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On equidistant sets in

normed linear spaces

B.B. Panda and O.P. Kapoor

In this note some results concerning the equidistant set

E(-x, x) and the kernel M of the metric projection ?„ ,

where M is a Chebyshev subspace of a normed linear space X ,

have been obtained. In particular, when X = V (1 < p < °°) ,

it has been proved that every equidistant set is closed in the

fcw-topology of the space. In a no equidistant set has this

property.

0. Introduction

Let X be a real normed linear space. For any two distinct points x

and y of X , let E{x, y) denote the equidistant set from x and y ;

that i s , the set of points p in X for which ||p-x|| = \\p-y\\ . Such sets

were introduced by Kalisch and Straus in [6] in connection with their study

of "determining" sets in Banach spaces. In an inner-product space every

set E(x, y) is a closed hyperplane, but in general i t may not be even

weakly closed. Not much is known about spaces other than inner-product and

finite dimensional spaces in which sets E(x, y) are weakly or weakly

sequentially closed. The purpose of this paper is to make an attempt in

that direction.

In the first section we shall study a few geometrical and topological

properties of the set E(x, y) . For example, in Theorem 1.2 we prove

that, if E{x, y) is convex, then i t is a hyperplane and as a consequence,
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the convexity of a l l se ts E(x, y) implies that the space X i s an inner-

product space. The connection between the s t ruc tura l properties of the set

E(-x, x) and those of the kernel m of the metric projection P., where

M i s the l inear span of the point x , i s then exhibited in Theorem l.U

and Lemma 1.5. These resu l t s are closely related to the recent works of

Holmes and Kripke [ 4 ] , Kottman and Lin [S] , and Holmes [3] .

In the second section of this paper we show that V spaces

( l < p < ») have the property that a l l sets E(x, y) are closed in the

bounded weak topology. Thus these spaces sat isfy the P_-property (see

Klee [7 ] , p . 298). In contrast to Z -spaces, we find that in c . ,

E(x, y) i s not even weakly sequentially closed for any a; and y 6 a .

1 . Some p r o p e r t i e s of t h e e q u i d i s t a n t s e t E(-X, X)

We begin by reca l l ing some notations and defini t ions. Let AT be a

normed l inear space over the real numbers R , with 6 as i t s zero

element. Let x € X and K c X . A point y € K i s called a nearest

point of x in K , i f \\x-y\\ 2 ||as-a|| for every 2 € K . A set K c x

i s said to be proximal (respectively, Chebyshev) i f for each point x € X ,

there exis ts a (respect ively, a unique) nearest point of x in K . Let

M be a Chebyshev l inear subspace of X . The metric projection supported

by M wi l l be denoted by P., . I t i s known [ 3 , p . 160] that P.. induces
M M

a direct sum decomposition of X . Namely, every x € X can be written
Q

uniquely as x = m + y where m € M and y € M , where

MQ = {x € X : PM(x) = 6} . A/6 i s called the kernel of P^ .

. For x # 6 in X , l e t E{-x, x) denote the equidistant set from x

and -x ; tha t i s , the set of points y € X such that \\y-x\\ = \\y+x\\ .

Observe that each equidistant set is closed. If x and y € X and

\\x-y\\ = \\x+y\\ we say that x is orthogonal to y and write x ]_ y .

Thus E{-+x, x) i s then the set of a l l vectors in X which are orthogonal

to x . This concept of orthogonality i s named the isosceles orthogonality

and has been studied by James in [5 ] . We shal l need the following resul t

from [5 ] . For each pair of l inearly independent vectors x and y in
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X , there exists a number t (. R such that tx + y J_ x . By a cone in

X , we shall mean a set K such that x € K =* tx € K , for every non-

negative number t . With these preliminaries we pass on to the study of

some geometrical and topological properties of the set E(-x, X) .

LEMMA 1.1. Let x be any point of a two dimensional normed linear

space X . If E(-i, x) is convex then it must be a line through the

origin.

Proof. Let E(-x, x) be convex and s # 9 € E(-x, x) . By the

result of James for isosceles orthogonality such a point z exists. We

shall show that E(-x, x) = [z] , the one-dimensional subspace spanned by

z . First, since E{-x, x) is symmetric about the origin, the convexity

implies that {tz : \t\ £ l} c E{-x, x) . If y € E{-x, x) is linearly

independent from z , then either y and z or -y and z are separated

by the line [a;] . Since y € E(-x, x) implies -y 6 E(-x, x) , we assume

that the former holds. Then the line segment joining, y and z is

contained in E(-x, x) ; but since this line intersects [x] at a point

other than the origin it cannot be a point of E{-x, x) . Hence there is a

contradiction.

