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Abstract. With the purpose of understanding when two subshifts of finite type are
equivalent from the point of view of their spaces of Markov measures we propose
the notion of Markov equivalence. We show that a Markov equivalence must respect
the cycles (periodic orbits) of the subshifts. In particular, Markov equivalent sub-
shifts of finite type have the same zeta function.

1. Markov equivalence
One of the important characteristics of a subshift of finite type is the linear space
of Markov measures it supports. Global consideration of this space has been useful
in both the study of codes between subshifts of finite type and classifications of
individual Markov measures. (See, for example, [3], [5], [7] and [8].)

This note is a first step towards deciding and understanding when two subshifts
of finite type are equivalent from the point of view of their spaces of Markov
measures. We propose the notion of Markov equivalence of subshifts of finite type,
which involves a sequence of hyperbolic homeomorphisms between their doubly
transitive points. We show that the maps effecting a Markov equivalence must
respect the cycles (periodic orbits) of the subshifts. This forces, in particular, Markov
equivalent subshifts of finite type to have the same zeta function. The constraints
on the periodic orbits assume a special form when we have a sequence of almost
topological conjugacies (in the sense of [1]) establishing the Markov equivalence.

A fc x k matrix A of zeros and ones defines a subshift of finite type 1A, which is
the topological subspace of {l,.. . ,fc}z consisting of those points x = (xn) with
A(xn,xn+1) = 1 for all neZ, and the left shift homeomorphism a is understood to
act on 1A. (We shall also take A to be irreducible.) A point x € 1.A is doubly transitive
if both {a"x: neN} and {cr~nx: neH\ are dense in 2A; we denote the set of doubly
transitive points of 1A by D,A. O.A is a dense o--invariant Gs, and every ergodic
Borel measure supported by SA gives full measure to flA (see [13]). On ilA, we
have the subspace topology and the restriction of the shift, which is also denoted
by a.

Suppose J.A, 1B are subshifts of finite type. The maps <p:ClA^Q.B we consider
will always be shift-commuting. Let <p :£lA->ClB be a (shift-commuting) continuous
surjection. It is not hard to see that the continuity of <p is equivalent to the requirement
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that it be finitary in the following sense. There exist functions m, a:ClA^N, called
the memory and anticipation of (p, such that <p(x')0 = <p(x)0 whenever x, x'E ilA and
x'n = xn for -m(x) < n < a(x). Thus, (cpx)0 is determined by x_m(x)x_m(x)+1 • • • xa(x},
and the maps m, a are continuous. For xeClA, put

m*{x) = sup {m(a"x) - n},

a*(x) = sup {a(o-~"x) - n}.

Possibly, m*(x) = ooora*(x) = oo. The map <p is called hyperbolic if m*(x), a*(x)<oo
for all x£ f t A . (This is equivalent to requiring <p to preserve stable and unstable
manifolds - see [12].) A homeomorphism <p:QA-*ilB is called hyperbolic if both <p
and <p~l are.

If A is the maximum eigenvalue of A, the topological entropy of £,4 is

h(2.A) = log A = sup {h(fi): /J. is cr-invariant Borel probability on SA},

where /i(/i) denotes the entropy of /x. Letting

7rA(n) = trace (A") = card {xe1A: cr"x = x},

the zeta function of 2^ is
/ \

= det (I-tAy\

which is defined and analytic for | f |<l /A. (See [1], [2], [9], [13].)
When A is k x k, an element of { 1 , . . . , k) is a symbol of SA. Consider a string

