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Abstract. We find the lower bound for the norm of the Hilbert matrix operator
H on the weighted Bergman space Ap,α

‖H‖Ap,α→Ap,α ≥ π

sin (α+2)π
p

, for 1 < α + 2 < p.

We show that if 4 ≤ 2(α + 2) ≤ p, then ‖H‖Ap,α→Ap,α = π

sin (α+2)π
p

, while if 2 ≤ α + 2 <

p < 2(α + 2), upper bound for the norm ‖H‖Ap,α→Ap,α , better then known, is obtained.

2010 Mathematics Subject Classification. 47B35, 30H20.

1. Introduction.

1.1. Hardy and Bergman spaces. Let H(�) be the space of all functions
holomorphic in the unit disc � = {z ∈ � : |z| < 1}.

For 0 < p ≤ ∞, the Hardy space Hp is the space of all functions f ∈ H(�) for
which

‖f ‖Hp := ‖f ‖p = sup
0≤r<1

Mp(r, f ) < ∞,

where

Mp(r, f ) =
(

1
2π

∫ 2π

0
|f (reit)|pdt

) 1
p

, 0 < p < ∞;

M∞(r, f ) = sup
0≤t<2π

|f (reit)|.

The normalized Lebesgue area measure on � will be denoted by A, i.e.,

dA(z) = 1
π

dxdy = 1
π

rdrdt, z = x + iy = reit.

Recall that for 0 < p < ∞ and α > −1, the (weighted) Bergman space Ap,α =
Ap,α(�) is the space H(�) ∩ Lp(�, dAα), where

dAα(z) = (α + 1)
(
1 − |z|2)α

dA(z).
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If f ∈ Ap,α = H(�) ∩ Lp(�, dAα), we write

‖f ‖Ap,α := ‖f ‖p,α =
(

(α + 1)
∫

�

|f (z)|p (
1 − |z|2)α

dA(z)
) 1

p

.

Simply, Ap = Ap,0 are (unweighted) Bergman spaces. We have that

‖f ‖Ap =
(∫

�

|f (z)|pdA(z)
) 1

p

=
(

2
∫ 1

0
rMp

p(r, f )dr
) 1

p

,

and obviously, Hp ⊂ Ap. Actually, it is well known that Hp ⊂ A2p. The functions in
the Bergman spaces exhibit a behaviour somewhat similar to that of the Hardy spaces
functions, but often a bit more complicated.

For more information related to the Hardy spaces and the Bergman spaces see
monographs [4, 8, 11].

1.2. The Hilbert matrix. The Hilbert matrix is an infinite matrix H whose entries
are an,k = 1

n+k+1 , n, k ≥ 0. We note that H as an operator on the space �2 of all
square-summable complex sequences was first studied by Magnus [10]. It can be also
viewed as an operator on spaces of holomorphic functions by its action on their Taylor
coefficients. If f (z) = ∑∞

n=0 f̂ (n)zn is a holomorphic function in �, then we define a
transformation H by

Hf (z) =
∞∑

n=0

∞∑
k=0

f̂ (k)
n + k + 1

zn.

It is well known that the Hilbert matrix operator H is a bounded operator
from Hp into Hp if and only if 1 < p < ∞, and H is a bounded operator from Ap

into Ap if and only if 2 < p < ∞ (see [1, 2, 8]). In [2] was first started the study of
the Hilbert matrix as an operator on spaces of holomorphic functions. Namely, the
boundedness of the Hilbert matrix as an operator on Hp, 1 < p < ∞, was first proved
by Diamantopoulos and Siskakis [2]. In [3] it was shown that ‖H‖Hp→Hp = π

sin π
p

, for

1 < p < ∞.
For some recent results and generalizations related to the Hilbert matrix see

[6, 7, 9].

1.3. The main results. We are now ready to state the main results of the paper.

THEOREM 1.1. If 1 < α + 2 < p, then ‖H‖Ap,α→Ap,α ≥ π

sin (α+2)π
p

.

In particular, ‖H‖Ap→Ap ≥ π

sin 2π
p

, for 2 < p < ∞. This special case was proved in

[3]. Thus, the lower bound of ‖H‖Ap,α→Ap,α given in Theorem 1.1 is an extension of the
estimate of ‖H‖Ap→Ap and our proof is much simpler than that given in [3]. It is based
on the use of hypergeometric functions. This method may be also applied to obtain
very simple proof that ‖H‖Hp→Hp ≥ π

sin π
p

, for 1 < p < ∞. By a different method this

estimate was obtained in [3].
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THEOREM 1.2. Let α ≥ 0 and p > α + 2.