Now we show that E(-x, x) is unbounded. Let z € E(-x, x) and

X > 1 be arbitrary. Then again by James' result there exists a t in E

such that \z + tx € E(-x, x) . This implies that z and Xz + tx must

be linearly dependent. This is possible only if t = 0 . Hence the result

is proved.

THEOREM 1.2. Let x t 6 he any point of a normed linear space X .

If E{-x, x) is convex then it must be a proximal subspace of codimension

one.

Proof. Let E{-x, x) be convex and z be any point of X outside

[x] . Then E(-x, x) n [x, z] is convex and by Lemma 1.1, it must be a

line. Thus if z € E(-x, x) , then [z] c E(-x, x) . Consequently,

E(-x, x) is a convex cone symmetric about the origin. Hence it is a

subspace. Now let u € X . Then either u - \x or, by James' result,

u + Xx = z € E{-x, x) for some X . Thus E(-x, x) and x together span

X . Therefore E(-x, x) is of codimension 1 . Since every equidistant

set is closed it follows that E(-x, x) is a closed subspace.

Now let h € E(-x, x) . Then ||x-fc|| = ||x+fr|| and hence G is a
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nearest point of x in E(-x, x) . If a € R , then

for a l l h in E{-x, x) and hence 9 is also a nearest point in

E(-x, x) t o (xx . As any w (. X has a representation w = ax + h , where

h € E(-x, x) , we have

= ||ax|| < Houc-all , z € E(-x, x) ,

which implies

IMz|| 5 ||«-«-ft|| , z € E{-x, x) .

But E(-x, x) t e ing a subspace, z + h £ E(-x, x) and hence \

||w-?z|| £ ||u-u|| for every U in E(-x, x) . Thus every u in ^ has a

nearest point in E(-x, x) .

As a consequence of the above theorem we have, under weaker

assumptions, the following characterization of inner-product spaces [ I ,

Theorem 5.U].

COROLLARY 1.3. Let X be a normed linear space. If E(-x, x) is

convex for each x € X , then X must be an inner-product space.

Proof. Immediate from the above theorem and Day's r e su l t .

In the sequel, M denotes the kernel of the metric projection P ,

where A? i s a Chebyshev subspace. We then have the following theorem.

THEOREM 1.4. Let M be the one dimensional span [x] of x in a

normed linear space X . Let M be Chebyshev. Then the following hold:

(1°) Me c E(-x, x) =» A/6 = E(-x, x) ;

(2°) E{-x, x) is a cone °* Af8 = E(-x, x) .

We need the following result in i ts proof.

LEMMA 1.5 IS, Lemma 1 ] . If x Z X and M = [x] is Chebyshev, then

PM[E{-x, X)) C {tx : -1 £ t 5 l} .

Proof of Theorem 1.4 (1°). If u € E(-x, x) then P,.(u) = ax with

Iot | 5 1 . Since ||M-X|| = ||w+x|| and u has a unique nearest point in
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[x] , | a | + 1 . We can write u = u~ + ax where u. € AT and, since

XuQ € Af9 c E(-x, x) for a l l X € R , we have MQ J_ ux for a l l u € i? ;

that i s ,

Hwg-pxll = ||Me+ux|| , p € i? .

In par t icu la r , with u = 1 - a , we have

il«+(l-2a)x|| = ||ug+ax+(ii-a)x|| = ||wg+ux||

= Hwg-uxll = ||M-X|| = ||w+x|| = r , (say).

So the sphere centred at u and radius r meets M in at least three

points: -x, +x , and (-l+2a)x , which is impossible unless 1 - 2a = ±1 .

Thus a = 0 or a = +1 and the latter, we saw above, is also impossible.

Therefore a = 0 and u € AT .

Q
(2°). Let u € M . Then there exists a number t such that

w - fee € E(-x, x) . Since P..(ff(-x, x)) c {ax : \a\ £ 1} , we have

|t| £ 1 . Because 2?(-x, x) is a cone, u - tx € E(-x, x) implies

Xu - Xtx € E{-x, x) for arbitrary X in i? . But Xu € AT , V X € i? ,

and hence we must have |Xt\ £ 1 . This is possible only when t = 0 .

Hence M c E(-x, x) and, by (l°) above, A/6 = ff(-x, x) .

However, M is a subspace does not imply that E(-x, x) is also a

subspace. In fact Kottman and Lin [8] have given an example where M is

a closed hyperplane, but E{-x, x) is not even weakly sequentially closed.

In the following we see the relation between M and £(-x, x) as

regards weak topology, where M = [x] is given to be Chebyshev. We give a

simple proof of a result in [S].

THEOREM 1.6. Let M = [x] be a Chebyshev subspace of a normed
Q

linear space X . Then M is weakly (bounded weakly, or weakly

sequentially) closed if E(-x, x) is weakly (bounded weakly, or weakly

sequentially) closed.

