Markov measures determine the zeta function

SELIM TUNCEL
Mathematics Institute, University of Warwick, Coventry CV4 7AL, England \dagger

(Received 29 April 1986)

Abstract

With the purpose of understanding when two subshifts of finite type are equivalent from the point of view of their spaces of Markov measures we propose the notion of Markov equivalence. We show that a Markov equivalence must respect the cycles (periodic orbits) of the subshifts. In particular, Markov equivalent subshifts of finite type have the same zeta function.

1. Markov equivalence

One of the important characteristics of a subshift of finite type is the linear space of Markov measures it supports. Global consideration of this space has been useful in both the study of codes between subshifts of finite type and classifications of individual Markov measures. (See, for example, [3], [5], [7] and [8].)

This note is a first step towards deciding and understanding when two subshifts of finite type are equivalent from the point of view of their spaces of Markov measures. We propose the notion of Markov equivalence of subshifts of finite type, which involves a sequence of hyperbolic homeomorphisms between their doubly transitive points. We show that the maps effecting a Markov equivalence must respect the cycles (periodic orbits) of the subshifts. This forces, in particular, Markov equivalent subshifts of finite type to have the same zeta function. The constraints on the periodic orbits assume a special form when we have a sequence of almost topological conjugacies (in the sense of [1]) establishing the Markov equivalence.

A $k \times k$ matrix A of zeros and ones defines a subshift of finite type Σ_{A}, which is the topological subspace of $\{1, \ldots, k\}^{\mathbf{Z}}$ consisting of those points $x=\left(x_{n}\right)$ with $A\left(x_{n}, x_{n+1}\right)=1$ for all $n \in \mathbb{Z}$, and the left shift homeomorphism σ is understood to act on Σ_{A}. (We shall also take A to be irreducible.) A point $x \in \Sigma_{A}$ is doubly transitive if both $\left\{\sigma^{n} x: n \in \mathbb{N}\right\}$ and $\left\{\sigma^{-n} x: n \in \mathbb{N}\right\}$ are dense in Σ_{A}; we denote the set of doubly transitive points of Σ_{A} by $\Omega_{A} . \Omega_{A}$ is a dense σ-invariant G_{δ}, and every ergodic Borel measure supported by Σ_{A} gives full measure to Ω_{A} (see [13]). On Ω_{A}, we have the subspace topology and the restriction of the shift, which is also denoted by σ.

Suppose Σ_{A}, Σ_{B} are subshifts of finite type. The maps $\varphi: \Omega_{A} \rightarrow \Omega_{B}$ we consider will always be shift-commuting. Let $\varphi: \Omega_{A} \rightarrow \Omega_{B}$ be a (shift-commuting) continuous surjection. It is not hard to see that the continuity of φ is equivalent to the requirement

[^0]that it be finitary in the following sense. There exist functions $m, a: \Omega_{A} \rightarrow \mathbb{N}$, called the memory and anticipation of φ, such that $\varphi\left(x^{\prime}\right)_{0}=\varphi(x)_{0}$ whenever $x, x^{\prime} \in \Omega_{A}$ and $x_{n}^{\prime}=x_{n}$ for $-m(x) \leq n \leq a(x)$. Thus, $(\varphi x)_{0}$ is determined by $x_{-m(x)} x_{-m(x)+1} \cdots x_{a(x)}$, and the maps m, a are continuous. For $x \in \Omega_{A}$, put
\[

$$
\begin{aligned}
m^{*}(x) & =\sup _{n \in \mathbb{N}}\left\{m\left(\sigma^{n} x\right)-n\right\} \\
a^{*}(x) & =\sup _{n \in \mathbb{N}}\left\{a\left(\sigma^{-n} x\right)-n\right\} .
\end{aligned}
$$
\]

Possibly, $m^{*}(x)=\infty$ or $a^{*}(x)=\infty$. The map φ is called hyperbolic if $m^{*}(x), a^{*}(x)<\infty$ for all $x \in \Omega_{A}$. (This is equivalent to requiring φ to preserve stable and unstable manifolds - see [12].) A homeomorphism $\varphi: \Omega_{A} \rightarrow \Omega_{B}$ is called hyperbolic if both φ and φ^{-1} are.

