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Abstract

Suppose that u is a bounded harmonic function on the upper half-plane such that lim,_, o u(x, yo) =a
for some yg > 0. Then one can prove that lim,_, o #(x, y) = a for any other positive y. In this paper, we
shall consider the algebra of radial integrable functions on H-type groups and obtain a similar result for
bounded harmonic functions on generalized Siegel domains.
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1. Introduction

Suppose that u is a bounded function on the upper half-plane satisfying Au = 0 and
limy_, 5 u(x, yo) = a for some positive number yg. Then using classical methods,
we can prove that limy_, o, #(x, y) = a for any other positive y. Here A denotes the
Laplacian in the two variables x and y.

Suppose that H, denotes the Heisenberg group of homogeneous dimension 2r + 2.
It is known that H, acts on the Siegel domain D, = {(z, z9) € C" x C | Im zo > |z|*}
by translations. Under this action, H, is identified with the boundary of D,. By abuse
of notation, we shall denote the Laplace—Beltrami operator for the Bergman metric on
D, by A. Then we have the following result.

THEOREM 1.1. Let u be a bounded function on D, such that Au=20. If, for an
€0 > 0, lim oo u(z, t, €0) = a, then lim 100 (2, t, €) = a for any € > 0.

For any unexplained notation and terminology, the reader can refer to [12]. The
proof in the case of the Heisenberg group depends on the explicit form of the Poisson
kernel and the Gelfand spectrum of the commutative Banach algebra L!(H,)?, of
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integrable radial functions on H,. A similar result for rank-one symmetric spaces
has been proved by Cygan [5]. Here we shall prove an analogue of Theorem 1.1 for
H-type groups.

The paper is organized as follows. In Section 2, we shall define an H-type group
and collect all the facts we require about H-type groups. In Section 3, we shall define
the generalized Siegel domains and describe the action of H-type groups on them. In
Section 4, we shall prove our main result as a consequence of a Tauberian theorem for
H-type groups. The method of proof is that of Hulanicki and Ricci [12].

In the coming sections, we shall use the ‘variable constant convention’ according
to which our constants are denoted by C, C’ and so on and these are not necessarily
equal at different occurrences.

2. H-type groups

In this section, we shall collect all the necessary information about the H-type
groups, N, and describe the Gelfand transform for biradial functions on N. We shall
denote the sets R\ {0} and {0, 1, 2, ...} by R* and N, respectively, and the semi-
infinite interval (0, co) by R™. For more detailed information on the material covered
in this section, the reader may refer to [2] and the references therein.

Let n be a real two-step nilpotent Lie algebra endowed with an inner product (- , -)n,
and let 3 be the centre of n. Write n as an orthogonal direct sum of two subspaces v
and 3, that is, n = v @ 3. For each Z € 3, define the map Jz : v — v by the formula

The Lie algebra n is said to be H-type if, for every Z € 3,
Iz =—1ZI, (2.2)

where Iy, denotes the identity transformation on v. A connected, simply connected Lie
group N whose Lie algebra is H-type is said to be an H-type group. By (2.2), we can
see that every unit element Z in 3 induces a complex structure on v via the map Jz.
Therefore, b has even dimension, say 2m. If k denotes the dimension of the centre 3
of N, then Q =m + k is the homogeneous dimension of N.

As N is a connected, simply connected nilpotent group, we know that the
exponential map exp:n — N is surjective. Therefore, we shall identify N with
v @ 3 and denote a typical element n of N by (X, Z) where X €v, Z € 3. Using
the Campbell-Baker—Hausdorff formula, we get the product rule in N as

(X, 2)(X1, Z)=(X+ X1, Z+ Z1 + 3[X. X1]) VX, X1 €v VZ Z ;.

If dX and dZ denote the Lebesgue measures on v and 3, respectively, then
dn = dX dZ denotes a Haar measure on N.

There are two classes of irreducible unitary representations of an H-type group.
Some are trivial on the centre and factor into characters on v. The others are

https://doi.org/10.1017/51446788708000700 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788708000700

[3] Tangential convergence of bounded harmonic functions on generalized Siegel domains 421

parametrized by Rt x S; (see [4] and [2]), where S; denotes the unit sphere in 3. For
w in S5, we consider b endowed with complex structure J,,. Denote by I, : 0 — C™
the corresponding isomorphism. Then the corresponding Hermitian inner product is
given by

(X, X1} =X, X1)n+i{JuX, X1)n VX, X;€v.

