |
∑
C∈2
|C| · χ(wC) ·

εTwC εC0(s)

|C0(s)F |q · |CW(wC)| · |1(s,wC)|

=
∑
C∈2

χ(wC) ·
εTwC εC0(s)

|C0(s)F |q ·
∑
J∈θC

|C0(s)F |
|NC0(s)(Tw0wJ )

F |


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= |C0(s)F |q ′ ·
∑
J

detE(wJ ) · 1

|CW0(s),w0
(wJ )| ·

χ(w0wJ)

|T Fw0wJ
|

= |C0(s)F |q ′ · 1

|W 0(s)|
∑

w∈W0(s)

detE(w) · χ(w0w)

|T Fw0w
|

= (−1)l detE(w0) · |C0(s)F |q ′ ×

× 1

|W 0(s)|
∑

w∈W0(s)

χ(w0w)

detE(1− qw−1w−1
0 )

.

Now if we denoteE0 = X•(Tw0) ⊗ Q, and letf1, . . . , fl be the exponents of
the reductive groupC0(s), we have

RχE(s) =
∏
(1− εiqfi+1) · 1

|W 0(s)| ·
∑

w∈W0(s)

χE0(Fw)

detE0(1− qFw)
.

By Lemma (2.3), and (2.8), we then get

PROPOSITION 3.5.χ5(s) = RχE(s) = Tr(F |M(s)), whereM(s) is the motive of
the reductive groupC0(s).

EXAMPLES. If s = 1, thenχ5(1) = ∑
qei . If s is regular semi-simple, then

χ5(s) = χ(w0), as shown in [Lu].

Remarks.We can regard the above formula as aq-deformation of (2.7). Indeed,
if we setq = 1 on the right-hand side of the above proposition, we get Tr(F |VC0(s)).
On the other hand, it is ‘reasonable’ to regard the reflection representationEW of
W as a degeneration, asq → 1, of the reflection representation5. Viewing

{semi-simple classes inGF } → {conjugacy classes inW }

(s) 7→ (w0)

as a way of deforming semi-simple classes inGF to classes inW , we see that
the left-hand side of the above Proposition becomes: Tr(w0|E) = Tr(F |E0). So
Proposition (3.5) becomes, on lettingq = 1,Tr(F |E0) = Tr(F |VC0(s)), which is
(2.7) for the reductive groupC0(s).
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4. Generic Representations

We continue to assume thatk = Fq is a finite field. The remainder of this paper
will be devoted to the study of Howe correspondence. Before that, we review some
material about generic representations. In this section,Gwill denote any connected
reductive group overk, which has connected center. Then any Levi subgroup ofG

will also have connected center [Ca, p. 260], andGF has a unique Gelfand–Graev
representation1G. Recall that1G

∼= IndGUψ , whereψ is a character in general
position of a maximal unipotent subgroupU of G. An irreducible representation
of GF is said to be generic if it is a component of1G, and then it occurs with
multiplicity one. Moreover,GF has exactlyql generic characters, wherel is the
rank ofG.

The following is a result of Rodier [Ca, p. 261]

PROPOSITION 4.1. Let P = L · U be anF -stable standard parabolic sub-
group. For any characterχL of LF , denote byχL also its lift to PF . Then,
〈 IndG

F

PF
χL,1G〉 = 〈χL,1L〉.

COROLLARY 4.2. (1)If χL is generic, thenIndG
F

PF
χL has a unique generic sum-

mand.
(2) If χ is a generic character ofGF , then any irreducible component ofχU is

also generic.

We shall denote the unique generic summand in the above corollary byχ̃L
G. By

Corollary (4.2),χL 7→ χ̃L
G defines a map (not injective)

{generic characters ofLF } → {generic characters ofGF }. (4.5)

We can understand this map using the parametrization of Lusztig. From [D-L],
we know that the irreducible characters ofGF can be partitioned into geometric
conjugacy classes, which is in turn parametrized by semi-simple conjugacy classes
inG∗F ∗ , where(G∗, F ∗) is the dual group of(G, F ). In each geometric conjugacy
class, there is a unique generic character. The generic character corresponding to
the class ofs∗ is denotedχ(s∗). For example,χ(1) is the Steinberg representation
of GF .