'i»2' " " in where i,, i2,..., in are symbols of 1A. If 1 = A(i!, i2) = A(i2, i3) = • • • =
/4(1 „_!, in), then iji2 • • • in is called a word (or block) of length n; when there is a
need to emphasize SA, we use the terms SA-word and 2^-block. We denote by An

the 0-1 matrix whose rows and columns are indexed by 1.A- words of length n, and
h a v i n g A ^ i ^ - • • in,i\- • • i'n) = \ if a n d o n l y if i[ = i2, i2=i3,...,i'n-1 = in. By
definition, Al = A. The subshifts of finite type 2A n , n > 1, are naturally topologically
conjugate; 1An is called the n-block system of I.A. A stochastic matrix compatible
with one of the matrices An, n > 1, defines an ergodic Markov measure p on1A.
Since p(O.A) = p(1A) = 1, we may think of p as a measure on ftA. The Markov
measure p is said to have memory n if it may be defined by a stochastic matrix
compatible with An, but not by one compatible with An_t. We denote by Mn(A)
the set of Markov measures of memory less than or equal to n.

When M is a non-negative matrix compatible with An and r is a strictly positive
right eigenvector of M corresponding to its maximum eigenvalue A > 0 (as furnished
by the Perron-Frobenius theorem), the matrix M defined by

is stochastic and compatible with An; M i s called the stochastic version of M. This
operation may be used to turn Mn{A) into a linear space: Let p,p'eMn(A) be
described by stochastic matrices P, P' compatible with An. The sum p +p' is defined
to be the element of Mn(A) described by the stochastic version of the matrix M with
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For t e U, the product tp is the element of Mn{A) described by the stochastic version
of the matrix M compatible with An and having

M(ij) = p(ijy

whenever P(i,j) ^ 0. The inclusions Mn(A) -» Jin+i(A) then become linear injections
and, in the direct limit, we have the linear space M{A) = {^Jlsn<oo Mn(A) of all
Markov measures on 1.A. This viewpoint is due to W. Parry and S. Tuncel; further
details may be found in [3], [5] and [8].

When should two subshifts of finite type SA and SB be considered equivalent
with respect to their spaces of Markov measures, M(A) and MiB)"! If 1A and J.B
are topologically conjugate, then the conjugacy sets up a linear isomorphism between
M(A) and M(B). In general, however, topological conjugacy is too strict. Consider
the case where 2B is the inverse (shift reversal) of 1A, the subshift of finite type
1.A« defined by the transpose of A. Recall that 1.A and 1.A" are not, in general,
topologically conjugate. (See, for example, [9].) Supposing A is kxk, a homeo-
morphism <pl:Q.A^>Q,A« may be denned by requiring

<Pl(l l ! l 2 * • • 1 /1) = 1 I/I /-1 • • • I ' l l ,

for all words 1 i, • • • i',l with i \ , . . . , i, e {2, . . . , k}. In this well-known construction,
<p, sends ones to ones (the symbol 1 is a 'marker') and <p, reverses the words between
markers. It is not hard to see that <p, sends each measure pe M^A), with denning
matrix P, to its inverse (reversal) p* e M^A") defined by the stochastic version of
the transpose P". Similarly, for each neN, a £A-word of length n may be used to
define a homeomorphism (pn:ClA^ilA" which will send every peMn{A) to its
reversal p*e Mn(A"). (Apply the above construction of <pl to ClAn and £1^'-) We
are thus led to the following definition, which allows for the fact that M(A) and
M(B) are direct limits, and is reminiscent of the equivalences used for direct limits
of C*-algebras [4].

Two subshifts of finite type 1A and SB are called Markov equivalent if there exists
a sequence of (shift-commuting) hyperbolic homeomorphisms between their doubly
transitive points, ipn :ilA^ClB, such that the induced maps give, in the direct limit,
an isomorphism of M(A) and M(B); that is, for each pe M(A) there exists qe M(B)
with p ° (p~n

x = q for all large n, and vice versa. The main result of this paper is the
following.

THEOREM. If the subshifts of finite type J.A and J.B are Markov equivalent, then £A = £B.