If λ is the maximum eigenvalue of A, the topological entropy of Σ_{A} is

$$
h\left(\Sigma_{A}\right)=\log \lambda=\sup \left\{h(\mu): \mu \text { is } \sigma \text {-invariant Borel probability on } \Sigma_{A}\right\}
$$

where $h(\mu)$ denotes the entropy of μ. Letting

$$
\pi_{A}(n)=\operatorname{trace}\left(A^{n}\right)=\operatorname{card}\left\{x \in \Sigma_{A}: \sigma^{n} x=x\right\}
$$

the zeta function of Σ_{A} is

$$
\zeta_{A}(t)=\exp \left(\sum_{1 \leqq n<\infty} \pi_{A}(n) t^{n} / n\right)=\operatorname{det}(I-t A)^{-1}
$$

which is defined and analytic for $|t|<1 / \lambda$. (See [1], [2], [9], [13].)
When A is $k \times k$, an element of $\{1, \ldots, k\}$ is a symbol of Σ_{A}. Consider a string $i_{1} i_{2} \cdots i_{n}$ where $i_{1}, i_{2}, \ldots, i_{n}$ are symbols of Σ_{A}. If $1=A\left(i_{1}, i_{2}\right)=A\left(i_{2}, i_{3}\right)=\cdots=$ $A\left(i_{n-1}, i_{n}\right)$, then $i_{1} i_{2} \cdots i_{n}$ is called a word (or block) of length n; when there is a need to emphasize Σ_{A}, we use the terms Σ_{A}-word and Σ_{A}-block. We denote by A_{n} the $0-1$ matrix whose rows and columns are indexed by $\boldsymbol{\Sigma}_{A^{-}}$words of length n, and having $A_{n}\left(i_{1} \cdots i_{n}, i_{1}^{\prime} \cdots i_{n}^{\prime}\right)=1$ if and only if $i_{1}^{\prime}=i_{2}, i_{2}^{\prime}=i_{3}, \ldots, i_{n-1}^{\prime}=i_{n}$. By definition, $A_{1}=A$. The subshifts of finite type $\Sigma_{A_{n}}, n \geq 1$, are naturally topologically conjugate; $\Sigma_{A_{n}}$ is called the n-block system of Σ_{A}. A stochastic matrix compatible with one of the matrices $A_{n}, n \geq 1$, defines an ergodic Markov measure p on Σ_{A}. Since $p\left(\Omega_{A}\right)=p\left(\Sigma_{A}\right)=1$, we may think of p as a measure on Ω_{A}. The Markov measure p is said to have memory n if it may be defined by a stochastic matrix compatible with A_{n}, but not by one compatible with A_{n-1}. We denote by $\mathscr{M}_{n}(A)$ the set of Markov measures of memory less than or equal to n.

When M is a non-negative matrix compatible with A_{n} and r is a strictly positive right eigenvector of M corresponding to its maximum eigenvalue $\lambda>0$ (as furnished by the Perron-Frobenius theorem), the matrix \bar{M} defined by

$$
\bar{M}(i, j)=M(i, j) r(j) / \lambda r(i)
$$

is stochastic and compatible with $A_{n} ; \bar{M}$ is called the stochastic version of M. This operation may be used to turn $\mathcal{M}_{n}(A)$ into a linear space: Let $p, p^{\prime} \in \mathcal{M}_{n}(A)$ be described by stochastic matrices P, P^{\prime} compatible with A_{n}. The sum $p+p^{\prime}$ is defined to be the element of $\mathscr{M}_{n}(A)$ described by the stochastic version of the matrix M with

$$
M(i, j)=P(i, j) P^{\prime}(i, j)
$$

For $t \in \mathbb{R}$, the product $t p$ is the element of $\mathscr{M}_{n}(A)$ described by the stochastic version of the matrix M compatible with A_{n} and having

$$
M(i, j)=P(i, j)^{t}
$$

whenever $P(i, j) \neq 0$. The inclusions $\mathscr{M}_{n}(A) \rightarrow \mathscr{M}_{n+1}(A)$ then become linear injections and, in the direct limit, we have the linear space $\mathscr{M}(A)=\bigcup_{1 \leq n<\infty} \mathscr{M}_{n}(A)$ of all Markov measures on Σ_{A}. This viewpoint is due to W. Parry and S. Tuncel; further details may be found in [3], [5] and [8].

When should two subshifts of finite type Σ_{A} and Σ_{B} be considered equivalent with respect to their spaces of Markov measures, $\mathcal{M}(A)$ and $\mathcal{M}(B)$? If Σ_{A} and Σ_{B} are topologically conjugate, then the conjugacy sets up a linear isomorphism between $\mathcal{M}(A)$ and $\mathcal{M}(B)$. In general, however, topological conjugacy is too strict. Consider the case where Σ_{B} is the inverse (shift reversal) of Σ_{A}, the subshift of finite type $\Sigma_{A^{\text {tr }}}$ defined by the transpose of A. Recall that Σ_{A} and $\Sigma_{A^{\text {tr }}}$ are not, in general, topologically conjugate. (See, for example, [9].) Supposing A is $k \times k$, a homeomorphism $\varphi_{1}: \Omega_{A} \rightarrow \Omega_{A^{\text {tr }}}$ may be defined by requiring

$$
\varphi_{1}\left(1 i_{1} i_{2} \cdots i_{l} 1\right)=1 i_{l} i_{l-1} \cdots i_{1} 1
$$