If L is a Levi factor ofG, then there is a Levi factorL∗ ⊂ G∗ which is in duality
with L. Now if χL is generic with parameters∗ ∈ L∗F ∗ , then the parameter of̃χLG

is just the class ofs∗ in G∗F ∗ .
Note that the generic characters are characterized by the fact that their dimen-

sions have the form

qN + (terms involving lower powers ofq), (4.6)

whereN is the number of positive roots ofG. Hence, the generic characters are
the biggest representations ofGF in that their dimensions grow the fastest asq
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becomes large. Indeed, ifs∗ ∈ G∗F ∗ , andG∗s∗ the centralizer ofs∗ in G∗, then the
dimension ofχ(s∗) is given by

dim(χ(s∗)) = qdim(UG∗
s∗ ) · det(F − 1|M∨G∗(1))

det(F − 1|M∨
G∗
s∗
(1))

, (4.7)

whereUG∗
s∗ is the maximal unipotent subgroup ofG∗s∗, andM∨ is the motive dual

toM.

5. Dual Pairs

Henceforth, we consider the split adjoint groups of typeE6 andE7. In [MS], the
following dual pairs were constructed

G2× PGL3 ⊂ E6, G2× PGSp6 ⊂ E7, (5.1)

and the representation correspondence arising from the restriction of the minimal
representation ofG over a non-Archimedean local field was studied. The analogue
of the minimal representation in the finite field situation is exactly the reflection
representation5. Indeed, the dimension of5 is the smallest among all nontrivial
irreducible representations ofGF (that is, those of dimension greater than 1).
Hence, we shall be interested in the restriction of5 to these pairs. In this section,
we describe the results we expect.

Consider, for example, the pairG2× PGL3. Note that there is a natural inclusion
of dual groups

SL3→ G2. (5.2)

Using the parametrization of generic characters discussed in the previous section,
we see that we have a map

i∗: {generic characters of PGL3} → {generic characters ofG2},
χ(s)PGL3 7→ χ(i(s))G2.

(5.3)

Note that this map is neither surjective nor injective. Indeed it is usually two-to-one;
if χ(s)∗ = χ(s−1) denotes the contragradient character ofχ(s), thenχ(i(s)) =
χ(i(s−1)) = χ(i(s))∗.

Now we guess that

〈χ(i(s))G2 ⊗ χ(s)PGL3,5〉G2×PGL3 = 1, (5.4)

for any generic characterχ(s)PGL3 of PGL3. Notice that PGL3 has q2 generic
characters, and their dimensions, given by (4.7), have the form

q3 + (terms involving lower powers ofq),
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whereas the generic characters ofG2 have dimensions:

q6 + (terms involving lower powers ofq).

So if our guess is correct, then we would have accounted for a subspace of dimen-
sion

q11+ (terms involving lower powers ofq)

of 5, which has dimensionq11+ q8 + q7 + q5 + q4 + q. Hence we would have
accounted for a large piece of5. Indeed, one can check that the dimension of the
space unaccounted has leading term 2q9.

For a generic characterχPGL3, we let

2(χPGL3) = {χG2: 〈5,χPGL3 ⊗ χG2〉 6= 0}. (5.5)

Here, the representationsχG2 are counted with multiplicities. Also, let2gen(χPGL3)

be the subset of generic representations in2(χPGL3). Thus, (5.4) says that

2gen(χ(s)PGL3) = {χ(i(s))G2}. (5.6)

Similarly, in the caseE7, we have a natural inclusion of dual groups

i:G2→ Spin7. (5.7)

Again, we guess that

2gen(χ(s)G2) = {χ(i(s))PGSp6}, (5.8)

for every semi-simple class(s) in G2, where the set2gen(χ(s)G2) is similarly
defined.

Notice thatG2 hasq2 generic characters of dimension(q6 + · · ·), whereas the
generic characters of PGSp6 have dimension(q9+· · ·). Hence, if our guess is true,
we would have accounted for a subspace of dimension(q17+ · · ·) in5, which has
dimensionq17+ q13+ q11+ q9 + q7 + q5 + q.

Remark. The inclusion (5.7) is realized by regardingG2 as the stabilizer of a
nonisotropic vector in the eight-dimensional Spin representation of Spin7. If we
work over an algebraic closurek of k, all such embeddings, which a priori depend
on the choice of the nonisotropic vector, are in fact conjugate in Spin7. This is,
however, not true overk, since the norm〈v, v〉 of the nonisotropic vectorv is an
invariant, with values ink×/k×2, of the conjugacy class of an embedding. Fortu-
nately, for our purposes, this does not matter, since any two semi-simple elements
of Spin7(k) which are conjugate overk are already conjugate overk.
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The remainder of this paper is devoted to proving (5.6) and (5.8). We shall first
show that, in each case,2gen(χ(s)) is a singleton set, by computing Whittaker
vectors. We then proceed to check that it is really what we expect. This is accom-
plished for noncuspidal representations by computing Jacquet functors. The case
of cuspidal generic representations is settled by using base change, or Shintani
descent.