Define

%,wz{S:b—)@‘éo]wl:(Cm—>(Cisentire,

||$||5=/ ECO) e XP2 g x < oo}.
o)

Thus 7, 4, is a Hilbert space with respect to the inner product associated with the norm
| - |l,- For any multi-index j in N, we define the following normalized polynomial:

D\ (D2 ,
) GH V21, (X)) VX e,

Pv,j(X) =g/ (‘

2
where || = ji + -+ jm: j! =1l jm! and £/ =¢]" - gl for ¢ in C". One
can check that the family {P,, j}jenm is an orthonormal basis of %,u,.

For any v in R* and any w in Sj, let 7, ,, be the unitary representation of N on
H,)  defined by

(70,0 (X, 2)E1(X1) = exp[—v(FIX|* + X1, X} +i(Z, w))IEX + X1)
VX e, V&€ e %,w'

Given f € L'(N), we shall define the group Fourier transform of f as an operator-
valued function on J%, ,, by

To,w(f) = /;V Ty w(®) f(n) dn.

A function f on N is said to be biradial if f is radial in both the variables X and Z.
In other words, there exists a function fy on R? such that

f(X, Z) = fo(lXI]. |Z]) V(X,Z)eN.

Let L' (N)? be the space of all biradial integrable functions on the group N. We know

from [9] that L' (N)? is a commutative Banach algebra. The Gelfand spectrum of this

commutative algebra is well known (see [1, 9, 13]) and can be described as follows.
Let ¢, be the generalized Bessel function defined for every x in R by the rule

Fiz+1) !
F.(x)=1T(Qz+ 1)/2)r(1/2) J_4
COS X ifz=-1/2,

ei)CS(l _ Sz)(ZZ—l)/Z ds ifz> _1/2’
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and let L} be the /th Laguerre polynomial of order «, that is,

, o
L?(x):Z(if‘;f)( T vier.
j=0 /

The bounded spherical functions of the commutative algebra L' (N)? are given by

Loxpsa L] T 0IX1P/2)
l

ou(X, Z2) = Fm1(ulX]) V(X,Z)eN,

where v >0, u >0 Aandl € N. If f is a biradial integrable function on N, we have the
Gelfand transform f of f as a function on R™ x N defined by the rule

bvi(X, Z)=e

f, D =/ f(m)gy(n)dn Vv >0,V eN. (2.3)
N

3. Harmonic VA spaces and Poisson kernel

In this section, we shall describe the harmonic NA spaces, define harmonic
functions on the generalized Siegel domain and give the explicit form of the Poisson
kernel. For any unexplained terminology and notation in this section, the reader may
refer to [9] and [3]. Let S = NA be the semidirect product of the groups N and
A =R™ with respect to the action of A on N given by the dilations

8a: (X, Z) > (a'*X, aZ).

We shall denote the Lie algebras of A and S by a and s respectively. Any typical
element na = exp(X + Z)a of NA is denoted by (X, Z, a) and the product law in
N A is given by

X,Z,a)(X',Z',a)= (X +a'’X', Z+aZ' + 1a'?[X, X1, ad).

One can endow N A with a suitable left-invariant Riemannian metric that makes it a
harmonic manifold [8]. Via the map

WX, Z,a)=(X, Z,a + §I1X )
we can identify S with the generalized Siegel domain
D={(X,Z,a)es:a> ;|X|*}.

Under this identification, N gets identified with the boundary 3D of D.
Let £ be the Laplace-Beltrami operator on S with respect to the Riemannian
structure on S. Then, by [7, Theorem 2.1],

2m+k
L= )" E}+Ej- QE.
i=1
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where E1q, ..., Eypino, Eopy1, ..., Eomtk in 3, Eg in a form an orthonormal basis
of s = v @ 3 ® a. Bounded harmonic functions u on D are those functions that satisfy
Lu = 0 and have boundary values almost everywhere (a.e.) on 3D, that is,

lin}) ulX,Z,a)=¢(X,Z) ae., (3.1)

where ¢ € L°°(N) (see [6, Theorem 3.7]). Moreover
u(X,Z,a)=(p*xP)(X,Z) VX, Z, a)eSs,
where P, is the Poisson kernel on the nilpotent group N given by
Ca? _ Ca?
(@ +IXPP/H*+1ZH2 (@ +IX12/4* + | Z])m+h

and the convolution is on N. Here the constant C is chosen in such a way that
| P4]l1 = 1. Note that P, € L' (N)* and

Po(X, Z) =

Ca?
(a+|X12/4+i|ZI)" T (a + [X|2 /4 — | Z|)mHE
For each a € A, we know that §, is an automorphism of N, hence &, defines an

automorphism of L' (N)? by
Gaf)(X, Z) =a" ™ f(8.(X, Z2)).