Further motivation for Markov equivalence comes from the recent work of K.
Schmidt ([11], [12]). This work extends earlier results on finitary isomorphisms with
finite expected code lengths ([6], [10]). From a categorical viewpoint and for coding
purposes, it establishes hyperbolic finitary isomorphisms as a more general and
natural setting than finitary isomorphisms with finite expected code lengths. By
showing that a number of invariants extend to this setting, it also leads one to ask
if the classifications of Markov chains by hyperbolic finitary isomorphism and by
almost block isomorphism are identical. That is, can a hyperbolic finitary isomorph-
ism of Markov chains always be replaced by a measure-preserving almost topological

https://doi.org/10.1017/S014338570000403X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000403X


306 S. Tuncel

conjugacy? Such a replacement would in particular provide, between doubly transi-
tive points, a hyperbolic homeomorphism and induce an isomorphism of the linear
spans of the Markov measures. This (intermediate) situation is related to Markov
equivalence. In the final section we shall specialize to almost topological conjugacies.

I should also point out that it is not known if, in the above definition of Markov
equivalence, the hyperbolicity condition follows from the other requirements on the
maps <pn. (Meir Smorodinsky has shown that a homeomorphism <p: flA->fiB need
not be hyperbolic.)

2. Markers and hyperbolicity
Let l.A,J.B be subshifts of finite type, and let <p:£lA-*£lB be a shift-commuting
continuous surjection. Let m,a:ClA^Nbe the memory and anticipation of <p, and
let m*, a* be as defined as in the previous section. A 2A-word u = i_, • • • i'o • • • ih

of length 2 / + 1 , is called a marker (for <p) if

C(u) = {xc HA: x_, = i_,, . . . , x , = !,}c{x£ O,A: m*(x), a*{x) < /}.

When u is a marker and xe C(u), the coordinates {(<px)n: neM} are determined
by (xn)_,s n < o o, and {{tpx)_n: neN} are determined by (x)_0O<n=s(. Hyperbolicity is
characterized by the existence of a marker:

PROPOSITION. A continuous surjection (p:D,A^Q,B is hyperbolic if and only if' <p has
a marker.

Proof. It is easy to see that if there is a marker for <p then <p is hyperbolic. Conversely,
suppose that <p is hyperbolic, so that m*(x), a*(x)<<x> for all xeilA. Since £lA is
a Gs in SA, the topology of ilA may be given by a metric so that, with respect to
this metric, ilA is complete. Furthermore, m* and a* being lower semi-continuous
functions, the sets {xe£lA: m*(x)sn} and {xeClA: a*(x)sn} are closed. Clearly

SIA= U {xenA:m*(x),a*(x)sn},

and the Baire category theorem shows that one of the sets in this union, say
{xeClA: m*(x), a*(x)rs N}, has non-empty interior. Hence, there exists a word
u = i._, • • • i'o • • • i, such that lz N and

C(u) = {x e ftA: x_, = L,, . . . , x , = i ,}c{xe HA: m*(x), a*(x) < JV}.

As the referee has pointed out, this proposition and its proof are valid in the more
general setting of transitive subshifts (not necessarily of finite type).

A 2A-word of the form joj^ • • • jk-J0 is called a ~LA-cycle; the length of this cycle
is k. SA-cycles are in one-to-one correspondence with periodic orbits of 2 A . Fix a
SA-cycle joji • • -jk-Jo, and put v=j0- • • jk-i- We write v" for the concatenation
vv • • • v of n copies of v. For a Markov measure p e M(A), the weight ofj0 • • • jk-ijo
with respect to p is given by the conditional probability

*>pUo ' ' ' jk-Jo) = PiXkn • • • Xfcn + k- l =V\XOX1 • • • Xfcn_! = v"},

where n is large enough for the length kn of v" to exceed the memory of p.
Now assume that <p:ClA^Q.B is a hyperbolic homeomorphism and the Markov

measures p e M(A), q e M(B) are such that p ° <p~l = q. Let u = i_, • • • i0 • • • i, be a
marker for <p, and put ux = i_, • • • i0, u2 = i0 • • • i;. lfjoj\ ' " ' jk-ijo is a 2A-cycle with
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fc>2/+l, joji • • -ji = u2 and j k _ , • • • jk-\jo
= ux, then there exists a £B-cycle b (of