6. Restriction to Maximal Parabolics

Henceforth, we assume thatp > 5, so thatp is a good prime forG = E6 or E7,
and the Killing form is nondegenerate. For the purposes of computing Whittaker
vectors and Jacquet functors, we need to know the restriction of5 to various
maximal parabolic subgroups ofE6 andE7.

In each case, there is a maximal parabolic subgroupP0 = M0 n N0, whose
unipotent radicalN0 is abelian. In the case ofE6, the derived group ofM0 is of
typeD5, andN0 is a Spin representation ofD5 via the adjoint action ofM0. In
the case ofE7, the derived group ofM0 is of typeE6 andN0 is the 27-dimensional
representation ofE6 via adjoint action, and we can identifyN0 with the exceptional
Jordan algebra overk = Fq. Note that this Jordan algebra is split.

SinceN0 is abelian, we can identify its character groupN∨0 with N0, the unipo-
tent radical of the opposite parabolicP 0, as follows. If

〈, 〉:N0× N0→ k (6.1)

is the pairing induced by the Killing form, which is nondegenerate by assumption,
andψ : k→ C∗ is a fixed nontrivial additive character, then

ψx = ψ(〈−, x〉):N0→ C∗ (6.2)

is a character ofN0, and the mapx 7→ ψx gives an identification ofN∨0 with N0.
Note that the minimal nontrivialM0-orbitω in N0 is the orbit of the highest weight
vector.

The following proposition, which describes the restriction of5 to P0, is the
finite field analogue of Theorem (1.1) in [MS].

PROPOSITION 6.3.5 ↓P0
∼= 5N0 ⊕ V where5N0 ∼= 1 ⊕ 5(M0) and as a

N0-moduleV ∼=⊕x∈ωCψx andM0 acts onV by its permutation action onω.

Now consider the Heisenberg maximal parabolicP = M ·N , so-called because
N is a Heisenberg group.P corresponds to the unique vertexα joined to the
negative of the highest root in the extended Dynkin diagram. So forE6, M has
derived group of typeA5, and forE7, it is of typeD6.

Let Z be the one-dimensional center ofN , andZ that ofN . Then the Killing
form induces a nondegenerate pairing

〈 , 〉:N/Z × N/Z→ k. (6.4)
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With the fixed characterψ , we can identify the character group ofN/Z with N/Z
as before. Let� be the minimal nontrivialM-orbit inN/Z.

The following Proposition is the finite field analogue of Theorem (6.1) in [MS].

PROPOSITION 6.5.5Z ∼= 5N ⊕ V where5N ∼= 1⊕ 5(M) and, as aN/Z-
moduleV ∼=⊕x∈�Cψx andM acts onV via its permutation action on�.

7. Whittaker Vectors

In this section, letU be the unipotent radical of a Borel subgroup ofG2 (respect-
ively PGSp6), and letψ be a generic character ofU . We shall compute5U,ψ for
E6 (respectivelyE7). It is a pleasure to thank G. Savin for his suggestion to do this
computation.

The main result of this section is

THEOREM 7.1. (1)If 5 is the reflection representation ofE6, andψ a generic
character ofU , then5U,ψ is the Gelfand–Graev representation ofPGL3.

(2) Similarly, if5 is the reflection representation ofE7, andψ a generic char-
acter ofU , then5U,ψ is the Gelfand–Graev representation ofG2.

Proof. Let us consider the case ofE6 first. LetP2 = L2U2 be the Heisenberg
parabolic ofG2. Write U = U2 o U ′, with U ′ ∼= k. Then we can denoteψ by
ψ = (φ, ϕ), with φ := ψ |U2, andϕ := ψ |U ′ .

Now it was shown in [MS] that there is an embedding of the dual pairG2×PGL3

such thatG2 ∩ P = P2. Thenφ is a degenerate character ofU2 in the smallestL2

orbit. We first compute5U2,φ. By Proposition (6.5), we need to computeVU2,φ . The
same considerations as in [GrS, Prop. 2.8, Sect. VI] show that5U2,φ = C[�φ], as
a representation of PGL3× L2,φ, where�φ is the set of nilpotent 3× 3 matrices,
andL2,φ is the stabilizer ofφ in L2. In particular,U ′ ⊂ L2,φ.