(i) If p ≥ 2(α + 2), then

‖H‖Ap,α→Ap,α ≤ π

sin (α+2)π
p

;

(ii) If 2α + 3 ≤ p < 2(α + 2), then

‖H‖Ap,α→Ap,α ≤ 2
α+1

p
π

sin (α+2)π
p

;

(iii) If α + 2 < p < 2α + 3, then

‖H‖Ap,α→Ap,α ≤
(

1 + 2
2(α+2)

p −1
) π

sin (α+2)π
p

.

Note that it follows from the main result in [7] that H is a bounded operator on
Ap,α if and only if 1 < α + 2 < p.

Theorem 1.1 and Theorem 1.2 together give the following result.

COROLLARY 1.3. If p ≥ 2(α + 2) and α ≥ 0, then

‖H‖Ap,α→Ap,α = π

sin (α+2)π
p

.

For α = 0, this was proved in [3]. It follows from Theorem 1.2, that if 3 ≤ p < 4,
then

‖H‖Ap→Ap ≤ 2
1
p

π

sin 2π
p

≤ 3
√

2
π

sin 2π
p

,

and if 2 < p < 3, then

‖H‖Ap→Ap ≤
(

1 + 2
4
p −1

) π

sin 2π
p

≤ 3
π

sin 2π
p

.

These two estimates are better than those given in [3].
Note that the exact computation of the norm of the Hilbert matrix as an operator

on the Bergman space Ap and on the Hardy space Hp is based on the integral
representation of H,

Hf (z) =
∫ 1

0

f (t)
1 − tz

dt,

whenever this integral makes sense for all functions f in the space under consideration
(see [2]). From the previous representation it also follows, by a change of variables, that
the Hilbert matrix operator H can be written as an average of weighted composition
operators and this integral representation of H was used in the computation of the
norm of the Hilbert matrix as an operator on the Bergman space Ap (see [1]). Because
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of this, the exact computation of the norm of the Hilbert matrix as an operator on Ap

is a more difficult problem than its Hardy space counterpart.
We propose the following conjecture.

CONJECTURE. If 1 < α + 2 < p, then ‖H‖Ap,α→Ap,α = π

sin (α+2)π
p

.

2. Lower bound for the norm ‖H‖Ap,α→Ap,α .

2.1. An integral representation. As it was noticed in the Introduction, if 1 <

α + 2 < p, then H : Ap,α → Ap,α is bounded. A calculation shows that, in this case, if
f ∈ Ap,α, then

Hf (z) =
∫ 1

0

f (t)
1 − tz

dt. (1)

Namely, following [7], if 1 < α + 2 < p, then H is well-defined operator on Ap,α and
maps this space into itself. Therefore, if f belongs to Ap,α and f (z) = ∑∞

n=0 f̂ (n)zn, then
we obtain a well-defined holomorphic function Hf on � and Hf ∈ Ap,α. Hence, we
find that

Hf (z) =
∞∑

n=0

( ∞∑
k=0

f̂ (k)
n + k + 1

)
zn

=
∞∑

n=0

( ∞∑
k=0

f̂ (k)
∫ 1

0
tn+kdt

)
zn

=
∫ 1

0

∞∑
k=0

f̂ (k)tk
∞∑

n=0

tnzndt

=
∫ 1

0

f (t)
1 − tz

dt,

where the interchange of integrals and sums is easily justified by a geometric series
argument.

2.2. Hypergeometric functions. To get the lower bound of ‖H‖Ap,α→Ap,α , we will
use some classical identities about the Gamma, Beta and Hypergeometric functions
(see [5]).

The Beta function is defined by

B(s, t) =
∫ 1

0
xs−1(1 − x)t−1dx =

∫ ∞

0

xs−1

(1 + x)s+t
dx,

for s, t such that Re s > 0, Re t > 0. The value B(s, t) can be expressed in term of
Gamma function as B(s, t) = �(s)�(t)

�(s+t) . Moreover, the Gamma function satisfies the
functional equation �(z)�(1 − z) = π

sin πz , for non-integral complex numbers z.
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As is usual, F(a, b, c; z), z ∈ �, denotes the hypergeometric function with
parameters a, b, c, i.e.,

F(a, b, c; z) =
∞∑

k=0

�(k + a)
�(a)

�(k + b)
�(b)

�(c)
�(k + c)

zk

k!
.

