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1. Introduction

Let k& be a finite field withg elements and of characteristic Recall that if Sp

is the symplectic group ovek, then a pair of reductive subgroupsl,, H,) of

Sp is a dual pair if they are mutual commutants in Sp. Exampléglof H,) are

(Sp,,,, Ow), (GL,, GL,,) and(U,, U,,). The Weil representation [Ge] then defines

a correspondence between the irreducible representatiofts ahd H,, called

the Howe duality correspondence. A first study of the Howe correspondence over
finite fields was carried out by Srinivasan [Sr], who determined the decompaosition
of (the uniform part of) the Weil representation into Deligne—Lusztig characters of
the dual pairH; x H,. From her results, one sees that the Howe correspondence
respects the correspondence of geometric conjugacy classes [D-L] with respect to
some natural inclusion of dual groupsH,” — H,’. In particular, the unipotent
representations correspond. In [AM], it was shown by Adams and Moy that the
cuspidal unipotent representations correspond in the case of first occurrence in
their terminology. Finally, the Howe correspondence was completely determined
by Aubertet al. in their recent paper [A-M-R], except in the caSp,,, 0,,) where

they have a conjecture. We remark that the Howe correspondence over local and
global fields has also been extensively studied.

In this paper, we study an analogue of the Howe correspondence over finite
fields in the exceptional groups. So assume thas a split simply-laced simple
linear algebraic group ove, and letF be the corresponding Frobenius. We first
need an analogue of the Weil representation. This is the so-called reflection repres-
entationIT [Lu]. IT can be characterized in various ways, but for now, it suffices to
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say thatll is a unipotent principal series representatioz6f and its dimension is

the smallest among all nontrivial irreducible representation& of(that is, those

of dimension greater than 1). Hence, it is the analogue of the minimal represent-
ation [MS] in the p-adic case. We recall that the character values of irreducible
representations of;” on semi-simple elements are known through the work of
Lusztig [Lu2]. However, in Section 3, we shall see that the character valuBs of
on semi-simple elemeniscan be interpreted neatly in terms of the motiés),
introduced by Gross [Gr], of the connected centraliggn(s)° of s in G. More
precisely, fors a semi-simple element iG", we have

PROPOSITION 1.1. Ts|IT) = Tr(F|M(s)).

We shall consider various dual pairs in exceptional groups. As an example,
consider the case wheteis a split adjoint group of typ&s. There is a dual pair
[MS], PGLs x G, C Eg, which is interesting because there is a natural inclusion of
dual groups: SLz < G». For each irreducible representatiorof PGLs, let ® ()
be the set of irreducible representatiorioof G,, counted with multiplicities, such
thatm ® 7" occurs inIl, regarded as a PGLx G,-module. Also let®gey(m) C
© () be the subset of generic representations. Then we shall dete@giner)
for each generic representatianof PGLs. We first prove

THEOREM 1.2. Let U be the unipotent radical of a Borel subgroup @§, and
let v+ be a character olU in general position. Thely , is the Gelfand—Graev
representation ofPGLg. In particular,

1, if = isgeneric
#Ogen(m) = { 0, otherwise
Now recall that the generic characters of a connected reductive group with con-
nected center can be parametrized by semi-simple classes in the dual group. For
a semi-simple classin the dual group, we let (s) be the corresponding generic
representation. Then we shall show

THEOREM 1.3.04en(x (s)) = {x(i(s))} for each semi-simple classin SL, the
dual group ofPGLs.

A check on the dimensions shows that this already accounts for a large part of
I1. For non-cuspidal representations, this theorem is proved by the computation of
Jacquet functors. For cuspidal representations, we resort to the use of base change
or Shintani descent, under a suggestion of T. Uzawa. It is interesting to see if it can
be adapted to thg-adic case.

We also have similar results for the dual paifs x PGSg C E; and G, x
PU; C ?Eg. The results of this paper are in a natural way complement to those
of Magaard and Savin [MS], who considered the exceptional Howe correspond-
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ence over -adic field and showed that the correspondence of tempered spherical
representations respects Langlands functoriality.

2. Weyl Group Invariants and Motive of G

In this sectionk is any field,k* a separable closure &f andl” = Gal(k*/ k).

Let G be a connected quasi-split reductive group oveof rank/. Let Ty be
a maximal torus ofG overk, which is contained in a Borel subgroup overThe
Weyl group ofG is W = Ng(Tp)/ To. Suppose thaW has rankr as a reflection
group, i.e.W can be generated bysimple reflections. LeX,(7p) be the cochar-
acter group offp, and letE = X, (Tp) ® Q, aQ-vector space of dimensidnThen
W acts naturally orE, and as &V-module,E is the direct sum ofl — r) copies of
the trivial representation, and one copy of the natural reflection represeniation
of W.

The groupl” also acts naturally as automorphisms Bnand the action of’
normalizes that of¥. Hence the semi-direct produt x I" acts onE. Moreover,
" preserves the decomposition

E=E"®Ey. (2.1)

We shall denote the character Bfas x .