length k) such that (p(x)0(p(x)1 • • • <p(x)k = b whenever x e f l A has x_,• • • xk+l =
«iji • • • jk-iu2; we write <p(joji • • • jk-Jo) = <p(uji • • • jk_,u2) = *>• The following is
an immediate consequence of Proposition (4.4) of [6]: If joJi ' ' ' A-iJo is a SA-cycle
with fc>2/+1,7'oJ! • ' • J; = «2 and;k- i • • • jk-J0 = " i , then

wq(<p(joji • • -jk-Jo)) = wp(jo./, • • -jk-Uo)-

In particular, it follows from this that <p gives a linear map on the subspace of J<( A)
it sends into M{B).

I would like to thank Bruce Kitchens and Klaus Schmidt for discussions; the
proposition above was worked out with K. Schmidt.

3. Proof of theorem
To establish the zeta function as an invariant of Markov equivalence, we first consider
a special case. Letting SA, 2 B be subshifts of finite type, suppose that a Markov
equivalence between them is effected by a single shift-commuting hyperbolic homeo-
morphism <p:nA-»HB, so that p-*p°<p~~x is an isomorphism between M{A) and
M(B). (Note that the existence of a shift-commuting homeomorphism <p :fiA-»flB

and consideration of o--invariant measures are enough to guarantee h(1A) = h(l.B).)
As before, let w = i_, • • • i0 • • • i, be a marker for <p, and write ut = i_, • • • i0,

«2= I'O • • • '/• Fix S^-cycle a =joji" • • A-iJo, and suppose the least period of a is
given by k. Fixing 2A-words iikx • • • krj0 and jok[k'2 • • • k',4_,, define 2A-cycles an by

an = u2ki • • • krijoji • • • h-XjoKK • • • k'vux.

For neN, let bn = <p(an). The 2fl-cycles bn all start and end with the same symbol
of 1B. For p € M(A) we have wp(an) = wp^-i(bn). Moreover:
(*) The ratio

{wp(an+1))/(wp(an)) = (wp^(bn+1))/(wp^(bn))

is independent of n, provided n exceeds the memory of p.

Consider the multiplicative free Abelian group generated by SB-transitions (EB-
words of length 2). Regard the ratio bn+1/bn as an element of this group. Thus,
bn+jbn is regarded as a monomial in the transitions - a product of (possibly
negative) integral powers of the transitions.

Let us say that a 2B-transition ii' is forced if B(i,j) = 0 for all SB-symbols j ^ i';
otherwise the transition is unforced. In bn+1/bn, identify the forced transitions, by
putting them all equal to the same indeterminate s. Ignoring powers of s, and letting
N be such that q° <pe MN(A) for all q e MX(B), the unforced parts of bn+1/bn must
be identical for all n > N ; otherwise we could find qeMi(B) that would assign
different values wq{bn+l)/wq{bn) to them, and violate (*). Thus there exist a e Z
and a (reduced) monomial n in unforced transitions such that

K + JK = SaTT

for n > N. Furthermore, as bN+n/bN = snct-n" and bN has finite length, TT does not
contain any negative powers of transitions. Letting /3 > 1 be the degree of TT and
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using the fact that the degree of bn+1/bn is given by the length k of jojx • • • jk-i, we
have a + /3 = k. Denoting by yn the number of forced transitions in bn and using
bN+n/bN = s"aTTn again,

kn = yN+n-yN + /3n.