for all words $1 i_{1} \cdots i_{l} 1$ with $i_{1}, \ldots, i_{l} \in\{2, \ldots, k\}$. In this well-known construction, φ_{1} sends ones to ones (the symbol 1 is a 'marker') and φ_{1} reverses the words between markers. It is not hard to see that φ_{1} sends each measure $p \in \mathcal{M}_{1}(A)$, with defining matrix P, to its inverse (reversal) $p^{*} \in \mathscr{M}_{1}\left(A^{\text {tr }}\right)$ defined by the stochastic version of the transpose P^{tr}. Similarly, for each $n \in \mathbb{N}$, a $\Sigma_{A^{-}}$word of length n may be used to define a homeomorphism $\varphi_{n}: \Omega_{A} \rightarrow \Omega_{A^{\prime \prime}}$ which will send every $p \in \mathcal{M}_{n}(A)$ to its reversal $p^{*} \in \mathcal{M}_{n}\left(A^{\mathrm{tr}}\right)$. (Apply the above construction of φ_{1} to $\Omega_{A_{n}}$ and $\Omega_{A_{n}^{\mathrm{tr}} .}$. We are thus led to the following definition, which allows for the fact that $\mathcal{M}(A)$ and $\mathcal{M}(B)$ are direct limits, and is reminiscent of the equivalences used for direct limits of C^{*}-algebras [4].

Two subshifts of finite type Σ_{A} and Σ_{B} are called Markov equivalent if there exists a sequence of (shift-commuting) hyperbolic homeomorphisms between their doubly transitive points, $\varphi_{n}: \Omega_{A} \rightarrow \Omega_{B}$, such that the induced maps give, in the direct limit, an isomorphism of $\mathcal{M}(A)$ and $\mathcal{M}(B)$; that is, for each $p \in \mathscr{M}(A)$ there exists $q \in \mathcal{M}(B)$ with $p \circ \varphi_{n}^{-1}=q$ for all large n, and vice versa. The main result of this paper is the following.

Theorem. If the subshifts of finite type Σ_{A} and Σ_{B} are Markov equivalent, then $\zeta_{A}=\zeta_{B}$.
Further motivation for Markov equivalence comes from the recent work of K. Schmidt ([11], [12]). This work extends earlier results on finitary isomorphisms with finite expected code lengths ([6], [10]). From a categorical viewpoint and for coding purposes, it establishes hyperbolic finitary isomorphisms as a more general and natural setting than finitary isomorphisms with finite expected code lengths. By showing that a number of invariants extend to this setting, it also leads one to ask if the classifications of Markov chains by hyperbolic finitary isomorphism and by almost block isomorphism are identical. That is, can a hyperbolic finitary isomorphism of Markov chains always be replaced by a measure-preserving almost topological
conjugacy? Such a replacement would in particular provide, between doubly transitive points, a hyperbolic homeomorphism and induce an isomorphism of the linear spans of the Markov measures. This (intermediate) situation is related to Markov equivalence. In the final section we shall specialize to almost topological conjugacies.

I should also point out that it is not known if, in the above definition of Markov equivalence, the hyperbolicity condition follows from the other requirements on the maps φ_{n}. (Meir Smorodinsky has shown that a homeomorphism $\varphi: \Omega_{A} \rightarrow \Omega_{B}$ need not be hyperbolic.)

2. Markers and hyperbolicity

Let Σ_{A}, Σ_{B} be subshifts of finite type, and let $\varphi: \Omega_{A} \rightarrow \Omega_{B}$ be a shift-commuting continuous surjection. Let $m, a: \Omega_{A} \rightarrow \mathbb{N}$ be the memory and anticipation of φ, and let m^{*}, a^{*} be as defined as in the previous section. A Σ_{A}-word $u=i_{-l} \cdots i_{0} \cdots i_{l}$, of length $2 l+1$, is called a marker (for φ) if

$$
C(u)=\left\{x \in \Omega_{\mathrm{A}}: x_{-l}=i_{-l}, \ldots, x_{l}=i_{l}\right\} \subset\left\{x \in \Omega_{\mathrm{A}}: m^{*}(x), a^{*}(x) \leq l\right\} .
$$

When u is a marker and $x \in C(u)$, the coordinates $\left\{(\varphi x)_{n}: n \in \mathbb{N}\right\}$ are determined by $\left(x_{n}\right)_{-I \leq n<\infty}$, and $\left\{(\varphi x)_{-n}: n \in \mathbb{N}\right\}$ are determined by $(x)_{-\infty<n \leq 1}$. Hyperbolicity is characterized by the existence of a marker:
Proposition. A continuous surjection $\varphi: \Omega_{A} \rightarrow \Omega_{B}$ is hyperbolic if and only if φ has a marker.
Proof. It is easy to see that if there is a marker for φ then φ is hyperbolic. Conversely, suppose that φ is hyperbolic, so that $m^{*}(x), a^{*}(x)<\infty$ for all $x \in \Omega_{A}$. Since Ω_{A} is a G_{δ} in Σ_{A}, the topology of Ω_{A} may be given by a metric so that, with respect to this metric, Ω_{A} is complete. Furthermore, m^{*} and a^{*} being lower semi-continuous functions, the sets $\left\{x \in \Omega_{A}: m^{*}(x) \leq n\right\}$ and $\left\{x \in \Omega_{A}: a^{*}(x) \leq n\right\}$ are closed. Clearly