We will use the following integral representation of hypergeometric function

F(a, b, c; z) = 1
B(a, c − a)

∫ 1

0

ta−1(1 − t)c−a−1

(1 − tz)b
dt, Re c > Re a > 0. (2)

2.3. The proof of Theorem 1.1. Let 1 < γ < α + 2 < p and fγ (z) = (1 − z)−
γ

p ,
z ∈ �. An easy calculation shows that

‖fγ ‖p
p,α = F

(γ

2
,
γ

2
, α + 2; 1

)
.

By Stirling’s formula

�2
(
k + γ

2

)
�(k + α + 2)

∼ k!
(k + 1)α+3−γ

, k → ∞.

Thus, ‖fγ ‖p,α < ∞, since α + 3 − γ > 1 ⇔ γ < α + 2. On the other hand, we have
that lim

γ→α+2
‖fγ ‖p,α = ∞. Using (1) and (2) we find that

Hfγ (z) =
∫ 1

0

dt

(1 − t)
γ

p (1 − tz)
= B

(
1, 1 − γ

p

)
F

(
1, 1, 2 − γ

p
; z

)
.

Thus,

Hfγ (z) = �

(
γ

p

)
�

(
1 − γ

p

) ∞∑
k=0

�2(k + 1)

�
(

k + 2 − γ

p

)
�

(
k + γ

p

) �
(

k + γ

p

)
�

(
γ

p

) zk

k!
.

Since

�2 (k + 1)

�
(

k + 2 − γ

p

)
�

(
k + γ

p

) = 1 + O
(

1
k + 1

)
,

we obtain

Hfγ (z) = π

sin πγ

p

(
fγ (z) + gγ (z)

)
,

where

sup
1<γ<α+2

‖gγ ‖∞ ≤ Cp,α < ∞,
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and consequently

sup
1<γ<α+2

‖gγ ‖p,α ≤ Cp,α.

Therefore,

‖H‖Ap,α→Ap,α ≥ ‖Hfγ ‖p,α

‖fγ ‖p,α

≥ π

sin πγ

p

‖fγ ‖p,α − ‖gγ ‖p,α

‖fγ ‖p,α

.

Letting γ → α + 2, we get

‖H‖Ap,α→Ap,α ≥ lim
γ→α+2

(
π

sin πγ

p

‖fγ ‖p,α − ‖gγ ‖p,α

‖fγ ‖p,α

)

= π

sin (α+2)π
p

lim
γ→α+2

(
1 − ‖gγ ‖p,α

‖fγ ‖p,α

)
= π

sin (α+2)π
p

,

because of lim
γ→α+2

‖fγ ‖p,α = ∞ and sup
1<γ<α+2

‖gγ ‖p,α ≤ Cp,α < ∞. This concludes the

proof.

2.4. Lower bound for the norm ‖H‖H p→H p . A similar argument shows that

‖H‖Hp→Hp ≥ π

sin π
p

, for 1 < p < ∞.

To see this, we take fγ (z) = (1 − z)−
γ

p , 0 < γ < 1 < p. An easy calculation show that

‖fγ ‖p
Hp =

∞∑
k=0

�2
(
k + γ

2

)
�2

(
γ

2

) 1
(k!)2

.

By Stirling’s formula

�2
(
k + γ

2

)
(k!)2

∼ 1
(k + 1)2−γ

, k → ∞.

Thus, ‖fγ ‖Hp < ∞ and ‖fγ ‖Hp → ∞, as γ → 1.
On the other hand, by using (1) and (2), we find that

Hfγ (z) =
∫ 1

0

dt

(1 − t)
γ

p (1 − tz)
= B

(
1, 1 − 1

p

)
F

(
1, 1, 2 − γ

p
; z

)
.

Thus,

Hfγ (z) = �

(
γ

p

)
�

(
1 − γ

p

) ∞∑
k=0

�2 (k + 1)

�
(

k + 2 − γ

p

)
�

(
k + γ

p

) �
(

k + γ

p

)
�

(
γ

p

) zk

k!
.
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Since

�2 (k + 1)

�
(

k + 2 − γ

p

)
�

(
k + γ

p

) = 1 + O
(

1
k + 1

)
,

we obtain

Hfγ (z) = π

sin πγ

p

(
fγ (z) + gγ (z)

)
.