Proof. We consider the case when E(-x, x) is weakly closed, the
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other cases being similar. Let {M } c AT be a net which converges weakly to

u € X . Suppose that u {: M ; then taking 2z = PM(
U) w© can find a net

{ta} of real numbers such that u - t z € E(-z, z) and \t | £ 1 . If

tQ is a cluster point of the net {t } , then \t | £ 1 , and since

E(-z, z) is weakly closed, being a scalar multiple of E{-x, x) ,

u - t z 6 E{-z, z) . Therefore, P [u-t z) = 2s - t z € {tz : 111 £ l} .

This means 1 £ t £ 3 and hence t = 1 . It follows then that

u - z € £(-3, s) ; that is, ||u-9|| = ||w-22|| = ||M-P..(M)|| , and this

M

contradicts the Chebyshev property of M . This proves the result.

In the following we consider a structural property of the set

E{-x, x) .

THEOREM 1.7. Let E(-x, x) be a convex subset of a normed linear

space X with \\x\\ = 1 . Then E(-x, x) 'is Chebyshev if and only if x

is an extreme point of the unit ball of X .

Proof. Let E(-x, x) be a Chebyshev set. It will be actually a

subspace because of Theorem 1.2. If x is not an extreme point of the

unit ball of X , then there exists a pair of points x. and Xp in the

unit sphere S = {z £ X : \\z\\ - l} such that x = %(x +x_) and

I = {tx1+{l-t)x2 : 0 £ t £ l} is contained in 5 . Now

||x1-x-x|| = ||x2l| = 1 = HxJ = Hx

and hence x - x € E(-x, x) . Similarly x? - x € E(-x, x) . Thus

x. , x € E(Q, 2x) and since E(-x, x) is a subspace, I c E(d, 2x) . As

E(-x, x) i s Chebyshev and h € £ ( - x , x) implies that ||x-7z|| = ||x+ft|| , we

must have

1 = ||x|| = inf{||x-?i|| : h € E(-x, x)} .

Hence the origin is the nearest point of x in E(-x, x) . This in turn

implies that the origin has the nearest point x in £(8, 2x) . But x € J

and every point of I has norm 1 . This contradicts the Chebyshev

property of 2?(9, 2x) .
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Conversely, it is easy to see that if x is an extreme point of the

unit ball, then 9 is the unique nearest point in E(-x, x) to Xx ,

X € R . Hence if u = z + Xx , and z € E(-x, x) , then z is the unique

nearest point to u . Therefore E{-x, x) is Chehyshev.

In the following we illustrate Theorem l.T hy two examples.

EXAMPLE 1.8. Take X = R2 with the sup norm, x = (l, l) and

z = (-1, l) . It is easy to see that E(-x, x) = [z] and E(-z, z) = [x]

are Chebyshev subspaces, and x and z are extreme points of the unit

ball of X .

EXAMPLE 1.9. Let X = I1 and let e. be the vector with 1 at the

ith place and zero otherwise. Then E[-^e., e.) = {z € t : z(i) = 0} is

a closed hyperplane. If a U , then the unique nearest point to u in

E[-e., e.) is z , where z(j) = (l-6..)u(j) , 6.. being the Kronecker

delta. Thus the set E\-e., e.) is Chebyshev. Clearly e. is an extreme

point of the unit ball of I . Also, if we write M. = \e A , thenA

A/? = E[-e., e.) .

2. Nature of equidistant sets in Zp spaces

Let AT be a normed linear space and let E(x, y) be the equidistant

set from x and y € X . The space X is said to have

(1) property P if for all x, y € X , E(x, y) is weakly closed,

(2) property P if for each x € X with ||x|| = 1 , there exists

e > 0 such that whenever y and z are distinct points of

the set x + e U , then the intersection E{y, x) n (e u)
x x

is weakly closed, U denoting the unit cell of X .

That there is a connection between properties P and P and the

continuity behaviour of metric projections onto Chebyshev sets is indicated

by a result of Klee [7, Proposition 2.53. Not much is known about spaces

having the property P. . Apart from the finite dimensional and inner-
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product spaces, no other example of spaces possessing the property P, has

appeared in the l i terature. In the following we shall show that each equi-

distant set in an lP space (l < p < <*>) is closed in the bounded weak

topology. It is easy to see that we need only consider equidistant sets of

the form E(-x, x) . We start by proving a simple inequality.

LEMMA 2 . 1 . Let p > l and y and z be any two complex numbers.