Let S = SynT(E). ThenW x I' acts onS, preserving degrees. L6t be the
ring of W-invariants. As is well knowns" is a polynomial ring, wit generators:
SV = Q[L, ..., I,]. Letd; be the degree of the primitive invariaiit Then the
numbersi;’s are well-defined and the numbers= d; — 1 will be called theexpo-
nents of the reductive group. Note that exactly — r of thee;’s, saye, 1, ..., ¢,
are zero, andy, ..., e, are the exponents of the Coxeter gralip

Note thatl™ acts onS". By complexifying E, we can choose generatdi& of
SY ® C such that, for a givenr € T,

o(l;) = & (). (2.2)
Now we have the following formula, which can be proved in a similar way to
[Ca, p. 363]
LEMMA 2.3.
1 Z x (ow) B Y&t
|W| = detp (1~ tow) LA = etatly

Now we briefly recall the notion of the motive @f from [Gr]. Consider the
gradedl"-module

9/9%:=V =@,V,, (2.4)
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where ¢ is the ideal ofS" generated by the invariants of positive degrees. Note
thatV is generated by the primitive invariants. It is a theorem of Steinberg [St] that

E=V (2.5)

as al'-module.

For a prime numbef not equal to the characteristic bflet Q;(1) be the Tate
motive (cf. [Gr]) given by the action df' on thel-power roots of unity irk*. Then
the motive ofG is defined to be the Artin—Tate motive

Mg =®4Va(l—d) (2.6)

whereV,;(1—d) = V; ® Q;(1)®1-9,
As an example, consider the case whes [, is a finite field, and™ = (F).
Then (2.5) says that:

TH(F|E) = Tr(F|V). (2.7)
Also, if we takec = F, then

TrH(F|Mg) =) &iq°, (2.8)
where theg;’s are the exponents of the reductive grauip

3. The Reflection Representation

Henceforth, unless otherwise stated, we assumekthatlF, is a finite field, of
characteristicp, so thatl’ = (F). Also, assume thaf; is a split, simply-laced,
simple linear algebraic group ovEy, of rank!. Let F: G — G be the correspond-
ing Frobenius map, so tha’ = G(F,). For eachw € W, T, will denote an
F-stable maximal torus aff which is obtained fronTy by twisting withw.

The reflection representatidi of G is the unipotent principal series repres-
entation corresponding to the reflection representafignof W. It was shown by
Kilmoyer in his thesis thall is the unique representation @fsatisfying

(IndS1, 1) =1 -1, (3.1)

whereP is any parabolic subgroup, afids the semi-simple rank of the Levi factor
of P.
Let xn be the character dfi. It was shown by Lusztig ([Lu] and [LuZ2]) that

1
X1 = W Z XE(w)Rw = RXE’ (32)
weW
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whereR,, = Ry, 1 is the character of Deligne—Lusztig [D-L]. From this, he de-
duced that ifs € G’ is regular semi-simple, so thatis contained in a unique
maximal torusT,,,, then

xn(s) = xe(wo). (3.3)

We shall use (3.2) to obtain a formula, which may be already well known, for
xn(s), wheres is any semi-simple element.

Let C%s) denote the connected component of the centralizeriof G. The
value ofR,, on semisimple elemenisis given by [Ca p. 233]

€T, €C0s)
R, = — 1 T
®) = T7F GO Pl Z (g lsg e T))
ETWSCO(S) F
= —5 7 IW(@)"|- A, w)l,
ICOs)F|,
where we let
A(s,w) = {T:T c C°s)andT isG*-conjugate td}, }. (3.4)

Note thatW (7,,)f = Cy (w), the centralizer ofv in W.

Now suppose thaf,, is a maximally split torus inC%(s). The Weyl group
Weo(,) of C%s) can be identified with a reflection subgrot(s) of W, so that
the action ofFF on Wco,, is given by the action ofugl on W°(s) by conjugation.
Any T c C%Gs) can be obtained frori,,, by twisting with an element oWO(s).
Hence,R, (s) is nonzero only if the conjugacy class, of w in W has nonzero
intersection with the cosatoW°(s). Moreover, forwy, wy € WO(s), wow; and
wowy are conjugate i if and only if w; andw, arewg-conjugate inW. Thus we
see that there is a uniquely determinegiconjugacy clas$’c, in W such that

Cy NwoWO(s) = wo(Ye, N WOos)).

Note thatYc, N W9(s) is then a union ofvp-conjugacy classes a¥°(s).

Let ® be the set of conjugacy classesWfwhich have nonzero intersection
with woWO(s). For each clas§ in ©, we will denote an element of such that
Ty C COs). Also, for eachC € 0, let 6. be the set ofwg-conjugacy classes of
WO(s) which are contained itvo N W°(s). For eachJ € 6¢, w, will denote an
element of/, andCyo,, ., (w,) Will denote thewg-centralizer ofw, in WO(s).