P,(X,7)=

Let m(L' (N)?) be the set of nonzero multiplicative linear functionals on L 1(N)!. Then
8, induces a map & on m(L'(N)?) by
(f, 859) = Bafs W) V¥ em(L'(N)H),Vf e L'(N)-.

It is easy to see that §) maps m(LY(N)?) homeomorphically onto itself. If f € LY(N)
and || f]l1 =1 then we can see that {§,f} is an approximate identity in LY(N)
asa — 0.

We shall now make a small computation that we need in the next section (see [4,
Lemma 3.4]). For w € §;, we shall denote by w the orthogonal complement of w
in 3. Then

/exp (—iv{Z, w)nP,(X, Z2)dZ
3

= / / exp (—iv{tw + Z', w)y) P, (X, tw + Z')dt dZ’
exp(wt) JR

:/ e—"”’/ P,(X,tw+Z')dZ' dt
R exp(wl)
—ivt 0 |X|2 ? 2 712 ok /
=1 e Ca a+——) +t°+|7Z'| dzZ' dt
R exp(wl) 4
. Z/ 2\ —m—k
=/ e’”’CaQ/ (uz)mk(1+ (M) > dz'dt  (3.2)
R exp(wl) u
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o) )

Now by a change of variable argument, we can show that the above integral is equal to

‘ X2 2 —((m+k+1)/2)
/e—lvtc/aQ((a+T) +t2> dr. (3.3)
R

In the next section, we shall prove our main result as a consequence of a Tauberian
theorem on H-type groups.

where

[\

4. Main result

In this section, we shall show that R = L' (N)® is a regular x-algebra, and state
and prove a Wiener—Tauberian theorem for LY'(N). Further, we show that the Gelfand
transform of the Poisson kernel never vanishes. We shall conclude our main result as
a consequence of the Wiener—Tauberian theorem. Our proof of the Wiener—Tauberian
theorem is based on that of Hulanicki and Ricci [12].

PROPOSITION 4.1. The commutative Banach algebra R is regular.

PROOF. Given f € R, define f* by f*(n) = f(n=!). It is easy to see that f* € R, *
defines an involution on R and R is symmetric. Let R be the commutative *-Banach
algebra obtained from R by adjoining the unit element 1. Asin [11], we can check that
the set of multlphcatlve linear funct10nals m (R) on R is actually equal to m(R) U {oo}.
Note that m(R) is compact and R separates points. Further, if f € R C R, then
f (0c0) = 0. Since R is *-closed, R is self- adjoint.

Let C C m(R) be closed and £ e m(R) \ C. To show that R is regular, we
need to show that there exists f € R such that f (C)=0 but f (&) =1. Since C
is closed in m(R), C U {oc} is compact in m(R) and & ¢ C U {oo}. As m(R) is
compact and Hausdorff, by Urysohn’s lemma, we can obtain a continuous function
¢ on m(R) such that ¢(C)=0, p(c0) =0, but ¢p(¢) =1. By [14, Theorem 2,
p. 217], closure of R = Coo(m(R)) = Co(m(R)). So there exists f € R such that
SUP, o (R) o (n) — f (n)] < 1/4. Let F be a smooth real-valued function defined on
R as follows:

0 ifa<i,

Fey=1, 4

<

Q u
wl-b

=

Wl

Then by Dixmier [10], F o fe R. But if n € C, then |f(n)|A< 1/4 <1/3 and so
(Fo f)(n) =0 and |f(§) — 1| < 1/4. This implies that 3/4 < f (&) < 5/4, which in
turn implies that (F o f)(&) = 1. This proves the proposition. O

For f € R, let C be the support of f in m(R). Let
% ={f € R|Cyiscompactinm(R)}.

Now we shall state and prove a Wiener—Tauberian theorem for R.
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PROPOSITION 4.2. The set A is dense in R.

PROOF. Let f be a radial function in L'(N) having compact support. Choose a
function FAin Ck(R)A sucAh that F(1) =1 and F(x) =0 for |x| <1/2. By [10], we
know that fj = F o f € R for some f] € R. Note that

/ fi(X, Z)dX dZ = (F o £)(0,0) =1
N

and Cy, is compact. Therefore (8;71) has compact support in m(R) for every a > 0.
We know that {8, f} is an approximate identity in L'(N) as a — 0. Therefore
f*6,f1i— f asa— 0. But (fml) = f(é;?l) has compact support in m(R).
This proves that 4 is dense in C.(N). But C.(N) is dense in L'(N), hence % is
dense in LY(N). O

As a consequence of the above we have the following result.