$$
\Omega_{A}=\bigcup_{1 \leq n<\infty}\left\{x \in \Omega_{A}: m^{*}(x), a^{*}(x) \leq n\right\},
$$

and the Baire category theorem shows that one of the sets in this union, say $\left\{x \in \Omega_{A}: m^{*}(x), a^{*}(x) \leq N\right\}$, has non-empty interior. Hence, there exists a word $u=i_{--l} \cdots i_{0} \cdots i_{l}$ such that $l \geq N$ and

$$
C(u)=\left\{x \in \Omega_{A}: x_{-l}=i_{-l}, \ldots, x_{l}=i_{l}\right\} \subset\left\{x \in \Omega_{A}: m^{*}(x), a^{*}(x) \leq N\right\} .
$$

As the referee has pointed out, this proposition and its proof are valid in the more general setting of transitive subshifts (not necessarily of finite type).

A Σ_{A}-word of the form $j_{0} j_{1} \cdots j_{k-1} j_{0}$ is called a Σ_{A}-cycle; the length of this cycle is k. $\Sigma_{\boldsymbol{A}}$-cycles are in one-to-one correspondence with periodic orbits of $\Sigma_{\boldsymbol{A}}$. Fix a Σ_{A}-cycle $j_{0} j_{1} \cdots j_{k-1} j_{0}$, and put $v=j_{0} \cdots j_{k-1}$. We write v^{n} for the concatenation $v v \cdots v$ of n copies of v. For a Markov measure $p \in \mathscr{M}(A)$, the weight of $j_{0} \cdots j_{k-1} j_{0}$ with respect to p is given by the conditional probability

$$
w_{p}\left(j_{0} \cdots j_{k-1} j_{0}\right)=p\left\{x_{k n} \cdots x_{k n+k-1}=v \mid x_{0} x_{1} \cdots x_{k n-1}=v^{n}\right\}
$$

where n is large enough for the length $k n$ of v^{n} to exceed the memory of p.
Now assume that $\varphi: \Omega_{A} \rightarrow \Omega_{B}$ is a hyperbolic homeomorphism and the Markov measures $p \in \mathcal{M}(A), q \in \mathcal{M}(B)$ are such that $p \circ \varphi^{-1}=q$. Let $u=i_{-l} \cdots i_{0} \cdots i_{l}$ be a marker for φ, and put $u_{1}=i_{-l} \cdots i_{0}, u_{2}=i_{0} \cdots i_{l}$. If $j_{0} j_{1} \cdots j_{k-1} j_{0}$ is a Σ_{A}-cycle with
$k \geq 2 l+1, j_{0} j_{1} \cdots j_{l}=u_{2}$ and $j_{k-l} \cdots j_{k-1} j_{0}=u_{1}$, then there exists a $\Sigma_{B^{-}}$cycle b (of length k) such that $\varphi(x)_{0} \varphi(x)_{1} \cdots \varphi(x)_{k}=b$ whenever $x \in \Omega_{A}$ has $x_{-1} \cdots x_{k+l}=$ $u_{1} j_{1} \cdots j_{k-1} u_{2}$; we write $\varphi\left(j_{0} j_{1} \cdots j_{k-1} j_{0}\right)=\varphi\left(u_{1} j_{1} \cdots j_{k-1} u_{2}\right)=b$. The following is an immediate consequence of Proposition (4.4) of [6]: If $j_{0} j_{1} \cdots j_{k-1} j_{0}$ is a Σ_{A}-cycle with $k \geq 2 l+1, j_{0} j_{1} \cdots j_{l}=u_{2}$ and $j_{k-1} \cdots j_{k-1} j_{0}=u_{1}$, then

$$
w_{q}\left(\varphi\left(j_{0} j_{1} \cdots j_{k-1} j_{0}\right)\right)=w_{p}\left(j_{0} j_{1} \cdots j_{k-1} j_{0}\right)
$$

In particular, it follows from this that φ gives a linear map on the subspace of $\mathcal{M}(A)$ it sends into $\mathscr{M}(B)$.

I would like to thank Bruce Kitchens and Klaus Schmidt for discussions; the proposition above was worked out with K. Schmidt.