Now we have

ETuc ECO%s)

Ry (s) = |W|Z|C| X (we) - |c0< , 1Cw ol 1AG, wo)l

Ce®

ETuc 8CO%) ICO>s)"|
= x(we) - ————
CgC;) CO( )F|l] 29:6 |NC°(S)(TwowJ)F|
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1 ) X (wowy)
|CW0(5),w0(wJ)| |Tuf;w,|

= |C%s)\ Iy - ) dete(w,) -
J

. 0/ \F| . 1 'X(wow)
= 1C°0) Iy - > detz(w) T

weW0(s) Wwow

= (=1 detz (wo) - [C%s)" |, x

1 X (wow)
X|W0(s)| Z detz (1 — qw—lwy?)’

weWO(s)

Now if we denoteEy = X, (T,,) ® Q, and letfy, ..., f; be the exponents of
the reductive groug®(s), we have

R, (s) = 1—gqfith). ) XEo(Fw) .
() H( o )IWO(s)I we%;mdetgo(l—qu)

By Lemma (2.3), and (2.8), we then get

PROPOSITION 3.5x1(s) = Ry, (s) = Tr(F|M(s)), whereM (s) is the motive of
the reductive groug®(s).

EXAMPLES. If s = 1, thenyn(1) = ) ¢“. If s is regular semi-simple, then
xn(s) = x(wp), as shown in [Lu].

Remarks.We can regard the above formula ag-deformation of (2.7). Indeed,
if we setg = 1 on the right-hand side of the above proposition, we getWco,) ).
On the other hand, it is ‘reasonable’ to regard the reflection represengggionf
W as a degeneration, gs— 1, of the reflection representatidn. Viewing

{semi-simple classes @&’} — {conjugacy classes i’}

(s) = (wo)
as a way of deforming semi-simple classesGf to classes inW, we see that
the left-hand side of the above Proposition becomegud[E) = Tr(F|Eg). So

Proposition (3.5) becomes, on lettigg= 1, Tr(F|Eo) = Tr(F|Vco(,), Which is
(2.7) for the reductive groug®(s).
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4. Generic Representations

We continue to assume that= F, is a finite field. The remainder of this paper
will be devoted to the study of Howe correspondence. Before that, we review some
material about generic representations. In this secfionill denote any connected
reductive group ovek, which has connected center. Then any Levi subgroup of

will also have connected center [Ca, p. 260], @d has a unique Gelfand—-Graev
representatiom ;. Recall thatAs = Ind§ v, wheres is a character in general
position of a maximal unipotent subgrodp of G. An irreducible representation

of G' is said to be generic if it is a component af;, and then it occurs with
multiplicity one. Moreover,G* has exactlyy’ generic characters, whetds the

rank ofG.

The following is a result of Rodier [Ca, p. 261]

PROPOSITION 4.1.Let P = L - U be an F-stable standard parabolic sub-
group. For any charactery; of LY, denote byy, also its lift to P¥. Then,

(IndS; xz, Ag) = (xi, AL).

CORdOLLARY 4.2. (DIf x; is generic, thenndgﬁ:XL has a unique generic sum-
mand.

(2) If x is a generic character of;©', then any irreducible component gt is
also generic.

We shall denote the unique generic summand in the above corollgfy‘\By
Corollary (4.2),x. — x.¢ defines a map (not injective)

{generic characters @f } — {generic characters &f'}. (4.5)

We can understand this map using the parametrization of Lusztig. From [D-L],
we know that the irreducible characters@f can be partitioned into geometric
conjugacy classes, which is in turn parametrized by semi-simple conjugacy classes
in G*", where(G*, F*) is the dual group ofG, F). In each geometric conjugacy
class, there is a unique generic character. The generic character corresponding to
the class of* is denotedy (s*). For exampley (1) is the Steinberg representation
of GF.

If L is a Levifactor ofG, then there is a Levi factdi* c G* which is in duality
with L. Now if x; is generic with parameter- € L*F", then the parameter Gf, ©
is just the class af* in G*F".

Note that the generic characters are characterized by the fact that their dimen-
sions have the form

g™ + (terms involving lower powers af), (4.6)

where N is the number of positive roots @f. Hence, the generic characters are
the biggest representations 6f  in that their dimensions grow the fastestas
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becomes large. Indeed,sif G, andG?. the centralizer of* in G*, then the

dimension ofy (s*) is given by

dimUg: ) dettF — M. (1))
det(F — 1|MV** 1)’

dim(x(s*)) = ¢ (4.7)

whereUg-, is the maximal unipotent subgroup 6f., andM" is the motive dual
toM.

5. Dual Pairs

Henceforth, we consider the split adjoint groups of tyfeand E-. In [MS], the
following dual pairs were constructed

G, x PGl C Eg, Gy x PGSB C E7, (51)

and the representation correspondence arising from the restriction of the minimal
representation off over a non-Archimedean local field was studied. The analogue
of the minimal representation in the finite field situation is exactly the reflection
representatio]. Indeed, the dimension at is the smallest among all nontrivial
irreducible representations @’ (that is, those of dimension greater than 1).
Hence, we shall be interested in the restrictiolofo these pairs. In this section,
we describe the results we expect.

Consider, for example, the pdif, x PGLs. Note that there is a natural inclusion
of dual groups

SLs — Go. (5.2)

Using the parametrization of generic characters discussed in the previous section,
we see that we have a map

i,: {generic characters of PGL— {generic characters df,}, 5.3)
X($)pcLs — X ()a,. '

Note that this map is neither surjective nor injective. Indeed it is usually two-to-one;
if x(s)* = x(s~!) denotes the contragradient character @f), then x (i(s)) =
x((s™h) = x @ ())*.