Hence,

n(/3 -k) = yN- yN+n < yN

for all n eN. It follows that /3 - f c<0 . Therefore, 1 < / 3 < / C , a + /3 = fc, and a >0.
We now know that bn+l/bn consists of k transitions, and the unforced transitions

appearing in this ratio are independent of n > N. But, as forced transitions follow
unforced ones, these too must be independent of n > N. Thus there exists a product
p of k transitions such that bn+1/bn = p for all n > N. Suppose, for the moment,
that p corresponds to a well-defined 2B-cycle b of least period k. We then obtain
a map $ from S^-cycles to XB-cycles by putting 4>(a) = b. It is easy to see, using
weights, that <$> does not depend on the choice of the marker u or the connecting
words fc, • • • kr and k[k'2 • • • k'r. The map <£ is such that a and <$(a) have the same
least period and

for all peM(A). Since an inverse O"1 of <t> may be constructed by using <p~l in
place of (p, <J> is bijective.

The remaining task is to establish the following:
(**) The product p corresponds to a well-defined 2B-cycle of least period k.
To start with, note that the transitions appearing in p yield exactly the same collection
of initial and terminal symbols, because the cycles bn, bn+l have this property. This
means that p may be decomposed into a product of cycles. It is, therefore, easy to
see that (**) holds when the least period k of the SA-cycle a is equal to one. We
use induction on k. Assume that (**) holds for 2A-cycles of least period lower than
k, so that we already have the bijection $ between cycles of period less than k.
Decompose p into a product p = pip2 • • • p3 of 2B-cycles pl,..., p3. If J > 1 then
the least periods of px,..., pj are lower than k and we find that

for all p e M(A). Since this is impossible, we conclude that / = 1 and that (**) holds
for cycles of least period k also.

We have thus dealt with the case where a Markov equivalence between "LA and
1B is established by a single homeomorphism <p :£lA^>ClB. It should, however, be
clear that the above argument may be extended to the general case: Suppose that
a Markov equivalence between 1A and 1B is established by a sequence of shift-
commuting hyperbolic homeomorphisms <p,:nA->nB. There is then a bijection $
between EA-cycles and 2B-cycles, sending each SA-cycle to a 2B-cycle of the same
least period, which is determined by the sequence <pt in the following way. If
JoJi " ' ' jk-ijo is a SA-cycle, there exists 7eN such that, for i>7 , a marker u =
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i-i • • • i0 • • • i; for <ph 2,4-cycles an of the form

an = i0 • • • i,ki • • • kfijojt • • • jk-i)
njok[ • • • k'rL, • • • i 0 ,

and large n, the cycle <p,(an+1) differs from <p,(aj by &U0J1 * * -jk-do)-

4. Almost topological conjugacies
Almost topological conjugacies, which were first considered by Adler and Marcus
[1], give an important finite way of constructing hyperbolic homeomorphisms
between doubly transitive points of subshifts of finite type. In this section we
concentrate on Markov equivalences established through almost topological con-
jugacies, and find conditions on the periodic points. These conditions, for this
special case, straightforwardly lead to the correspondences of the previous section.
For convenience, we assume throughout the section that SA, XB are aperiodic
subshifts of finite type. We shall use the following combinatorial lemma.

LEMMA I. If a is a 1A-cycle of least period a and l<a, then the number of distinct
1A-words of length I appearing in a is at least 1/2.

In other words, when a is regarded as a 2A-cycle, it contains at least 1/2 symbols
of 2Al. We omit the proof of this lemma.

Again, we first consider the case where a Markov equivalence between 1A and
2B is set up by a single almost topological conjugacy. We assume that we have a
subshift of finite type S c and continuous shift-commuting surjections 0:2C -*2A,
tjj: 1C -* 2B so that 8, i{/ are one-to-one when restricted to O c and the resulting
homeomorphism <p = i//° 0"1: fiA-»nB induces a bijection between^ (A) and M(B).
We have the following picture.

LEMMA 2. If ze1c is aperiodic point, thenx=d(z) andy = \]t(z) have the same least
period.