To finish the computation, we need to know the action ofU ′ ∼= k on �φ. If
λ ∈ k andz ∈ �φ , then the action ofλ on z is given byλ: z 7→ z + 2λe × (z× z),
wheree is the identity matrix, andz × z is the adjoint matrix ofz. Hence, we see
thatU ′ fixes eachz of rank less than 2, and acts freely on the rank 2 elements.

Now the action of PGL3 on�φ is by conjugation, and so PGL3 has 3 orbits on
�φ, characterized by rank. SinceU ′ acts trivially on the elements of rank less than
2, we have5U,ψ = C[{z ∈ �φ: rank(z) = 2}]U ′,ϕ.

Let z ∈ �φ be given by

z =


0 1 0

0 0 1

0 0 0

 .
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Then theU ′-orbit of z are elements of the form
0 1 λ

0 0 1

0 0 0


and the stabilizer ofz in PGL3 is

H =




1 b c

0 1 b

0 0 1

 : b, c ∈ k
 .

So as a representation of PGL3× U ′,
C[{z ∈ �φ: rank(z) = 2}] ∼= IndPGL3×k

UPGL3×kC[k],

where the action ofk is by right translation, and the action ofUPGL3, the group of
upper triangular unipotent matrices, factors through the quotient

1 a c

0 1 b

0 0 1

 7→ a − b ∈ k.

Hence, we deduce that

5U,ψ = IndPGL3
UPGL3

C[k]U ′,ϕ = IndPGL3
UPGL3

ϕ0,

whereϕ0 is the character ofUPGL3 given by
1 a c

0 1 b

0 0 1

 7→ ϕ(b − a).

Hence,5U,ψ is indeed the Gelfand–Graev representation of PGL3.
Now we consider the case ofE7. Let P0 be the maximal parabolic ofE7 con-

sidered in the previous section. ThenP0∩PGSp6 = GL3nU0 is the Siegel parabolic
of PGSp6, andU0 can be identified with the set of all 6× 6 matrices of the form(

I3 B

0 I3

)
, Bt = B.
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As before, writeU = U0o U ′, whereU ′ is the unipotent radical of GL3. Also, let
φ := ψ |U0, andϕ := ψ |U ′.

Note that

φ:
(
I B

0 I

)
7→ φ0(B33),

whereφ0 is a nontrivial character ofk.
By Proposition (6.3), we see that5U,ψ = C[ω]U,ψ .
We first computeC[ω]U0,φ . As before, we have5U0,φ = C[ωφ], whereωφ is

the set of allX in ω of the form

X =


0 z −y
−z 0 x

y −x 1

 ,
with x, y, z in the octonion algebra2 satisfying

tr(x) = tr(y) = tr(z) = 0, x2 = y2 = z2 = 0,

xz = yz = 0, xy = −z.
Now we need to consider the action ofU ′ onωφ. Note thatU ′ is a Heisenberg

group of dimension 3. TheU ′-orbit of anX as above consists of all elements ofωφ
of the form

1 z −(y + cz)
0 x + ay + bz

0

 , a, b, c ∈ k.

Now,G2 × U ′ has various orbits inωφ. The generic orbit is the one consisting
of all thoseX’s such that the(x, y, z) of X span a three-dimensional space. Call
this orbitO. ThenU ′ acts freely onO. One checks that onlyC[O] will contribute
to the space of Whittaker vectors, i.e.5U,ψ = C[O]U ′,ϕ. Now as a representation

of G2 × U ′, C[O] = IndG2×U ′
UG2×U ′C[U

′]. The action ofUG2 onC[O] is as follows.
Note thatUG2 is a 4-step nilpotent group

UG2 ⊃ U(1)
G2
⊃ U(2)

G2
⊃ U(3)

G2
⊃ {1}

andUG2/U
(2)
G2
∼= U ′. Hence the action ofUG2 is via the quotient:UG2 → UG2/U

(2)
G2

.

Hence, we see thatC[O]U ′,ϕ ∼= IndG2
UG2
ϕ−1, which is the Gelfand–Graev repres-

entation ofG2. 2
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COROLLARY 7.2. (1)For any generic representationπ of PGL3, 2gen(π) is a
singleton set.

(2) For any generic representationπ ofG2,2gen(π) is a singleton set.

COROLLARY 7.3. (1) If σ is a nongeneric representation ofPGL3, then
2gen(σ ) = ∅.

(2) If σ is a nongeneric representation ofG2, then2gen(σ ) = ∅.

8. Jacquet Functors

By the previous corollaries, it remains to check that the correspondence of the
parameters of generic representations is given by the natural inclusions of dual
groups. For noncuspidal representations, this can be checked by computing Jacquet
functors. Most of what we need have been computed in [MS]; so we begin by
transferring their results to the finite field situation.