3. Proof of theorem

To establish the zeta function as an invariant of Markov equivalence, we first consider a special case. Letting Σ_{A}, Σ_{B} be subshifts of finite type, suppose that a Markov equivalence between them is effected by a single shift-commuting hyperbolic homeomorphism $\varphi: \Omega_{A} \rightarrow \Omega_{B}$, so that $p \rightarrow p \circ \varphi^{-1}$ is an isomorphism between $\mathcal{M}(A)$ and $\mathcal{M}(B)$. (Note that the existence of a shift-commuting homeomorphism $\varphi: \Omega_{A} \rightarrow \Omega_{B}$ and consideration of σ-invariant measures are enough to guarantee $h\left(\Sigma_{A}\right)=h\left(\Sigma_{B}\right)$.)

As before, let $u=i_{-1} \cdots i_{0} \cdots i_{1}$ be a marker for φ, and write $u_{1}=i_{-1} \cdots i_{0}$, $u_{2}=i_{0} \cdots i_{1}$. Fix Σ_{A}-cycle $a=j_{0} j_{1} \cdots j_{k-1} j_{0}$, and suppose the least period of a is given by k. Fixing Σ_{A}-words $i_{l} k_{1} \cdots k_{l} j_{0}$ and $j_{0} k_{1}^{\prime} k_{2}^{\prime} \cdots k_{l}^{\prime} i_{-l}$, define Σ_{A}-cycles a_{n} by

$$
a_{n}=u_{2} k_{1} \cdots k_{l}\left(j_{0} j_{1} \cdots j_{k-1}\right)^{n} j_{0} k_{1}^{\prime} k_{2}^{\prime} \cdots k_{l}^{\prime} u_{1}
$$

For $n \in \mathbb{N}$, let $b_{n}=\varphi\left(a_{n}\right)$. The Σ_{B}-cycles b_{n} all start and end with the same symbol of Σ_{B}. For $p \in \mathcal{M}(A)$ we have $w_{p}\left(a_{n}\right)=w_{p \circ \varphi^{-1}}\left(b_{n}\right)$. Moreover:
(*) The ratio

$$
\left(w_{p}\left(a_{n+1}\right)\right) /\left(w_{p}\left(a_{n}\right)\right)=\left(w_{p^{\circ} \varphi^{-1}}\left(b_{n+1}\right)\right) /\left(w_{p^{\circ} \varphi^{-1}}\left(b_{n}\right)\right)
$$

is independent of n, provided n exceeds the memory of p.
Consider the multiplicative free Abelian group generated by $\Sigma_{B^{-}}$-transitions $\left(\Sigma_{B^{-}}\right.$ words of length 2). Regard the ratio b_{n+1} / b_{n} as an element of this group. Thus, b_{n+1} / b_{n} is regarded as a monomial in the transitions - a product of (possibly negative) integral powers of the transitions.

Let us say that a $\Sigma_{B^{\prime}}$-transition $i i^{\prime}$ is forced if $B(i, j)=0$ for all $\Sigma_{B^{\prime}}$-symbols $j \neq i^{\prime}$; otherwise the transition is unforced. In b_{n+1} / b_{n}, identify the forced transitions, by putting them all equal to the same indeterminate s. Ignoring powers of s, and letting N be such that $q \circ \varphi \in \mathcal{M}_{N}(A)$ for all $q \in \mathscr{M}_{1}(B)$, the unforced parts of b_{n+1} / b_{n} must be identical for all $n \geq N$; otherwise we could find $q \in \mathcal{M}_{1}(B)$ that would assign different values $w_{q}\left(b_{n+1}\right) / w_{q}\left(b_{n}\right)$ to them, and violate $(*)$. Thus there exist $\alpha \in \mathbb{Z}$ and a (reduced) monomial π in unforced transitions such that

$$
b_{n+1} / b_{n}=s^{\alpha} \pi
$$

for $n \geq N$. Furthermore, as $b_{N+n} / b_{N}=s^{n \alpha} \pi^{n}$ and b_{N} has finite length, π does not contain any negative powers of transitions. Letting $\beta \geq 1$ be the degree of π and
using the fact that the degree of b_{n+1} / b_{n} is given by the length k of $j_{0} j_{1} \cdots j_{k-1}$, we have $\alpha+\beta=k$. Denoting by γ_{n} the number of forced transitions in b_{n} and using $b_{N+n} / b_{N}=s^{n \alpha} \pi^{n}$ again,

$$
k n=\gamma_{N+n}-\gamma_{N}+\beta n .
$$

Hence,

$$
n(\beta-k)=\gamma_{N}-\gamma_{N+n} \leq \gamma_{N}
$$

for all $n \in \mathbb{N}$. It follows that $\beta-k \leq 0$. Therefore, $1 \leq \beta \leq k, \alpha+\beta=k$, and $\alpha \geq 0$.
We now know that b_{n+1} / b_{n} consists of k transitions, and the unforced transitions appearing in this ratio are independent of $n \geq N$. But, as forced transitions follow unforced ones, these too must be independent of $n \geq N$. Thus there exists a product ρ of k transitions such that $b_{n+1} / b_{n}=\rho$ for all $n \geq N$. Suppose, for the moment, that ρ corresponds to a well-defined Σ_{B}-cycle b of least period k. We then obtain a map Φ from $\Sigma_{A^{-}}$-cycles to Σ_{B}-cycles by putting $\Phi(a)=b$. It is easy to see, using weights, that Φ does not depend on the choice of the marker u or the connecting words $k_{1} \cdots k_{l^{\prime}}$ and $k_{1}^{\prime} k_{2}^{\prime} \cdots k_{l^{\prime}}^{\prime}$. The map Φ is such that a and $\Phi(a)$ have the same least period and