Proof. Let a, /3, y be the least periods of x, y, z. Suppose a ¥= (i; say a> p. Choose
n so large that the EAn-cycle corresponding to x has (at least) one transition which
occurs in it only once. Assign a prime number TT to this transition and 1 to every
other SAn-transition to obtain a non-negative integral matrix S compatible with An.
Let A > 0 be the maximum eigenvalue of S, and p e Jl(A) the measure defined by
the stochastic version of S. Writing T(p) for the multiplicative subgroup of the
positive reals generated by the weights (with respect to p) of 2A-cycles, it is easy
to see that

T(p)c:{TTk\':k,leZ}.

Now let q = p° (p~x€.M(B). According to [6], we then have Y{q) = T{p). In par-
ticular, wq(y)eT{p). Using wp(x) = ir\~a and the fact that weights are preserved
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by 6 and <// (see [5]), we find

wq(y) = irp"'\-p.

This means that there exist k,leZ with

Since A is the maximum eigenvalue of an aperiodic matrix, this equation implies
that A e N. Moreover, as IT is prime, A must be a power of TT, and we conclude that
a divides /?, which is impossible if a > /3.

LEMMA 3. Two periodic orbits of S c are mapped to the same 1A-orbit by 0 if and only
if they are mapped to the same 1,B-orbit oftfi.

Proof. If, for example, two periodic orbits of S c were sent to distinct S^-orbits by
6 while being identified by tp, we could find p G M{A) such that their common image
in 2 B would not have a well-defined weight with respect to p ° <p~l e M(B).

Lemmas 2 and 3 show that, in the case under consideration, we can find a bijection
$ from the periodic orbits of SA to the periodic orbits of 2 B such that $ has the
following property. For each periodic orbit a of 1A, the orbits a and <t>{a) have
the same least period and the sets d~x{a) and il/~1(<£>{a)) are identical. Put another
way, £A = £B and 0 and ip restrict to the same map on the periodic points of 2C-

More generally, we would have a sequence of almost topological conjugacies

and a Markov equivalence between 1A and 1B would be established by the homeo-
morphisms <pn = <pn ° ®n

 x : n A -»O B . The behaviour of periodic orbits is now given
by the following.

PROPOSITION. There exists a bijection $ from the periodic orbits of 1.A to the periodic
orbits of J.B with the following property. For each periodic orbit a of 1.A, the orbits a
and <£>(a) have the same least period and there exists ATeN such that the sets O'^a)
and i{/~l(<£>(a)) are identical for every n> N.

Proof. The proposition is established by using lemma 1 to generalize lemmas 2 and
3. We do this in detail for lemma 2. Let b be a periodic SB-orbit of least period /3,
and find XCn-orbits cn with ijjn(cn) = b. Let an denote the least period of an = 0n(cn).
We claim that an = p for large n. To show this, we assume that the sequence an is
unbounded. (Otherwise, there exists a SA-orbit a with an = a for infinitely many n
and the proof of lemma 2 may be used directly.) By passing to a subsequence, we
take an > 2/3. Using lemma 1, there are more than ft words of length 2)3 + 1 appearing
in the SA-cycle corresponding to an. Hence, passing to a subsequence if necessary,
we find a SA-word I,I2 • • • i2p+i and yn e H such that 1 £ yn < an/p and i^ ' " " '23+1
appears yn times in the 2A-cycle corresponding to an. Assign a prime number -IT to
the 2A2fJ-transition given by i,i2 • • • '2/3+1 and 1 to every other 2A2(j-transition to
obtain a non-negative matrix 5 compatible with A2/}. Let A > 0 be the maximum
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eigenvalue of S and p e M(A) the measure denned by the stochastic version of S.
Find q e M{B) with p ° <p~l = q for large n. Then

For large n,

Wq(b) = (7Tr

so that there exist k,leZ with

As before, we find that

A is a power of -n and an divides y,fi, which is impossible since yn<an/fl. This
proves our claim. Now note that lemma 1 may be used to also establish the following.
Let cn, c'n be periodic orbits of SCn. There exists a SA-orbit a with 0n(cn) = 0n(c'J = a
for large n if and only if there exists a £B-orbit b with </»„(<:„) = i/»n(c'n) = b for large
n.
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