Now we guess that

(x(@(s))G, ® x($)peLs, Mg,x P = 1, (5.4)

for any generic charactey (s)pc, Of PGLs. Notice that PGk has g2 generic
characters, and their dimensions, given by (4.7), have the form

q° + (terms involving lower powers af),
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whereas the generic charactergifhave dimensions:
¢® + (terms involving lower powers of).

So if our guess is correct, then we would have accounted for a subspace of dimen-
sion

g™ + (terms involving lower powers af)

of I, which has dimensiog! + ¢ + ¢” + ¢° + ¢* + ¢. Hence we would have
accounted for a large piece bOf. Indeed, one can check that the dimension of the
space unaccounted has leading tegh. 2

For a generic charactetpg ., we let

O (xpeLs) = {X6,: (I, XPeLs ® Xx6,) # 0}. (5.5)

Here, the representations;, are counted with multiplicities. Also, l&gen(xpcLs)
be the subset of generic representation® {fpci,). Thus, (5.4) says that

Ogen(Xx ($)peLy) = {X (I (5))G,}- (5.6)
Similarly, in the cas& 7, we have a natural inclusion of dual groups
i:Gy — Spin,. (5.7)
Again, we guess that

®gen(X(S)G2) = {X(i(s))PGS@}, (5.8)

for every semi-simple clas&) in G,, where the seBgen(x (s)g,) is similarly
defined.

Notice thatG, hasg? generic characters of dimensigp® + - - -), whereas the
generic characters of PG@ipave dimensiorng® + - - -). Hence, if our guess is true,
we would have accounted for a subspace of dimengjéh+ - - ) in I, which has
dimensiong” + ¢33 + ¢+ ¢° +¢" + g5+ q.

Remark. The inclusion (5.7) is realized by regardidg as the stabilizer of a
nonisotropic vector in the eight-dimensional Spin representation of; Sipiwe
work over an algebraic closukeof k, all such embeddings, which a priori depend
on the choice of the nonisotropic vector, are in fact conjugate in;Spinis is,
however, not true ovek, since the norm{v, v) of the nonisotropic vector is an
invariant, with values irk* /k*?, of the conjugacy class of an embedding. Fortu-
nately, for our purposes, this does not matter, since any two semi-simple elements
of Spiny(k) which are conjugate ovérare already conjugate ovir
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The remainder of this paper is devoted to proving (5.6) and (5.8). We shall first
show that, in each cas€)qen(x (s)) is a singleton set, by computing Whittaker
vectors. We then proceed to check that it is really what we expect. This is accom-
plished for noncuspidal representations by computing Jacquet functors. The case
of cuspidal generic representations is settled by using base change, or Shintani
descent.

6. Restriction to Maximal Parabolics

Henceforth, we assume that> 5, so thatp is a good prime folG = Eg or E7,
and the Killing form is nondegenerate. For the purposes of computing Whittaker
vectors and Jacquet functors, we need to know the restrictioll & various
maximal parabolic subgroups &% and E-.

In each case, there is a maximal parabolic subgrBgip= My x Np, whose
unipotent radicalVy is abelian. In the case dfg, the derived group oM, is of
type Ds, and Ny is a Spin representation dds via the adjoint action of\fp. In
the case o, the derived group o1y is of type Eg and Ny is the 27-dimensional
representation afg via adjoint action, and we can identify, with the exceptional
Jordan algebra ovér= F,. Note that this Jordan algebra is split.

SinceN, is abelian, we can identify its character graMg with N, the unipo-
tent radical of the opposite parabolR, as follows. If

(,):No x No— k (6.1)

is the pairing induced by the Killing form, which is nondegenerate by assumption,
andy: k — C* is a fixed nontrivial additive character, then

Y = ¥ ((—,x)): No > C* (6.2)

is a character o, and the map — v, gives an identification oV, with No.
Note that the minimal nontrivialZo-orbit w in N is the orbit of the highest weight
vector.

The following proposition, which describes the restrictionIbfto Py, is the
finite field analogue of Theorem (1.1) in [MS].

PROPOSITION 6.3.11 | p,= " @ V wherelT" = 1 @ I(Mp) and as a
No-moduleV = @, _, Cy, and My acts onV by its permutation action on.

Now consider the Heisenberg maximal parabdlie= M - N, so-called because
N is a Heisenberg groupP corresponds to the unique vertexjoined to the
negative of the highest root in the extended Dynkin diagram. S&§omM has
derived group of typels, and forE, it is of type Ds.

Let Z be the one-dimensional center §f and Z that of N. Then the Killing
form induces a nondegenerate pairing

(,):N/ZxNJZ — k. (6.4)
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With the fixed charactey, we can identify the character group 8 Z with N/Z
as before. Lef2 be the minimal nontrivial/-orbit in N/ Z.
The following Proposition is the finite field analogue of Theorem (6.1) in [MS].

PROPOSITION 6.5.11¢7 = Y @ V wherell" = 1® I1(M) and, as aN/Z-
moduleV = @, ., Cy, and M acts onV via its permutation action og.

7. Whittaker Vectors

In this section, le/ be the unipotent radical of a Borel subgroup®f (respect-
ively PGSp), and lety be a generic character 6f. We shall computdly , for
Eg (respectivelyEy). It is a pleasure to thank G. Savin for his suggestion to do this
computation.

