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ABSTRACT. Cryoconite is a dark-coloured granular sediment that contains biological and mineralogical
components, and it plays a pivotal role in geochemistry, carbon cycling and glacier mass balance. In this
work, we collected cryoconite samples from Laohugou Glacier No. 12 (LHG) on the north-eastern
Tibetan Plateau during the summer of 2015 and measured the spectral albedo. To explore the impacts
of this sediment on surface ablation, the ice melting differences between the cryoconite-free
(removed) ice and the intact layers were compared. The results showed that the mean concentrations
of black carbon (BC), organic carbon (OC) and total iron (Fe) in the LHG cryoconite were 1.28,
11.18 and 39.94 mg g ', respectively. BC was found to play a stronger role in solar light adsorption
than OC and free Fe. In addition, ice covered by cryoconite exhibited the lowest mean reflectance
(i.e.,, <0.1). Compared with the cryoconite-free ice surface, cryoconite effectively absorbed solar
energy and enhanced glacial melting at a rate of 2.27-3.28 cm d~', and free Fe, BC and OC were esti-
mated to contribute 1.01, 0.99 and 0.76 cm d ', respectively. This study provides important insights for

understanding the role of cryoconite in the glacier mass balance of the northern Tibetan Plateau.
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1. INTRODUCTION

Cryoconite is a dark-coloured granular sediment found in
supraglacial environments, and it represents an aggregate
of mineral particles, black carbon (BC) and organic matter
(OM) formed by microbial communities (Hodson and
others, 2008; Stibal and others, 2012; Cook and others,
2016). This sediment originates from supraglacial and
englacial entrainment, landslides from valley walls and
aeolian processes through both natural and anthropogenic
pathways (Mcintyre, 1984; MacDonell and Fitzsimons,
2008). Cryoconite significantly accelerates glacial melting
by reducing the surface albedo and absorbing substantial
solar radiation because of its dark colour (Takeuchi and
others, 2015). Accordingly, cryoconite can often be found
in small ice-lidded holes on the Antarctic ice sheet
(Foreman and others, 2007), open holes or dispersed over
the ablation surface of the Greenland ice sheet (Boggild
and others, 2010), European Alpine glaciers (Di Mauro and
others, 2017) and Tibetan glaciers (Dong and others,
2016). Thus, it is important to study the roles of cryoconite
in surface albedo reduction and ablation, particularly in
areas where glaciers are experiencing rapid shrinking.

BC can strongly enhance absorption at visible and near-IR
wavelengths (Dal Farra and others, 2018), whereas iron
oxides, the primary light-absorbing component in mineral
dust, reduce UV and visible reflectance (Lafon and others,
2006; Zhang and others, 2015). Therefore, BC and iron
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oxides have been regarded as the strongest light-absorbing
impurities (LAls) in the atmosphere and on ice and snow
after deposition (Tegen and others, 1997; Sokolik and
Toon, 1999; Hansen and Nazarenko, 2004; Flanner and
others, 2007; Bond and others, 2013). Spatiotemporal varia-
tions in BC and dust (also Fe) have been observed, and their
climatic implications have been assessed with respect to
mountain glaciers (Qu and others, 2014; Kaspari and
others, 2015; Li and others, 2017; Zhang and others,
2017a), ice sheets (Clarke and Noone, 1985; Doherty and
others, 2010; Aoki and others, 2014) and seasonal snow
(Painter and others, 2010; Huang and others, 2011;
Doherty and others, 2014). However, studies reporting the
concentrations of LAls in cryoconite remain limited. In the
Morteratsch Glacier (Swiss Alps), the concentrations of BC
and Fe in cryoconite were 2.2-10 and 27.7-50.5 mg g™,
respectively (Baccolo and others, 2017; Di Mauro and
others, 2017). The Fe concentrations in cryoconite from a
Himalayan glacier (25.1+2.2mgg™') were higher than
those from Arctic glaciers (16.7-22.3 mgg™") (Singh and
others, 2017), and the highest Fe concentration in cryoconite
was reported for the Qiyi Glacier in the central Qilian
Mountains (44.8-53.6 mg gq) (Wu and others, 2016).
However, most studies have focused on the total mass per
unit area or treated the OM in cryoconite as the only solar
light absorber. The abundance of cryoconite on glacial abla-
tion surfaces in the Arctic (Takeuchi and others, 2001a,
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2014) was found to be much lower than that on glaciers on
the Tibetan Plateau and its surroundings, which is referred
to as the Third Pole (Takeuchi and others, 20015, 2005,
2006). The amount of OM contained in cryoconite repre-
sented <3% of the total impurities in Antarctica (Foreman
and others, 2007) and represented 5-10% of the total impur-
ities in the Third Pore (Takeuchi and others, 2001b, 2005,
2006; Takeuchi and Li, 2008), the subarctic (Takeuchi and
others, 2001a; Stibal and others, 2006) and Greenland
(Hodson and others, 2010; Takeuchi and others, 2014).
Recently, Cong and others (2018) found that the OM in cryo-
conite was the most important light absorber at wavelengths
of 450 and 600 nm and that goethite played a stronger role
than BC at shorter wavelengths for most glaciers on the
Tibetan Plateau. Moreover, it has been suggested that ice
algae, especially during blooms, can darken the surface of
the Greenland ice sheet (Yallop and others, 2012; Wang
and others, 2018; Williamson and others, 2018). In addition,
Ganey and others (2017) determined that microbial commu-
nities on the snow surface contributed to 17% of the total
melting on an Alaskan icefield.