Let us denote our two dual pairs byG2×H , and letP0 be the maximal parabolic
introduced in Section 6. Recall that the unipotent radical ofP0 is abelian. Also, we
have

(G2×H) ∩ P0 = G2 ×Q0, (8.1)

whereQ0 = L0 · U0 is a maximal parabolic ofH . In the case ofE6, L0 = GL2,
and forE7,Q0 is the Siegel parabolic of PGSp6, so thatL0 = GL3. We also denote
by P1 = L1 · U1 (respectivelyP2 = L2 · U2) the maximal parabolic ofG2 whose
Levi factorL1 (respectivelyL2) is spanned by the long (respectively short) simple
root.

The following Propositions give the structure of theG2× L0-module5U0, and
are the finite field analogues of Theorem (4.3) and Theorem (5.3) in [MS].

PROPOSITION 8.2.For E6

5U0 ∼= 5N0 ⊕ IndG2×GL2
P2×GL2

C[GL2] ⊕ IndG2×GL2
P1×B C[GL1].

Here,B is the Borel subgroup ofGL2, and the actions ofP1, P2 and B on the
appropriate spaces are via the quotients

P2� L2
∼= GL2,

P1� L1
∼= GL2→ GL1(determinant map),

B � GL1×GL1� GL1(projection onto first factor).

PROPOSITION 8.3.For E7

5U0 ∼= 5N0 ⊕ IndG2×GL3
P2×Q2

C[GL2] ⊕ IndG2×GL3
P1×Q1

C[GL1].
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Here,Q1 = M1 · V1 (respectivelyQ2 = M2 · V2) is the maximal parabolic ofGL3

which stabilizes a line (respectively a plane) ink3, and the actions ofPi andQi on
the appropriate spaces are via the quotients

P2� L2,

P1� L1 −→ GL1(determinant map),

Q2� M2
∼= GL2×GL1 −→ GL2(projection onto first factor),

Q1� M1
∼= GL1×GL2 −→ GL1(projection onto first factor).

Now we consider the Heisenberg parabolicP . It was shown in [MS] that there
is an embedding of the dual pairs such that

(G2×H) ∩ P = P2 ×H, (8.4)

whereP2 is as defined before and is the Heisenberg parabolic ofG2. The following
Proposition gives the structure of theL2 × H -module5U2 and is the finite field
analogue of Theorem (7.6) in [MS].

PROPOSITION 8.5.For E7

5U2 ∼= 5N ⊕ Ind
L2×PGSp6
L2×Q′2 C[GL2] ⊕ Ind

L2×PGSp6
B×Q C[GL1].

Here,Q is the maximal parabolic subgroup ofPGSp6 corresponding to the middle
vertex in the Dynkin diagram, andQ′2 is the minimal parabolic ofPGSp6 which
intersects the Levi factor of the Siegel parabolic inQ2.

For our purposes, we also need to compute the Jacquet functor of5(E7) with
respect to the maximal parabolicP1 = L1U1 of G2. Over ap-adic field, this is
computed in Proposition 6.8 in [SG]. The result over finite fields can be checked
along similar lines, but to state it, we need to introduce some more notations.

Let P ′ be the maximal parabolic ofE7 corresponding to the unique vertexβ
joined toα in the Dynkin diagram. Then

(G2× PGSp6) ∩ P ′ = P1× PGSp6.

Let Q = L · U be the maximal parabolic subgroup of PGSp6 corresponding to
the middle vertex in the Dynkin diagram of typeC3. Hence, its Levi factor isL ∼=
(GL2×GL2)/k

×, with k× embedded via:a 7→ (a, a−1). Let

R0 = {(g1, g2, g3) ∈ L1×GL2×GL2:det(g1g2g3) = 1}.
ThenR0 has a natural Weil representationW which can be realized onC[M2(k)],
whereM2(k) is the space of 2× 2 matrices overk, which we describe below. Let
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{·, ·} be the standard nondegenerate symplectic form onk2, and letV = k2⊗k2⊗k2

with symplectic form

{u1⊗ u2⊗ u3, v1⊗ v2⊗ v3} =
3∏
i=1

{ui, vi}.