The main result of this section is

THEOREM 7.1. (L)If IT is the reflection representation @, andy a generic
character ofU, thenIly , is the Gelfand—Graev representationRGLs.

(2) Similarly, if IT is the reflection representation &k, andys a generic char-
acter ofU, thenIly , is the Gelfand—Graev representation(@j.

Proof. Let us consider the case & first. Let P, = L,U, be the Heisenberg
parabolic ofG,. Write U = U, x U’, with U’ = k. Then we can denot¢ by
¥ = (¢, ¢), With ¢ := Y|y, ande := Y[y

Now it was shown in [MS] that there is an embedding of the dual@aix PGLg
such thatG, N P = P,. Theng is a degenerate character@f in the smallest.,
orbit. We first computél, ,. By Proposition (6.5), we need to compwg, 4. The
same considerations as in [GrS, Prop. 2.8, Sect. VI] showlihat, = C[€2,], as
a representation of PGLx L, ,, whereQ, is the set of nilpotent % 3 matrices,
andL;, 4 is the stabilizer ofp in L. In particular,U" C Ly 4.

To finish the computation, we need to know the actior/of= k on Q. If
A € k andz € 4, then the action of onz is given byi: z — z + 2ke X (z X 2),
wheree is the identity matrix, and x z is the adjoint matrix ot. Hence, we see
that U’ fixes eaclhy of rank less than 2, and acts freely on the rank 2 elements.

Now the action of PG§.on 2, is by conjugation, and so PGlhas 3 orbits on
Q,, characterized by rank. Sin€& acts trivially on the elements of rank less than
2, we havely y = Cl[{z € Qg:rank(z) = 2}]y,q.

Letz € Q4 be given by

0O 1 O
z=10 0 1
0O 0 O
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Then thelU’-orbit of z are elements of the form

0 1 A
0 0 1
0O 0 O

and the stabilizer of in PGL;s is

b ¢
H = O 1 b |:bcek
0 1

So as a representation of Pgk U’,

Cl{z € Q4:rank(z) = 2}] = IndiS=" Cl],

Upgig Xk

where the action of is by right translation, and the action kg, the group of
upper triangular unipotent matrices, factors through the quotient

1 a c
0 1 b l—~a—-beck
0O O 1

Hence, we deduce that

PGL; PGL;
HU,I// = IndUPGi C[k]U/ 0 = |I’1dUPGf @0,

wheregy is the character o/pg, given by

1 a c
0 1 b |+ eb—a).
0O O 1

Hence I, , is indeed the Gelfand—Graev representation of RGL

Now we consider the case @f. Let Py be the maximal parabolic df; con-
sidered in the previous section. ThBsNPGSR = GL3x Uy is the Siegel parabolic
of PGSp, andUj can be identified with the set of all%6 6 matrices of the form

Is; B
, B'=B.
0 I
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As before, writelU = U x U’, whereU’ is the unipotent radical of Gl Also, let

¢ = 110|U0! and(p = 110|U/'
Note that

1 B
¢: (O / ) > ¢o(B33),

wheregg is a nontrivial character df.

By Proposition (6.3), we see thhlty , = Clw]y,y .

We first computeClw]y, 4. As before, we havély, , = Clwg], Wherew, is
the set of allX in w of the form

0 Z —y
X == —Z O X ’
y —X 1

with x, y, z in the octonion algebr&® satisfying
tr(x) =tr(y) =tr(z) =0, x*=)?=27*=0,
xz=yz=0, xy=-—z.

Now we need to consider the action©@f on w,. Note thatU’ is a Heisenberg
group of dimension 3. Th&'-orbit of anX as above consists of all elements.gf
of the form

1 z —(y+c2)
O x+ay+bz |, a,b,cek.
0
Now, G, x U’ has various orbits img. The generic orbit is the one consisting
of all thoseX's such that the€x, y, z) of X span a three-dimensional space. Call

this orbit@. ThenU’ acts freely on9. One checks that on§Z[@] will contribute
to the space of Whittaker vectors, ilgy , = C[O]y,. Now as a representation

of G, x U’, C[O] = Indggw/ C[U’]. The action ofUs, on C[O@] is as follows.

xU’
Note thatUyg, is a 4-step nizlpotent group

1 2 3
Us, DUL UL >U > (1

andUg,/U$) = U’. Hence the action dfis, is via the quotientUs, — Ug,/US.

G2
Hence, we see th&[O]y,, = Indgézw‘l, which is the Gelfand—Graev repres-
entation ofGo. O
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COROLLARY 7.2. (1)For any generic representatiom of PGLs, Ogen(77) is a
singleton set.
(2) For any generic representation of G, ®gen(r) is a singleton set.

COROLLARY 7.3. (1) If o is a nongeneric representation &GLs, then
®gen(ff) =0.
(2) If o is a nongeneric representation 6%, then®ge(o) = .

8. Jacquet Functors

By the previous corollaries, it remains to check that the correspondence of the
parameters of generic representations is given by the natural inclusions of dual
groups. For noncuspidal representations, this can be checked by computing Jacquet
functors. Most of what we need have been computed in [MS]; so we begin by
transferring their results to the finite field situation.