$$
w_{p}(a)=w_{p \circ \varphi^{-1}}(\Phi(a))
$$

for all $p \in \mathcal{M}(A)$. Since an inverse Φ^{-1} of Φ may be constructed by using φ^{-1} in place of φ, Φ is bijective.

The remaining task is to establish the following:
$(* *)$ The product ρ corresponds to a well-defined Σ_{B}-cycle of least period k.
To start with, note that the transitions appearing in ρ yield exactly the same collection of initial and terminal symbols, because the cycles b_{n}, b_{n+1} have this property. This means that ρ may be decomposed into a product of cycles. It is, therefore, easy to see that (${ }^{* *)}$) holds when the least period k of the Σ_{A}-cycle a is equal to one. We use induction on k. Assume that ($* *$) holds for $\Sigma_{A^{\prime}}$-cycles of least period lower than k, so that we already have the bijection Φ between cycles of period less than k. Decompose ρ into a product $\rho=\rho_{1} \rho_{2} \cdots \rho_{J}$ of Σ_{B}-cycles $\rho_{1}, \ldots, \rho_{J}$. If $J>1$ then the least periods of $\rho_{1}, \ldots, \rho_{J}$ are lower than k and we find that

$$
w_{p}(a)=\prod_{1 \leq j \leq J} w_{p}\left(\Phi^{-1}\left(\rho_{j}\right)\right)
$$

for all $p \in \mathcal{M}(A)$. Since this is impossible, we conclude that $J=1$ and that ($* *$) holds for cycles of least period k also.

We have thus dealt with the case where a Markov equivalence between Σ_{A} and Σ_{B} is established by a single homeomorphism $\varphi: \Omega_{A} \rightarrow \Omega_{B}$. It should, however, be clear that the above argument may be extended to the general case: Suppose that a Markov equivalence between Σ_{A} and Σ_{B} is established by a sequence of shiftcommuting hyperbolic homeomorphisms $\varphi_{i}: \Omega_{A} \rightarrow \Omega_{B}$. There is then a bijection Φ between $\Sigma_{A^{-}}$cycles and $\Sigma_{B^{-}}$-cycles, sending each $\Sigma_{A^{-}}$-cycle to a $\Sigma_{B^{-}}$-cycle of the same least period, which is determined by the sequence φ_{i} in the following way. If $j_{0} j_{1} \cdots j_{k-1} j_{0}$ is a Σ_{A}-cycle, there exists $I \in \mathbb{N}$ such that, for $i \geq I$, a marker $u=$
$i_{-I} \cdots i_{0} \cdots i_{l}$ for φ_{i}, Σ_{A}-cycles a_{n} of the form

$$
a_{n}=i_{0} \cdots i_{l} k_{1} \cdots k_{l^{\prime}}\left(j_{0} j_{1} \cdots j_{k-1}\right)^{n} j_{0} k_{1}^{\prime} \cdots k_{l^{\prime}}^{\prime} i_{-l} \cdots i_{0},
$$

and large n, the cycle $\varphi_{i}\left(a_{n+1}\right)$ differs from $\varphi_{i}\left(a_{n}\right)$ by $\Phi\left(j_{0} j_{1} \cdots j_{k-1} j_{0}\right)$.

4. Almost topological conjugacies

Almost topological conjugacies, which were first considered by Adler and Marcus [1], give an important finite way of constructing hyperbolic homeomorphisms between doubly transitive points of subshifts of finite type. In this section we concentrate on Markov equivalences established through almost topological conjugacies, and find conditions on the periodic points. These conditions, for this special case, straightforwardly lead to the correspondences of the previous section. For convenience, we assume throughout the section that Σ_{A}, Σ_{B} are aperiodic subshifts of finite type. We shall use the following combinatorial lemma.

Lemma 1. If a is a Σ_{A}-cycle of least period α and $l<\alpha$, then the number of distinct Σ_{A}-words of length l appearing in a is at least $l / 2$.

In other words, when a is regarded as a $\Sigma_{A_{l}}$ cycle, it contains at least $l / 2$ symbols of $\Sigma_{A_{t}}$. We omit the proof of this lemma.