ThenR0 → Sp(V ) under the natural action of GL2 on k2. Now, it is well-known
that Sp(V ) has a natural Weil representation [Ge], which can be realized on the
space ofC-valued functions on the maximal isotropic subspaceke1⊗k2⊗k2. Then
the representationW is the pullback of the Weil representation of Sp(V ) to R0. In
particular, the action of SL2 ⊂ L1 is via the usual Weil representation formulas
[Ge], whereas the action of the subgroup

R1 = {(g, h):det(gh) = 1} ⊂ GL2×GL2

is geometric, and we see thatW is actually a representation of the quotient

R = {(g, h) ∈ L1× L:det(gh) = 1}
of R0. Let

W̃ = IndL1×L
R W. (8.6)

Then the following proposition is the finite field analogue of Proposition 6.8 of
[SG].

PROPOSITION 8.7.In the caseE7

5U1 ∼= 5N ′ ⊕ Ind
GL2×PGSp6
B×Q C[GL1] ⊕ Ind

GL2×PGSp6
GL2×Q W̃ .

9. Shintani Descent

The results of the last section will allow us to determine the correspondence for
non-cuspidal representations. Before doing that, we review the results about Shintani
descent that we need for the correspondence of cuspidal representations. We refer
the reader to the article of Digne [D] for a quick introduction.

Let km := Fqm andG(qm) := GFm . There is a norm mapNm:G(qm)→ G(q),

which induces a bijection ofF -conjugacy classes inG(qm) and conjugacy classes
in G(q). Hence, given anyF -class functionψ of G(qm), Shm(ψ) := ψ ◦ N−1

m is a
class function onG(q), and Shm is an isomorphism of the vector space ofF -class
function onG(qm) and the vector space of class functions onG(q). Moreover, it is
an isometry for the natural inner products on the two vector spaces

〈ψ1, ψ2〉G(qm) = 〈Shm(ψ1),Shm(ψ2)〉G(q).
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We will call ψ the base change of Shm(ψ) or equivalently, Shm(ψ) the Shintani
descent ofψ . Note that our Shm is equal to the mapi ◦ ShFqm/Fq in [D].

If χ is (the character of) anF -stable representation ofG(qm), thenχ extends
(nonuniquely) to a representation ofG(qm) o 〈F 〉, denoted̃χ . If χ is irreducible,
then χ̃ is well-determined up to anm-th root of unity. In any case, the function
g 7→ χ̃(Fg) is anF -class function onG(qm), and so we can consider Shm(χ̃(F ·)).
For ease of notation, we shall denote this class function onG(q) simply by Shm(χ̃).

Now, the results we need are summarized in the the following Propositions,
which are special cases of results of Digne–Michel [D] and Digne [D2] respect-
ively.

PROPOSITION 9.1.There is an extensioñ5m of the reflection representation5m

ofG(qm) (for G of typeEn) such thatShm(5̃m) = 5.

Remark.We note that5m is F -stable by the characterization of the reflection
representation in Section 3.

PROPOSITION 9.2. Assume thatp is a good prime forG, and (m, p) = 1.
Let θ be a character ofT (q), whereT is an F -stable maximal torus ofG. Let
R(θ)m := R

G(qm)

T (qm) (θ ◦ Nm), a virtual character. We shall writeR(θ) for R(θ)1.

Then there is an extension ofR(θ)m to a virtual characterR̃(θ)m ofG(qm)o 〈F 〉
such thatShm

(
R̃(θ)m

)
= R(θ).

Remark.In our applications, we shall only need to considerm = 2 or 3. Hence
p > 5 will suffice.

10. The Dual PairG2× PGL3

In this section, we consider the restriction of5 to G2 × PGL3 ⊂ E6. We shall
first show that (5.4) holds for noncuspidal generic characters of PGL3. Suppose
χ(s)PGL3 is a noncuspidal generic character. Then we can assume thats ∈ L∗0 ∼=
GL2, so that

χ(s)PGL3 ↪→ IndPGL3
Q0

χ(s)GL2.

By Frobenius reciprocity,

〈5,χ(i(s))G2 ⊗ IndPGL3
Q0

χ(s)GL2〉 = 〈5U0, χ(i(s))G2 ⊗ χ(s)GL2〉.
This is nonzero, since by Proposition 8.2,χ(i(s))G2⊗χ(s)GL2 occurs in the second
summand of5U0. By Corollaries 7.2 and 7.3, we have

PROPOSITION 10.1.For any noncuspidal generic representationχ(s)PGL3

2gen(χ(s)PGL3) = {χ(i(s))G2}.
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EXAMPLE. Since the Steinberg character has parameter the trivial class 1
2gen(StPGL3) = {StG2}.