Let us denote our two dual pairs 6§ x H, and letPy be the maximal parabolic
introduced in Section 6. Recall that the unipotent radicatgf abelian. Also, we
have

(Gz X H) N Po = G2 X Qo, (81)

where Qg = Lg - Up is a maximal parabolic off. In the case ofg, Lo = GL,,
and forE7, Qg is the Siegel parabolic of PGgso thatL, = GL3. We also denote
by P, = L, - U; (respectivelyP, = L, - U,) the maximal parabolic of;, whose
Levi factor L, (respectivelyL,) is spanned by the long (respectively short) simple
root.

The following Propositions give the structure of e x Lo-modulelT%, and
are the finite field analogues of Theorem (4.3) and Theorem (5.3) in [MS].

PROPOSITION 8.2For Eg
nY = ' @ Indj2 G 2CIGL,l & Ind2 S 2CIGLy].

P1><B

Here, B is the Borel subgroup oEL,, and the actions ofP;, P, and B on the
appropriate spaces are via the quotients

Py - L, = GLy,

P, — L1 = GL, — GLy(determinant map

B — GL; x GL; — GL,(projection onto first factor
PROPOSITION 8.3.For E;

% = 1'% @ Indy25 *CIGLy] @ IndyZ: 5 P CIGLy].
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Here, 01 = M, - Vy (respectivelyQ, = M, - V,) is the maximal parabolic oBL3
which stabilizes a line (respectively a plane)it) and the actions oP;, and Q, on
the appropriate spaces are via the quotients

Py — L,

P, — L; —> GLi(determinant map

0, » M, = GL, x GL; —> GLy(projection onto first factor
01— M1 = GL; x GL, — GLy(projection onto first factor

Now we consider the Heisenberg parabdticlt was shown in [MS] that there
is an embedding of the dual pairs such that

(GzXH)ﬂP:szH, (84)

whereP;, is as defined before and is the Heisenberg parabolig,of he following
Proposition gives the structure of tie x H-moduleIT2 and is the finite field
analogue of Theorem (7.6) in [MS].

PROPOSITION 8.5For E7

LyxPGSp
Lax Q)

C[GL,] @ Ind;%5 ° *CIGLy].

n2z=nmn"q Ind
Here, Q is the maximal parabolic subgroup BfGSR corresponding to the middle
vertex in the Dynkin diagram, an@’, is the minimal parabolic oPGSpg which
intersects the Levi factor of the Siegel paraboliads.

For our purposes, we also need to compute the Jacquet funcibtayh with
respect to the maximal parabol®; = L,U; of G,. Over ap-adic field, this is
computed in Proposition 6.8 in [SG]. The result over finite fields can be checked
along similar lines, but to state it, we need to introduce some more notations.

Let P’ be the maximal parabolic af; corresponding to the unique vertgx
joined tow in the Dynkin diagram. Then

(G2 x PGSR) N P' = P, x PGSR,

Let 0 = L - U be the maximal parabolic subgroup of PG$prresponding to
the middle vertex in the Dynkin diagram of tyg&. Hence, its Levi factor id. =
(GLy x GLy)/k*, with k* embedded viaz — (a,a™'). Let

Ro = {(g1, 82, 83) € L1 x GLy x GLy: det(g182¢3) = 1}.

ThenRg has a natural Weil representati® which can be realized 06[M,(k)],
whereM;(k) is the space of % 2 matrices ovek, which we describe below. Let
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{-, -} be the standard nondegenerate symplectic foritpand letV = k?Q@k?>®k?
with symplectic form

3
{1 @uay @ uz, v1 @ V2 Q@ vz} = 1_[{141', v; ).
i=1

ThenRy — Sp(V) under the natural action of Glon k2. Now, it is well-known

that Sp{’) has a natural Weil representation [Ge], which can be realized on the
space ofC-valued functions on the maximal isotropic subspageR k2 ® k2. Then

the representatioi is the pullback of the Weil representation of 8po Ro. In
particular, the action of SL.c L, is via the usual Weil representation formulas
[Ge], whereas the action of the subgroup

R1={(g, h):det(gh) = 1} C GL, x GL,
is geometric, and we see thit is actually a representation of the quotient
R ={(g,h) € Ly x L:det(gh) = 1}
of Rp. Let
W = Indi>*"w. (8.6)
Then the following proposition is the finite field analogue of Proposition 6.8 of

[SG].

PROPOSITION 8.7.In the caset;

0 = 1V @ 192 "B C(GLy) © Ind3Lz TR 7.

9. Shintani Descent

The results of the last section will allow us to determine the correspondence for
non-cuspidal representations. Before doing that, we review the results about Shintani
descent that we need for the correspondence of cuspidal representations. We refer
the reader to the article of Digne [D] for a quick introduction.

Letk,, := F,» andG(¢g™) := GI". There is a norm map,,.: G(¢™) — G(q),
which induces a bijection af-conjugacy classes i@ (¢™) and conjugacy classes
in G(¢q). Hence, given any-class functiony of G(¢™), Sh,(¥) := ¥ oN,lisa
class function orG(g), and Sh, is an isomorphism of the vector spacefotlass
function onG (¢™) and the vector space of class functions(b@). Moreover, it is
an isometry for the natural inner products on the two vector spaces

(Y1, ¥2)Ggm = (S (Y1), Sh, (¥2)) 6(g)-
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We will call 4 the base change of gty) or equivalently, Sh(y) the Shintani
descent of). Note that our Shis equal to the mapo Sthm/Fq in [D].