Again, we first consider the case where a Markov equivalence between Σ_{A} and Σ_{B} is set up by a single almost topological conjugacy. We assume that we have a subshift of finite type Σ_{C} and continuous shift-commuting surjections $\theta: \Sigma_{C} \rightarrow \boldsymbol{\Sigma}_{A}$, $\psi: \Sigma_{C} \rightarrow \Sigma_{B}$ so that θ, ψ are one-to-one when restricted to Ω_{C} and the resulting homeomorphism $\varphi=\psi \circ \theta^{-1}: \Omega_{A} \rightarrow \Omega_{B}$ induces a bijection between $\mathcal{M}(A)$ and $\mathcal{M}(B)$. We have the following picture.

Lemma 2. If $z \in \Sigma_{C}$ is a periodic point, then $x=\theta(z)$ and $y=\psi(z)$ have the same least period.
Proof. Let α, β, γ be the least periods of x, y, z. Suppose $\alpha \neq \beta$; say $\alpha>\beta$. Choose n so large that the $\Sigma_{A_{n}}$-cycle corresponding to x has (at least) one transition which occurs in it only once. Assign a prime number π to this transition and 1 to every other $\Sigma_{A_{n}}$ transition to obtain a non-negative integral matrix S compatible with A_{n}. Let $\lambda>0$ be the maximum eigenvalue of S, and $p \in \mathscr{M}(A)$ the measure defined by the stochastic version of S. Writing $\Gamma(p)$ for the multiplicative subgroup of the positive reals generated by the weights (with respect to p) of Σ_{A}-cycles, it is easy to see that

$$
\Gamma(p) \subset\left\{\pi^{k} \lambda^{l}: k, l \in \mathbb{Z}\right\}
$$

Now let $q=p \circ \varphi^{-1} \in \mathcal{M}(B)$. According to [6], we then have $\Gamma(q)=\Gamma(p)$. In particular, $w_{q}(y) \in \Gamma(p)$. Using $w_{p}(x)=\pi \lambda^{-\alpha}$ and the fact that weights are preserved
by θ and ψ (see [5]), we find

$$
w_{q}(y)=\pi^{\beta / \alpha} \lambda^{-\beta} .
$$

This means that there exist $k, l \in \mathbb{Z}$ with

$$
\pi^{\beta-k \alpha}=\lambda^{\alpha(I+\beta)}
$$

Since λ is the maximum eigenvalue of an aperiodic matrix, this equation implies that $\lambda \in \mathbb{N}$. Moreover, as π is prime, λ must be a power of π, and we conclude that α divides β, which is impossible if $\alpha>\beta$.

Lemma 3. Two periodic orbits of Σ_{C} are mapped to the same Σ_{A}-orbit by θ if and only if they are mapped to the same $\Sigma_{\mathrm{B}^{-}}$orbit of ψ.
Proof. If, for example, two periodic orbits of Σ_{C} were sent to distinct Σ_{A}-orbits by θ while being identified by ψ, we could find $p \in \mathscr{M}(A)$ such that their common image in Σ_{B} would not have a well-defined weight with respect to $p \circ \varphi^{-1} \in \mathcal{M}(B)$.

Lemmas 2 and 3 show that, in the case under consideration, we can find a bijection Φ from the periodic orbits of Σ_{A} to the periodic orbits of Σ_{B} such that Φ has the following property. For each periodic orbit a of Σ_{A}, the orbits a and $\Phi(a)$ have the same least period and the sets $\theta^{-1}(a)$ and $\psi^{-1}(\Phi(a))$ are identical. Put another way, $\zeta_{A}=\zeta_{B}$ and θ and ψ restrict to the same map on the periodic points of Σ_{C}.

More generally, we would have a sequence of almost topological conjugacies

and a Markov equivalence between Σ_{A} and Σ_{B} would be established by the homeomorphisms $\varphi_{n}=\psi_{n} \circ \theta_{n}^{-1}: \Omega_{A} \rightarrow \Omega_{B}$. The behaviour of periodic orbits is now given by the following.