Now we have

THEOREM 10.2.For p > 5,2gen(χ(s)PGL3) = {χ(i(s))G2}.
Proof. After Proposition 10.1, it remains to prove this for cuspidal representa-

tions. LetG = PGL3×G2. Note that ifχ(s)PGL3 is cuspidal, thens must be regular
in SL3, the dual group of PGL3. So any cuspidal representation of PGL3 is of the
form RT (θ), whereT (q) = k×3 /k×, andθ is a regular character ofT (q). This has
parameter

s =


a

aq

aq
2

 ∈ SL3(q
3),

with all elements on the diagonal distinct. Nowi(s) ∈ G2 is also regular and is
contained in an elliptic torus. So it corresponds to a cuspidal generic representation
RT ′(θ

′) of G2. Hence, we need to show that〈5,R(θ)⊗ R(θ ′)〉 = 1.
Now, by Propositions 9.1 and 9.2, we can find extensions such that

Sh3(5̃3) = 5, Sh3(R̃(θ)3) = R(θ), Sh3(R̃(θ ′)3) = R(θ ′).
Note that sinceT andT ′ both split overk3, R(θ)3 andR(θ ′)3 are irreducible prin-
cipal series representations of PGL3(q

3) andG2(q
3), respectively, with parameters

s and i(s) in SL3(q
3) andG2(q

3) respectively. Hence, by Proposition 10.1, their
tensor product occurs in53 with multiplicity 1. Let us denoteR(θ)3 ⊗ R(θ ′)3 by
5(θ)3, for simplicity. Note that the extension of53 above induces an extension
of 5(θ)3, but this may or may not be the same as the extension of5(θ)3 chosen
above.

Now, we have

2∑
i=0

1
3〈5̃3(F

i·), 5̃(θ)3(F i·)〉G(q3) = 〈5̃, 5̃(θ)〉G(q3)o〈F 〉

= 0 or 1.

But we know, by Proposition 10.1, that〈5̃3, 5̃(θ)3〉G(q3) = 1. Moreover, since
Shm is an isometry, fori = 1 or 2:

〈5̃3(F
i·), 5̃(θ)3(F i·)〉G(q3) = 〈5,5(θ)〉G(q) ∈ N.

Thus we see that the only possibility is that〈5,5(θ)〉 = 1. This completes the
proof of the theorem. 2
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11. The Dual PairG2× PGSp6

In this section, we consider the dual pairG2×PGSp6 inE7. As before, we have the
set2gen(χG2), and we shall prove (5.8). Before that, we prove a lemma concerning
the Weil representation.

LEMMA 11.1. Let W̃ denote the representationIndGL2×GL2×GL2
R0

W as in (8.6),
with R0 = {(g1, g2, g3):det(g1g2g3) = 1}. Then for any generic representationπ
of GL2 〈W̃ , π ⊗ π ⊗ π〉 = 1.

Proof. First, we claim that to prove the lemma, it suffices to show that as a
representation of GL2×GL2 (the last two copies),

〈W̃ , π ⊗ σ 〉GL2×GL2 =
{

dim(π), if σ = π,
0, if σ 6= π,

whereσ andπ are generic representations of GL2. But this is clear, since we could
use the maximal isotropic subspacek2⊗ ke1⊗ k2, or k2⊗ k2⊗ ke1 to defineW .

Now, one sees that, as a representation of GL2×GL2 (the last two copies)

W̃ ∼= IndGL2×GL2
R1

C[M2(k)]
∼= (IndGL2×GL2

R1
1)⊗ C[M2(k)]

∼= (⊕ψ∈k∨Cψ)⊗ C[M2(k)].
From this, the lemma follows easily. 2

Now we can determine the correspondence for noncuspidal representations

PROPOSITION 11.2.If χ(s)G2 is a noncuspidal generic representation ofG2,
then2gen(χ(s)G2) = {χ(i(s))PGSp6}.

Proof.The argument is essentially the same as in the proof of Proposition 10.1.
For generic representations ofG2 which are induced fromP2, we use Proposi-
tion 8.5. For generic representations induced fromP1, we use Proposition 8.7, and
the previous lemma. 2

Now we have

THEOREM 11.3. If p > 5, then2gen(χ(s)G2) = {χ(i(s))PGSp6}.
Proof. Parts of the proof involve the same sort of considerations as in the pre-

vious sections and so we shall be brief on those parts. Also, after the previous
proposition, it remains to prove this for cuspidal generic representations only.