If x is (the character of) ai'-stable representation @f(¢™), theny extends
(nonuniquely) to a representation 6{g™) x (F), denotedy. If x is irreducible,
then ¥ is well-determined up to am-th root of unity. In any case, the function
g — X (Fg)is anF-class function o1 (¢™), and so we can consider St (F-)).

For ease of notation, we shall denote this class functio@i @) simply by Sh, (X).

Now, the results we need are summarized in the the following Propositions,
which are special cases of results of Digne—Michel [D] and Digne [D2] respect-
ively.

PROPOSITION 9.1 There is an extensiol:ﬁzﬂ of the reflection representatid,,
of G(¢"™) (for G of typeE,) such thatSh, (I1,,) = IT.

Remark.We note thafll,, is F-stable by the characterization of the reflection
representation in Section 3.

PROPOSITION 9.2. Assume thap is a good prime forG, and (m, p) = 1
Let 6 be a character off (g), whereT is an F-stable maximal torus of;. Let

R@)w = R7%) (0 o N,), a virtual character. We shall writ&k (¢) for R(6)1.

Then there is an extension B{9),, to a virtual characterr(6),, of G(g™) x (F)
such thatSh, <R(9)m> — R(0).

RemarkIn our applications, we shall only need to consiget= 2 or 3. Hence
p = 5 will suffice.

10. The Dual PairG, x PGL3

In this section, we consider the restriction Idfto G, x PGl C Eg. We shall
first show that (5.4) holds for noncuspidal generic characters of;PSlippose
x (8)paL, IS @ noncuspidal generic character. Then we can assume thdt; =

GL,, so that

PGL.
X ($)pats <> Indy, " x (s)aL,-

By Frobenius reciprocity,

(I, X (i())G, ® INdoe 2 x ()oL,) = (T, x (i())6, ® X (9)oLy)-

This is nonzero, since by Proposition 82i (s))s, ® x (s)eL, 0ccurs in the second
summand of1%. By Corollaries 7.2 and 7.3, we have

PROPOSITION 10.1For any noncuspidal generic representatigns)pci,
Ogen(X ($)peLy) = {X (((5))G,}-
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EXAMPLE. Since the Steinberg character has parameter the trivial class 1
®gen(StPGL3) = {Ssz}.

Now we have

THEOREM 10.2.For p > 5, Ogen(x (s)pcLs) = {x (i(5)),)-

Proof. After Proposition 10.1, it remains to prove this for cuspidal representa-
tions. LetG = PGLs x G». Note that ify (s)pcL, iS cuspidal, thes must be regular
in SLs, the dual group of PGL. So any cuspidal representation of P34 of the
form Rr(0), whereT (¢) = k3 /k*, andé is a regular character df(q). This has
parameter

s = a‘ e Sks(¢®),
aq

with all elements on the diagonal distinct. N@¢) € G5 is also regular and is
contained in an elliptic torus. So it corresponds to a cuspidal generic representation
R7/(8") of G,. Hence, we need to show thdl, R(0) ® R(6")) = 1.

Now, by Propositions 9.1 and 9.2, we can find extensions such that

Shy(Ts) =1, Sh(R(@)s) = RO).  Sh(R(E')3) = R(®).

Note that sincg” andT’ both split overks, R(6)s andR(8')3 are irreducible prin-
cipal series representations of P{&4>) andG2(¢3), respectively, with parameters
s andi(s) in SLs(¢®) andG,(¢®) respectively. Hence, by Proposition 10.1, their
tensor product occurs ifi3 with multiplicity 1. Let us denoteR (0)3 ® R(6")3 by
I1(6)3, for simplicity. Note that the extension @3 above induces an extension
of T1(9)3, but this may or may not be the same as the extensidi(6§; chosen
above.
Now, we have
2 —_ — —_~—
%(H3(Fl'), (O)3(F' ) g3 = (L T1O)) 63 x (F)
i=0

= Oorl

But we know, by Proposition 10.1, thafTs, ﬁ?@)/g)c(qs) = 1. Moreover, since
Sh, is an isometry, fo¥ = 1 or 2:

(Ta(Fi-), THO)a(F')) g3 = (L, THO)g () € N.

Thus we see that the only possibility is th@t, I1(6)) = 1. This completes the
proof of the theorem. O
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11. The Dual PairG; x PGSp;

In this section, we consider the dual pé&is x PGSp in E;. As before, we have the
set®gen(Xc,), and we shall prove (5.8). Before that, we prove a lemma concerning
the Weil representation.

LEMMA 11.1. Let W denote the representatiomdi; 2*®2*®2W as in (8.6),
with Rg = {(g1, g2, £3): det(g1g2g3) = 1}. Then for any generic representatian
of GL, (W, 7 @ n @) = 1.
Proof. First, we claim that to prove the lemma, it suffices to show that as a
representation of GLx GL (the last two copies),

dim(z), ifo=m,

(W, 7 ®0) = .
CloxGlo 0, ifo #m,

whereo andr are generic representations of £But this is clear, since we could
use the maximal isotropic subspdceR ke; ® k?, ork? ® k? ® ke, to defineWw.
Now, one sees that, as a representation of &IGL, (the last two copies)

W = IndR*CR2CIM, (k)]
= (Indf,2*®"21) ® C[Ma(k)]
= @y CY) ® CIMa(K)].