Since

sup
0<γ<1

‖gγ ‖Hp ≤ sup
0<γ<1

‖gγ ‖H∞ ≤ C < ∞,

we get

‖H‖Hp→Hp ≥ ‖Hfγ ‖Hp

‖fγ ‖Hp
≥ π

sin πγ

p

‖fγ ‖Hp − ‖gγ ‖Hp

‖fγ ‖Hp
.

Letting γ → 1−, we get

‖H‖Hp→Hp ≥ lim
γ→1−

(
π

sin πγ

p

‖fγ ‖Hp − ‖gγ ‖Hp

‖fγ ‖Hp

)

= π
sin π

p
lim

γ→1−

(
1 − ‖gγ ‖Hp

‖fγ ‖Hp

)
= π

sin π
p
.

A different proof of this inequality is given in [3].

3. Upper bound for the norm ‖H‖Ap,α→Ap,α . If 2 ≤ α + 2 < p, then H : Ap,α →
Ap,α is bounded. Following [1, 2] (see also [8]), we have that, if f ∈ Ap,α, then

Hf (z) =
∫ 1

0
Ttf (z)dt,

where

Ttf (z) = ωt(z)f (φt(z)) ,

and

ωt(z) = 1
1 − (1 − t)z

, φt(z) = t
1 − (1 − t)z

.
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3.1. The proof of Theorem 1.2. First, from the continuous version of Minkowski’s
inequality, we have

‖Hf ‖Ap,α =
(

(α + 1)
∫

�

|Hf (z)|p (
1 − |z|2)α

dA(z)
) 1

p

= (α + 1)
1
p

(∫
�

∣∣∣∣∫ 1

0
Ttf (z)

(
1 − |z|2) α

p dt
∣∣∣∣p

dA(z)

) 1
p

≤ (α + 1)
1
p

∫ 1

0

(∫
�

|Ttf (z)|p (
1 − |z|2)α

dA(z)
) 1

p

dt

=
∫ 1

0
‖Ttf ‖Ap,α dt.

(3)

Using linear fractional change of variable w = φt(z), z ∈ �, we obtain

‖Ttf ‖p
Ap,α = (α + 1)

∫
�

|ωt(z)|p|f (φt(z))|p (
1 − |z|2)α

dA(z)

= (α + 1)
∫

φt(�)

∣∣ωt(φ−1
t (w))

∣∣p |f (w)|p (
1 − |φ−1

t (w)|2)α∣∣φ′
t(φ

−1
t (w))

∣∣2 dA(w)

= t2−p

(1−t)2 (α + 1)
∫

φt(�)
|w|p−4|f (w)|p

(
1 −

∣∣∣∣ w − t
(1 − t)w

∣∣∣∣2
)α

dA(w).

Hence,

‖Ttf ‖Ap,α = t
2
p −1

(1 − t)
2
p

(
(α + 1)

∫
Dt

|w|p−4|f (w)|p
(

1 −
∣∣∣∣ w − t
(1 − t)w

∣∣∣∣2
)α

dA(w)

) 1
p

,

where Dt = φt(�). It is easy to check that Dt = D
( 1

2−t ,
1−t
2−t

)
, where D

( 1
2−t ,

1−t
2−t

)
is the

Euclidean disc of radius 1−t
2−t centered at the point 1

2−t in the plane.
On the other hand, we have that

1 −
∣∣∣ w−t

(1−t)w

∣∣∣2
= (1−t)2|w|2−|w−t|2

(1−t)2|w|2

= 2t Re w−t2−t(2−t)|w|2
(1−t)2|w|2

= t
1−t · 2 Re w−t−(2−t)|w|2

(1−t)|w|2 .

Therefore,

‖Ttf ‖Ap,α = t
α+2

p −1

(1 − t)
α+2

p

(
(α + 1)

∫
Dt

|w|p−4|f (w)|pgt(w)αdA(w)
) 1

p

,
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where

gt(w) = 2 Re w − t − (2 − t)|w|2
(1 − t)|w|2 , for w ∈ Dt.

Using

gt(w) ≤ 2|w|−t−(2−t)|w|2
(1−t)|w|2

≤ 1+|w|2−t−(2−t)|w|2
(1−t)|w|2

= 1−|w|2
|w|2

and α ≥ 0, we find that

gt(w)α ≤ |w|−2α
(
1 − |w|2)α

.