PROPOSITION 4.3. Let I be a proper closed right ideal in LY(N). Then there exists a
Y € m(R) such that, forall f e INR, f(¥)=v(f)=0.

PROOF. Since I is a proper closed right ideal in L!'(N), an approximate identity
argument shows that / N R is a proper closed ideal in R.

To prove the proposition, we need the following local Wiener—Tauberian theorem
(see [16]). Suppose that G € R with Cg compact. Let f € R be such that f (W) +#0
for all 1 € Cg. Then there exists g € R such that g x f * G = G. In order to prove
this claim, note that f is continuous on the compact set Cg. Hence there exists § > 0
such that f (¢) > B for all ¢ € Ci. Now choose F in C¥(R) such that

1
Fla) = 5 for o > B,
0

Then Fof|CG = l/f. But by [10], we have g € R such that §=Fofelé.
Therefore

— . AA 0 ify¢Ceq,
gxf*xGY) =@fG)W) = G ity ece.
that is, g f G=0G. By the uniqueness of the Gelfand transform, g * f * G = G.

We shall now prove the proposition. Assume on the contrary that, for every
¥ € m(R), there exists f in I N R such that f(W) # 0. Let G € R be such that Cg
is compact. By assumption, given any ¥ € Cg we can find f;, € I N R such that
fw(w) # 0. In fact ﬁ/,(w) > (0. By continuity, f does not vanish in a neighbourhood
Uy of ¥. The collection of open sets {Uy }yyec; forms an open cover for Ci. Hence
we can find ¥, ¥, ..., ¥, in Cg such that {Uy,, Uy,, ..., Uy,} forms a finite
subcover of Cg. Consider the function f = fy, + fy, +---+ fy,. Then f €e INR
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as I is an ideal and f(y) # 0 for all ¥ € Cg. By our claim above, then there exists
geRsuchthat g f*G=G. But I N R is an ideal in R and f € I N R. Hence
g * f G €I N R. This implies that G € I N R. This in turn implies that 8 C I N R.
Therefore, R=2% CTNR=1NR as I N R is closed. This contradicts the fact that
I N R is a proper closed ideal in R. This completes the proof of the proposition. O

Put s = (m + k — 1) /2. Note that s > 0. For a € A, recall that the Poisson kernel
P, is given by
Ca?
((a+1X?/9)? +1Z|P)>+!
_ Ca? (2s1)?
T @sD? (a+ X124 =i ZDP a4+ | X2 /A 4|1 Z) P

for all (X, Z) € N.
Consider, for any r > 0,

Py(X, Z) =

r!

FalX, 2) = r! (a+|X12/4+i|1Z)yr+tV

Using the Laplace transform techniques, one can easily show that
L[> . 2 . r
F,(X,7Z)= = exp (ix|Z|) exp (—a(a + | X|7/4 4+ i|Z]))a" da.
2Jo

Therefore,

Po(X, Z) = (2s')2/ / exp (—a(a +|X|>/4 — il Z])

x exp (—B(a + |X|?/4 + i1 Z])(@B)* da dB

l o0 o0 )
=W/O /0 exp (i(a — B)IZ])
x exp (—(a + B)(a + |X> /) (@B)* do dB. 4.1

As the last step in our proof of the main result, we have the following result.

PROPOSITION 4.4. For every a > 0, the Gelfand transform P, of P, is never zero
on m(R).

PROOF. We need to check that ﬁa(v, [) and ﬁa (0, n) do not vanish forv >0, u >0
and/ € N.
Consider the integral

/Pa(X, Z)exp (—iv(Z, w)n) dZ
3

=/ / P,(X,tw+ Z')exp (—i(tw + Z', vw)n) dZ' dt
exp(w )
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R

=/ e vt / P,(X,tw+Z')dZ dt
R exp(wl)

) |X|2 2 —(s+1)

=Ca? / e_””<(a + T) + t2> dt 4.2)
R
by (3.2). Consider the expression
|X|2 2 —(s+1) |X|2 —(s+1) |X|2 —(s+1)
((a-i—T) +l‘2> :<a+T+it> (a—i—T—it)

1 [ elylee]
(S,)2/0/0 exp (i(x — p)r)

x exp (—(a + B)(a + | X > /)’ B da df  (4.3)

= [ &V / P,(X,tw+ Z')exp (—i(Z', vw)n) dZ' dt
exp(wt)

by (4.1). Now using Fourier transform techniques together with (4.2) and (4.3), we get

/Pa(X, Z)ye Atingz
3

_ Ca?
- (sH?