From this, the lemma follows easily. O
Now we can determine the correspondence for noncuspidal representations

PROPOSITION 11.2.1f x(s)¢, is @ noncuspidal generic representation @,
then@gen(X(S)Gg) = {X(i(s))PGS@}-

Proof. The argument is essentially the same as in the proof of Proposition 10.1.
For generic representations 6f, which are induced fromP,, we use Proposi-
tion 8.5. For generic representations induced fiBiywe use Proposition 8.7, and
the previous lemma. O

Now we have

THEOREM 11.3.1f p > 5, then®gen(x (s)6,) = {x (i(s))pasp}-

Proof. Parts of the proof involve the same sort of considerations as in the pre-
vious sections and so we shall be brief on those parts. Also, after the previous
proposition, it remains to prove this for cuspidal generic representations only.

Now, if the parameter is contained in Sk. C G5, then since the induced repres-
entation In@fS“X (8)pcLs IS always irreducible fos in the elliptic torus of Sk(g),
we have the required result, using Proposition 8.3. Hence we are left with those
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cuspidal generic representations which do not come fromzP&gain, these have
parameters which are regular irG5 = G,. Moreover,s lies in a unique maximal
torus7,’, wherew is either the nontrivial element in the center of the Weyl group,

or the class of elements of order 6. Let us consider the latter case first. Then the
regular parameter looks like

witha € kg = s, anda?’-1+1 = 1. Itis straightforward to check that in Spirthe
parametei (s) is still regular. Hence, we have(s) = R7(0), x(i(s)) = Rr(6'),
with 6, 6’ regular characters df(¢) andT’(g) respectively.

By going tok,, the torusT* becomes conjugate to the elliptic torus ins&4?).
Thus bothy (s) and x (i (s)) lift to cuspidal representations with parameters in the
elliptic torus in Slz(¢?), and since we already know the result for representations
associated to such tori, a base change argument as in the proof of Theorem 10.2
gives the result in this case.

Finally, if w is the nontrivial element in the center of the Weyl groupGy,
then the regular parametetooks like

with a, b, ¢ € k', a?*t = p971 = ¢9*! = 1, andabc = 1. Now, if none ofa, b orc
equals—1, theni (s) is still regular, and by base changetowe obtain the required
result. If, saya = —1, then we find that the centralizer ) in Spin; has derived
group SbL. Hence, the geometric conjugacy class of PE&presponding ta(s)
has 2 elements, denotedi(s)) andx (s), with 7 (s) a degenerate representation.
In this case, if(T’, 8’) corresponds to the nonsplit torus in Sland (7”7, 6”) the
split torus, we have

Rp/(0") =7 (s) — x(i(s)), Ry (8") = 7 (s) + x (i(s)).
Over k,, both T and T” split. Moreover,R(0"), and R(0"), are both equal
to the same (reducible) principal series representation, which has two irreducible
componentst’ andy’(i(s)) (the generic component). One sees thdt(s)) is the

base change ¢f(i (s)), and hence the same base change argument({@ives(s)®
x (i (s))) = 1, which establishes the theorem. a
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12. The Outer Form of Eg

We have seen that about half the generic characte¢s afan be obtained as lifts
from PGLs. These are the generic representations whose parameter lieg,in SL
i.e. is of the formi(s) for somes € SlLs. Fori(s) € G, regular, these can be
characterized by their dimensions, which has the fagf+ 1) dim(x (s)peLs) =
(¢3+1) P,y (q), whereP,, is a polynomial with integer coefficients, and depends
only on the class ofu(s) in the Weyl group. Herey (s) is such thatG = T,().

In this section, we see that the other generic representations are obtained as lifts
from PU;, the outer form of PG, by using the dual pai6, x PUs C 2Eg, and
the reflection representatidi of > E¢. Before proceeding, we have to say what we
mean by the reflection representation®f := ?Eg. As before,IT is a unipotent
principal series representation. The Weyl group of G is of type F4, and so the
irreducible components of I@dl are parametrized by the irreducible characters
of the Weyl group ofF, (here, B is the Borel subgroup o). In this case,
however,IT does not correspond to the reflection representation of the Weyl group.
Instead it corresponds to a two-dimensional representation which is depipted
in the notation of [C]. Hence, in particular, the spaceBdf-fixed vectors inIl
has dimension 2. Note, however, that the dimensiodlos ¢! — ¢® + ¢7 +
q° — ¢* + g, which is the smallest among the irreducible representatiods” af
dimension greater than 1. Hence it might be more appropriate tdldht minimal
representation in this case. Now we can state the result

THEOREM 12.1. Assume thap > 5, as before. Let: SU; — G, be the natural
embedding of dual groups (by regardisg/z as the Galois group af 2 in O, the
octonion algebra). The®gen(x (s)) = {x (i (s))}.

The proof of this is similar to the other dual pairs, and so will be omitted.
Notice that ifi(s) € G, is regular, then the dimension gf(i(s)) is given by
(g% — 1| Py (—q)]. This concludes our study of the Howe correspondence in the
finite field situation.
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