Hence, we get

‖Ttf ‖Ap,α ≤ t
α+2

p −1

(1 − t)
α+2

p

(
(α + 1)

∫
Dt

|w|p−2(α+2)|f (w)|p (
1 − |w|2)α

dA(w)
) 1

p

. (4)

Case (i): p ≥ 2(α + 2). Using (4) and |w|p−2(α+2) ≤ 1, for w ∈ Dt ⊂ �, we have that

‖Ttf ‖Ap,α ≤ t
α+2

p −1

(1−t)
α+2

p

(
(α + 1)

∫
Dt

|f (w)|p (
1 − |w|2)α

dA(w)
) 1

p

≤ t
α+2

p −1

(1−t)
α+2

p

(
(α + 1)

∫
�

|f (w)|p (
1 − |w|2)α

dA(w)
) 1

p

= t
α+2

p −1

(1−t)
α+2

p
‖f ‖Ap,α .

By using (3), we obtain

‖Hf ‖Ap,α ≤
∫ 1

0

t
α+2

p −1

(1 − t)
α+2

p

dt · ‖f ‖Ap,α

= B
(

α+2
p , 1 − α+2

p

)
‖f ‖Ap,α

= �
(

α+2
p

)
�

(
1 − α+2

p

)
‖f ‖Ap,α

= π

sin (α+2)π
p

‖f ‖Ap,α .

Hence, in this case, we conclude that

‖H‖Ap,α→Ap,α ≤ π

sin (α+2)π
p

.
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Case (ii): 2α + 3 ≤ p < 2(α + 2). We have that |w|p−2(α+2) ≤ 1
|w| , for w ∈ Dt ⊂ �.

Then, by using (4), we get

‖Ttf ‖Ap,α ≤ t
α+2

p −1

(1 − t)
α+2

p

(
(α + 1)

∫
Dt

1
|w| |f (w)|p (

1 − |w|2)α
dA(w)

) 1
p

.

Then, ∫
Dt

1
|w| |f (w)|p (

1 − |w|2)α
dA(w) ≤

∫
�

1
|w| |f (w)|p (

1 − |w|2)α
dA(w)

= 2
∫ 1

0

(
1 − r2)α

Mp
p(r, f )dr

≤ 2α+1
∫ 1

0
(1 − r)αMp

p(r, f )dr

= 2α+2
∫ 1

0
r(1 − r2)αMp

p(r2, f )dr

≤ 2α+2
∫ 1

0
r(1 − r2)αMp

p(r, f )dr

= 2α+1
∫

�

|f (w)|p (
1 − |w|2)α

dA(w).

Here, we used the fact that Mp(·, f ) is an increasing function. We have that

‖Ttf ‖Ap,α ≤ 2
α+1

p t
α+2

p −1

(1−t)
α+2

p

(
(α + 1)

∫
�

|f (w)|p (
1 − |w|2)α

dA(w)
) 1

p

= 2
α+1

p t
α+2

p −1

(1−t)
α+2

p
‖f ‖Ap,α .

By using (3), we find that

‖Hf ‖Ap,α ≤ 2
α+1

p
π

sin (α+2)π
p

‖f ‖Ap,α .

Therefore,

‖H‖Ap,α→Ap,α ≤ 2
α+1

p
π

sin (α+2)π
p

.

Case (iii): α + 2 < p < 2α + 3. It is easy to check that |w| ≥ t
2−t , for w ∈ Dt. Then,

in this case, we find that |w|p−2(α+2) ≤ ( 2−t
t

)2(α+2)−p
, for w ∈ Dt ⊂ �. Now, by using
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(4), we obtain

‖Ttf ‖Ap,α ≤ t
α+2

p −1

(1−t)
α+2

p

( 2−t
t

) 2(α+2)−p
p

(
(α + 1)

∫
Dt

|f (w)|p(1 − |w|2)αdA(w)
) 1

p

≤ (2−t)
2(α+2)

p −1

t
α+2

p (1−t)
α+2

p
· ‖f ‖Ap,α .

On the other hand, we also have

(2−t)
2(α+2)

p −1

t
α+2

p (1−t)
α+2

p
= (t+2(1−t))

2(α+2)
p −1

t
α+2

p (1−t)
α+2

p

≤ t
2(α+2)

p −1+2
2(α+2)

p −1(1−t)
2(α+2)

p −1

t
α+2

p (1−t)
α+2

p

= t
α+2

p −1

(1−t)
α+2

p
+ 2

2(α+2)
p −1 (1−t)

α+2
p −1

t
α+2

p
.