/0 exp (—(2B + v)(a@ + |XI*/4) (B + v)*B° dp. (4.4)

Now if we take v =0 and evaluate the Fourier transform in the variable X, we
obtain P, (0, w).
Therefore

P, (0, 1) = P,(0, |Y))

Ca¥? o0 5 . _

= W/n/() exp (—2B(a + |X|7/4) B~ exp (—i(Y, X)) df dX
Cal [ 2 ) .

= (S!)zfo exp (—2Ba)p o (—=B(X|*/2)) exp (i{Y, X)) dX dB
Ca? [

= o /0 exp (—u2/(2B)) exp (—2Ba)B% dp “5)

where Y € v.
Let

= /0 exp (—2Ba)B% exp (—u2/(2B)) dB.

Choose 0 < €] < €2 < 00. Then

€1 €2 oo
= /0 + f + / exp (—2Ba)> exp (—u/(28)) dp.
€] €2
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Note that for 8 in [€1, €;] the integrand exp (—2Ba)p* exp (—/ﬁ/(2,3)) > 0, and the

integrand is nonnegative for all other values in the interval [0, o). Hence

€
/ exp (=2Ba)B exp (—2/(2B)) dB > 0

€1

and the integral on the inte:rvals [0, €1), [e2, 00) are nonnegative. Therefore / > 0,
which in turn implies that P, (0, n) > 0. For v # 0,

Buw, ) = & f/ exp (—(28 + v)(a + |XI2/H)(B + v)'B*

~wIXP/2)
( i)

(S')2

X exp (— v|X| /4) dgdX

Cal [ o s
=G02 fo exp (=28 +v)a)(B +v)'p /exp (—vIX|*/4)
' o}
/ (IJ(F‘%|_I|)/ )dXd,B
Ca? |Syl

) /0 exp (=28 +v)a)(B +v)' B’

X (/oo exp (—vk?/4)L"™ 1( '; )kz’" 1dk> dp
0

Ca® S om—1 00
N <ff>2 (l+|m°—|1) o /0 exp (=28 +v)a)(B +v)'f*
’ I

o
x fo e 2L (y)y™ dy dp (4.6)

by a change of variable. But we know from [15] that

dl
Lm l(x) exxf(m l)d l(efxxH»mfl)’

and so

Ca2 |S,| 27!
(s!)2 (l+r771) pm

Py(v, 1) = /0 exp (=28 + v)a)(B+v)' B’

[e¢]
X f e )’/Zeyy*(m 1) (e y l+m l) m— ldyd,B
0
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Integrating by parts (4.6) implies that

Ca? S, 27!
(s!)z (l+r7—l) pm

Pu(b, 1) = /0 exp (—(28 + v)a)(B +v)°B*

o0 dl
X / ey/z—(e_yy”rm_])dy dg
0 dy!

0 m—=1 7 _1\! poo
_Ca¥ 1Sl 2 <_1> /0 exp (—(2B8 +v)a)(B +v)* B’

(s!)Z (l+nl1—1) pm 2

o0
% /0 ey/Ze—yyl—H’n—l dy dﬁ

Q m—1 _ 1 o 0]
_Ca®¥ 1S 2 <_1> /0 exp (=28 +v)a)(B +v)°B°

(s!)2 (l+nl1—1) pm 2

o0
% /0 e—y/2yl+m—1 dy dﬁ

_Ca? S| 221y
T2 (P um (4 m =Dt

X /0 exp (—(2B +v)a)(B +v)' B dp. 4.7)

By repeating a similar argument as in the case of ﬁa (0, u) we can show that
P, (v, [) > 0. This completes the proof of the assertion. (N

We shall prove the tangential convergence of the bounded harmonic functions on
the generalized Siegel domain D.

THEOREM 4.5. Suppose that u is a bounded harmonic function on D and

Iim u(X,Z,ay) =«
(X,Z)—>o00

for some ag > 0. Then for all a > 0, the limit limx, 7y o0 u(X, Z, a) exists and is
equal to a.

PROOF. Let ¢ be a function in L°°(N) satisfying (3.1). Consider the right ideal in
L'(N) given by

I:{geLl(N)‘qﬁ*g:a/ g(X, Z)dXdZ}.
N

By our assumption, P,, € / N R. But by Proposition 4.4, P;O does not vanish
anywhere on the Gelfand spectrum m(R) of R. By Proposition 4.3, this would imply
that / = L'(N). This completes the proof of the theorem. O
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