Proposition. There exists a bijection Φ from the periodic orbits of Σ_{A} to the periodic orbits of Σ_{B} with the following property. For each periodic orbit a of Σ_{A}, the orbits a and $\Phi(a)$ have the same least period and there exists $N \in \mathbb{N}$ such that the sets $\theta_{n}^{-1}(a)$ and $\psi_{n}^{-1}(\Phi(a))$ are identical for every $n \geq N$.
Proof. The proposition is established by using lemma 1 to generalize lemmas 2 and 3. We do this in detail for lemma 2. Let b be a periodic Σ_{B}-orbit of least period β, and find $\Sigma_{C_{n}}$-orbits c_{n} with $\psi_{n}\left(c_{n}\right)=b$. Let α_{n} denote the least period of $a_{n}=\theta_{n}\left(c_{n}\right)$. We claim that $\alpha_{n}=\beta$ for large n. To show this, we assume that the sequence α_{n} is unbounded. (Otherwise, there exists a Σ_{A}-orbit a with $a_{n}=a$ for infinitely many n and the proof of lemma 2 may be used directly.) By passing to a subsequence, we take $\alpha_{n}>2 \beta$. Using lemma 1 , there are more than β words of length $2 \beta+1$ appearing in the Σ_{A}-cycle corresponding to a_{n}. Hence, passing to a subsequence if necessary, we find a Σ_{A}-word $i_{1} i_{2} \cdots i_{2 \beta+1}$ and $\gamma_{n} \in \mathbb{N}$ such that $1 \leq \gamma_{n}<\alpha_{n} / \beta$ and $i_{1} i_{2} \cdots i_{2 \beta+1}$ appears γ_{n} times in the Σ_{A}-cycle corresponding to a_{n}. Assign a prime number π to the $\Sigma_{A_{2 \beta}}$-transition given by $i_{1} i_{2} \cdots i_{2 \beta+1}$ and 1 to every other $\Sigma_{A_{2 \beta}}$ transition to obtain a non-negative matrix S compatible with $A_{2 \beta}$. Let $\lambda>0$ be the maximum
eigenvalue of S and $p \in \mathcal{M}(A)$ the measure defined by the stochastic version of S. Find $q \in \mathscr{M}(B)$ with $p \circ \varphi_{n}^{-1}=q$ for large n. Then

$$
w_{q}(b) \in \Gamma(q)=\Gamma(p) \subset\left\{\pi^{k} \lambda^{\imath} \in \mathbb{Z}\right\} .
$$

For large n,

$$
w_{q}(b)=\left(\pi^{\gamma_{n}} \lambda^{-\alpha_{n}}\right)^{\beta / \alpha_{n}}=\pi^{\gamma_{n} \beta / \alpha_{n}} \lambda^{-\beta},
$$

so that there exist $k, l \in \mathbb{Z}$ with

$$
\pi^{\gamma_{n} \beta / \alpha_{n}} \lambda^{-\beta}=\pi^{k} \lambda^{l}
$$

As before, we find that

$$
\pi^{\left(\gamma_{n} \beta-k \alpha_{n}\right)}=\lambda^{\alpha_{n}(l+\beta)},
$$

λ is a power of π and α_{n} divides $\gamma_{n} \beta$, which is impossible since $\gamma_{n}<\alpha_{n} / \beta$. This proves our claim. Now note that lemma 1 may be used to also establish the following. Let c_{n}, c_{n}^{\prime} be periodic orbits of $\Sigma_{C_{n}}$. There exists a $\Sigma_{A^{\prime}}$-orbit a with $\theta_{n}\left(c_{n}\right)=\theta_{n}\left(c_{n}^{\prime}\right)=a$ for large n if and only if there exists a Σ_{B}-orbit b with $\psi_{n}\left(c_{n}\right)=\psi_{n}\left(c_{n}^{\prime}\right)=b$ for large n.

REFERENCES

[1] R. L. Adler \& B. Marcus. Topological entropy and equivalence of dynamical systems. Mem. Amer. Math. Soc. 219 (1979).
[2] R. Bowen \& O. E. Lanford. Zeta functions of the restrictions of the shift transformation. Proc. Symp. Pure. Math. Amer. Math. Soc. 14 (1970), 43-50.
[3] M. Boyle \& S. Tuncel. Infinite-to-one codes and Markov measures. Trans. Amer. Math. Soc. 285 (1984), 657-684.
[4] E. G. Effros. Dimensions and C^{*}-algebras. C.B.M.S. Regional Conference Seires 46, Amer. Math. Soc., Providence, 1981.
[5] B. Kitchens. Linear algebra and subshifts of finite type. In Proceedings of the Conference on Modern Analysis and Probability, Contemp. Math. 26, Amer. Math. Soc., Providence, 1984.
[6] W. Parry \& K. Schmidt. Natural coefficients and invariants for Markov shifts. Invent. Math. 76 (1984), 15-32.
[7] W. Parry \& S. Tuncel. On the classification of Markov chains by finite equivalence. Ergod. Th. \& Dynam. Sys. 1 (1981), 303-335.
[8] W. Parry \& S. Tuncel. On the stochastic and topological structure of Markov chains. Bull. London Math. Soc. 14 (1982), 16-27.
[9] W. Parry \& S. Tuncel. Classification Problems in Ergodic Theory. London Math. Soc. Lecture Notes 67, Cambridge Univ. Press, 1982.
[10] K. Schmidt. Invariants for finitary isomorphisms with finite expected code lengths. Invent. Math. 76 (1984), 33-40.
[11] K. Schmidt. Hyperbolic structure preserving isomorphisms of Markov shifts. To appear in Israel J. Math.
[12] K. Schmidt. Hyperbolic structure preserving isomorphisms of Markov shifts, II. Preprint.
[13] P. Walters. An Introduction to Ergodic Theory. Graduate Texts in Math. 79, Springer, New York, 1982.

[^0]: \dagger Current Address: Dept. of Mathematics, University of Washington, Seattle, WA 98195, USA.