Here, we used the fact that (x + y)β ≤ xβ + yβ , if x, y ≥ 0 and β ∈ (0, 1). Therefore,

‖Ttf ‖Ap,α ≤
[

t
α+2

p −1

(1 − t)
α+2

p

+ 2
2(α+2)

p −1 (1 − t)
α+2

p −1

t
α+2

p

]
‖f ‖Ap,α ,

and by using (3), we find

‖Hf ‖Ap,α ≤
(

1 + 2
2(α+2)

p −1
) π

sin (α+2)π
p

‖f ‖Ap,α ,

because, ∫ 1

0

t
α+2

p −1

(1 − t)
α+2

p

dt =
∫ 1

0

(1 − t)
α+2

p −1

t
α+2

p

dt = π

sin (α+2)π
p

.

Hence, we conclude that

‖H‖Ap,α→Ap,α ≤
(

1 + 2
2(α+2)

p −1
) π

sin (α+2)π
p

.

This finishes the proof.

3.2. Upper bound for the norm ‖H‖Ap→Ap when 2 < p < 3. It follows from the
Theorem 1.2, for α = 0, that if 3 ≤ p < 4, then ‖H‖Ap→Ap ≤ 3

√
2 π

sin 2π
p

, and if 2 < p < 3,

then ‖H‖Ap→Ap ≤ 3 π

sin 2π
p

. These two estimates are better then those given in [3]. In the

following proposition, we show that, if 2 < p < 3, then ‖H‖Ap→Ap ≤ (1 + 2
1
p ) π

sin 2π
p

.

Therefore, if 2 < p < 3, then we have that ‖H‖Ap→Ap ≤ (1 + √
2) π

sin 2π
p

.

PROPOSITION 3.1. Let 2 < p < 3. Then ‖H‖Ap→Ap ≤ (1 + 2
1
p ) π

sin 2π
p

.
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Proof. It follows from the Theorem 1.2, for α = 0, that if f ∈ Ap, then

‖Ttf ‖Ap = t
2
p −1

(1 − t)
2
p

(∫
Dt

|w|p−4|f (w)|pdA(w)
) 1

p

.

We have that |w|p−4 ≤ 1
|w|2 , for w ∈ Dt and Dt ⊂ Et ⊂ �, where Et = {w ∈ � : t

2−t <

|w| < 1}. Hence, we obtain

‖Ttf ‖Ap ≤ t
2
p −1

(1 − t)
2
p

(∫
Et

1
|w|2 |f (w)|pdA(w)

) 1
p

.

On the other hand, we find that

∫
Et

1
|w|2 |f (w)|pdA(w) = 2

∫ 1

t
2−t

1
r2

· rMp
p (r, f )dr.

Since function r �→ 1
r2 is decreasing and function r �→ rMp

p (r, f ) is increasing, by using
Chebyshev’s inequality, we get

∫
Et

1
|w|2 |f (w)|pdA(w) ≤ 2

1− t
2−t

∫ 1

t
2−t

1
r2

dr
∫ 1

t
2−t

rMp
p(r, f )dr

= 2−t
t · 2

∫ 1

t
2−t

rMp
p(r, f )dr

≤ 2−t
t · 2

∫ 1

0
rMp

p(r, f )dr

= 2−t
t ‖f ‖p

Ap .

Therefore, we have that

‖Ttf ‖Ap ≤ t
2
p −1

(1−t)
2
p

· (2−t)
1
p

t
1
p

‖f ‖Ap

= t
2
p −1

(1−t)
2
p

(
1 + 2 1−t

t

) 1
p ‖f ‖Ap

≤ t
2
p −1

(1−t)
2
p

(
1 + 2

1
p (1−t)

1
p

t
1
p

)
‖f ‖Ap

=
(

t
2
p −1

(1−t)
2
p

+ 2
1
p t

1
p −1

(1−t)
1
p

)
‖f ‖Ap .
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Then, by using (3), we obtain

‖Hf ‖Ap ≤
(

π

sin 2π
p

+ 2
1
p

π

sin π
p

)
‖f ‖Ap .

We have sin 2π
p = 2 sin π

p cos π
p ≤ sin π

p , because 2 < p < 3. Hence, we find that π

sin 2π
p

≥
π

sin π
p

. Now, we get

‖Hf ‖Ap ≤
(

1 + 2
1
p

) π

sin 2π
p

‖f ‖Ap ,

and finally,

‖H‖Ap→Ap ≤
(

1 + 2
1
p

) π

sin 2π
p

,

which is what we wanted to prove. �
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