Then the following inequality holds:

(2.1)

Proof. Using the triangle inequality we see that we need only prove

(2.2)

The result then follows from the following simple inequality, which can be

proved by using elementary methods of differential calculus:

(2.3) (l+xf - (l-x)P 5 0 ± x S 1 .

We next prove a variant of Lebesgue's Dominated Convergence Theorem

for I . This will be used to prove the main result of this section.

THEOREM 2.2. Let {<j> , D} be a net in I converging pointwise to

<|> . If there exists a net [f , D] in I which converges in norm to an

element f and if |<f> | 5 / for every a 6 D , then I and

=l i=l

Proof. Clearly if f J . The rest then follows from the following
inequality:

1
i=X

\\fa-f\\
+ 2

REMARK 2.3. Taking

*n = fn = enln w h e r e eiU) = 6ij '
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and observing that {<)> } is not dominated by a single f f i , we see

that Theorem 2.2.could be applied in situations in which Lebesgue's

Dominated Convergence Theorem does not help.

THEOREM 2.4. Let x be any point of lp ( l < p < ») . Then

E(-x, x) is closed in the bounded weak topology of the space.

Proof. Let {u , D] be a bounded net in E{-x, x) converging weakly

to u . Then

that i s ,

Let

||ua-x|| = \\ua+x\\ for a l l a € D ;

i=X
= 0

i) = \ua(i)-x(i)\
P - \ua(i)+x(i)\

p

i) = \u(i)-x(i)\p - \u(i)+x{i)\p ,

wa(i) =

V(i) = \x(i)\ .

Clearly, z,w,z,w<Ll and z •*• z pointwise. By Lemma 2.1, we have

(2.5) (i)\ < w (i) for all a f j .

Also {g } is a bounded net in l" converging pointwise to 9 , where

- + — = 1 . As p > l , this implies that ga -^+ 9 . Moreover,

(2.6)
£=1
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where ( g , y) represents the value of the bounded linear functional

y € Tp at g € fl . An easy application of Theorem 2.2 to (2.5) and

(2.6) then gives the required result.

REMARK 2.5. Let x be an element of iP (l 5 p < ») with finitely

many nonzero coordinates. That E(-x, x) is weakly closed can be verified

easily. We do not know whether in Theorem 2.k the bounded weak topology

can be replaced by the weak topology or not.

COROLLARY 2.6. Let M be a closed linear subspace of Tp

(1 < p < oo) t P the metric projection onto M . Then ?„ is continuous

both from the strong to strong topology, and from the bounded weak to

bounded weak topology on Tp .

Proof. The uniform convexity of Tp (l < p < °°) implies that M is

Chebyshev and P., is continuous from the strong to strong topology of
M

Tp . To show that P.. is continuous in the bounded weak topology of iP ,
M

we first observe that for each x € X , and for M = [x] , M is bounded

weakly closed on account of Theorems 1.6 and 2.U. By the kernel inter-

section theorem of [4] we have M = D M . Thus AT is bounded weakly

closed. The result then follows from the following result of Holmes [3,

p. 170]. If M is reflexive, then P is bu-continuous if and only if

Q
M i s bu-closed.

REMARK 2.7. The above has been essentially observed by Holmes [2] by

using the fact that I spaces (l < p < °°) have a weakly continuous

duality mapping.

In the case of I , since strong and weak sequential convergence

coincide, E(-x, x) is weakly sequentially closed for each x . However,

this property of Tp spaces is not present in I>{\i) spaces (1 < p < °°,

p # 2) where y is a separable nonatomic measure. Lambert [9] has shown

that M is weakly sequentially dense for any finite dimensional Chebyshev
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subspace M and consequently E(-x, x) cannot be weakly sequentially

closed for any x in such spaces. In the following we show that e_ also

does not have this property.

THEOREM 2.8. Let x be any point of cQ . Then E{-x, x) is not

weakly sequentially closed.

Proof. Let x = [x^, x , x , ...) € c . Take

0 , if i + n ,

2||x||sgnxn + xn , i f i = n and x^ # 0 ,

2||x|| , i f i = n and x^ = 0 .

Then \\z -x\\ = \\z -2x|| = 2||x|| for sufficiently large n . Hence

z € E(x, 2x) eventually. But z converges weakly to 9 and

9 ^ E(x, 2X) . Therefore E(x, 2x) and consequently E(-x, x) is not

weakly sequentially closed.

COROLLARY 2.9. No one-dimensional Chebyshev subspace of . oQ can

have a weakly sequentially continuous metric projection.

Proof. Let M = [x] be Chebyshev and z be the sequence described

in Theorem 2.8. Then PAZ ) d {tx : 1 5 t 5 2) for sufficiently large

n , and P,.(9) = 9 . So P,,[z ) + 9 . Hence P,, is not weakly
M Wv n' M

sequentially continuous.
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