Now, if the parameters is contained in SL3 ⊂ G2, then since the induced repres-
entation IndPGSp6

Q0
χ(s)PGL3 is always irreducible fors in the elliptic torus of SL3(q),

we have the required result, using Proposition 8.3. Hence we are left with those
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cuspidal generic representations which do not come from PGL3. Again, these have
parameterss which are regular inG∗2 = G2. Moreover,s lies in a unique maximal
torusT ∗w , wherew is either the nontrivial element in the center of the Weyl group,
or the class of elements of order 6. Let us consider the latter case first. Then the
regular parameters looks like a

a−q

aq
2

 ,
with a ∈ k6 = Fq6, andaq

2−q+1 = 1. It is straightforward to check that in Spin7, the
parameteri(s) is still regular. Hence, we haveχ(s) = RT (θ), χ(i(s)) = RT ′(θ ′),
with θ , θ ′ regular characters ofT (q) andT ′(q) respectively.

By going tok2, the torusT ∗w becomes conjugate to the elliptic torus in SL3(q
2).

Thus bothχ(s) andχ(i(s)) lift to cuspidal representations with parameters in the
elliptic torus in SL3(q2), and since we already know the result for representations
associated to such tori, a base change argument as in the proof of Theorem 10.2
gives the result in this case.

Finally, if w is the nontrivial element in the center of the Weyl group ofG2,
then the regular parameters looks like

a

b

c

 ,
with a, b, c ∈ k×2 , aq+1 = bq+1 = cq+1 = 1, andabc = 1. Now, if none ofa, b or c
equals−1, theni(s) is still regular, and by base change tok2, we obtain the required
result. If, say,a = −1, then we find that the centralizer ofi(s) in Spin7 has derived
group SL2. Hence, the geometric conjugacy class of PGSp6 corresponding toi(s)
has 2 elements, denotedχ(i(s)) andπ(s), with π(s) a degenerate representation.
In this case, if(T ′, θ ′) corresponds to the nonsplit torus in SL2, and(T ′′, θ ′′) the
split torus, we have

RT ′(θ
′) = π(s)− χ(i(s)), RT ′′(θ

′′) = π(s)+ χ(i(s)).

Over k2, both T ′ and T ′′ split. Moreover,R(θ ′)2 andR(θ ′′)2 are both equal
to the same (reducible) principal series representation, which has two irreducible
componentsπ ′ andχ ′(i(s)) (the generic component). One sees thatχ ′(i(s)) is the
base change ofχ(i(s)), and hence the same base change argument gives〈5,χ(s)⊗
χ(i(s))〉 = 1, which establishes the theorem. 2
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12. The Outer Form ofE6

We have seen that about half the generic characters ofG2 can be obtained as lifts
from PGL3. These are the generic representations whose parameter lies in SL3,
i.e. is of the formi(s) for somes ∈ SL3. For i(s) ∈ G2 regular, these can be
characterized by their dimensions, which has the form(q3 + 1)dim(χ(s)PGL3) =
(q3+1)Pw(s)(q), wherePw(s) is a polynomial with integer coefficients, and depends
only on the class ofw(s) in the Weyl group. Here,w(s) is such thatG∗s = Tw(s).

In this section, we see that the other generic representations are obtained as lifts
from PU3, the outer form of PGL3, by using the dual pairG2 × PU3 ⊂ 2E6, and
the reflection representation5 of 2E6. Before proceeding, we have to say what we
mean by the reflection representation ofGF := 2E6. As before,5 is a unipotent
principal series representation. The Weyl groupWF ofGF is of typeF4, and so the
irreducible components of IndG

F

BF
1 are parametrized by the irreducible characters

of the Weyl group ofF4 (here,BF is the Borel subgroup ofGF ). In this case,
however,5 does not correspond to the reflection representation of the Weyl group.
Instead it corresponds to a two-dimensional representation which is denotedφ′2,4
in the notation of [C]. Hence, in particular, the space ofBF -fixed vectors in5
has dimension 2. Note, however, that the dimension of5 is q11 − q8 + q7 +
q5− q4+ q, which is the smallest among the irreducible representations ofGF of
dimension greater than 1. Hence it might be more appropriate to call5 the minimal
representation in this case. Now we can state the result

THEOREM 12.1. Assume thatp > 5, as before. Leti:SU3→ G2 be the natural
embedding of dual groups (by regardingSU3 as the Galois group ofFq2 in O, the
octonion algebra). Then2gen(χ(s)) = {χ(i(s))}.

The proof of this is similar to the other dual pairs, and so will be omitted.
Notice that if i(s) ∈ G2 is regular, then the dimension ofχ(i(s)) is given by
(q3− 1)|Pw(s)(−q)|. This concludes our study of the Howe correspondence in the
finite field situation.
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