Compared with snow and ice surfaces, cryoconite typic-
ally exhibits stronger light absorption, and its broadband
albedo is <0.1 due to its effective absorption of visible and
near-IR wavelengths (Beggild and others, 2010; Di Mauro
and others, 2017). Thus, cryoconite can effectively influence
the mass balance of glacier surfaces. In the ablation area of
the Yala Glacier (Nepal Himalaya), dark-coloured cryoconite
accelerated surface melting at a rate approximately three-
fold greater than that of impurity-free bare ice from which
cryoconite material had been removed (Kohshima and
others, 1993). In Russian Siberia, impurities increased the
melting rate of ice surfaces by a factor of 1.6-2.6 with
respect to clean bare ice without impurities (Takeuchi and
others, 2015). However, studies on the impacts of LAls in
cryoconite on albedo reduction and glacial melting in the
Third Pole are still limited. Glaciers in this region could be
greatly affected by the emissions of anthropogenic pollutants
from East and South Asia (Kopacz and others, 2011).

This study aimed to describe the reduction in albedo and
the enhancement of surface ablation by cryoconite in the
western Qilian Mountains. In the present work, cryoconite
samples were collected from Laohugou Glacier No. 12
(LHG) on the north-eastern Tibetan Plateau during the
summer of 2015. The size distribution of incoherent granular
cryoconite particles was measured (range 0.02-2000 pm),
and we evaluated the concentrations and light absorbability
of BC, organic carbon (OC) and Fe in cryoconite.
Furthermore, the spectral and broadband albedos of both
cryoconite and snow/ice surfaces were examined. A control
experiment was carried out in the field to investigate the role
of cryoconite in the acceleration of glacial melting.

2. DATA AND METHODS
2.1 Study area

LHG is the largest valley glacier in the western Qilian
Mountains, and it is located on the north-eastern Tibetan
Plateau (96°30'—35’E, 39°25'—30’N; 4260-5481 m;
Fig. 1a); faces northwest; covers an area of 20.4 km?; and
is ~9.85 km long (Du and others, 2008). The average equilib-
rium line altitude of LHG is ~5015 m (Chen and others,
2017). The climate is typically arid and continental
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because it is controlled by the Siberian anticyclone and the
westerly wind regime (Zhang and others, 2013). Since
1957, the terminals of LHG has retreated 240 m (Du and
others, 2008), and the surface height has decreased by
18.6 £5.4 m, corresponding to a total volume loss of
0.218 km® (Zhang and others, 2012). Over the same time
period, the entire glacial area in the river basin has been
reduced by 11.59% (Zhang and others, 2013) as a result of
the increase in the annual mean temperature of 0.3°C per
decade (Qin and others, 2015). Moreover, Sr-Nd isotopes
and rare earth element geochemistry have indicated that
dust in LHG primarily originates from the nearby Qaidam
basin and the Tengger and Badain Jaran Deserts via long-
range transport (Wei and others, 2017).

2.2 Sample collection

In the beginning of July 2015, cryoconite was commonly
found in holes at a few centimetres deep and a few milli-
metres/centimetres wide. However, when we collected the
samples, the cryoconite typically appeared as surface cryo-
conite and cryoconite basins and mounds. Surface cryoco-
nite (i.e., dirty ice) is defined as a mixture of cryoconite
granules and ice crystals on the glacier surface. Cryoconite
basins are holes whose widths exceed their depths, and the
floors of these basins are entirely covered by a combination
of cryoconite material and water. Cryoconite mounds are
composed of damp cryoconite materials that are concen-
trated and exposed on the glacier surface.

In total, 23 cryoconite samples from the ablation zone on
LHG were collected with a stainless-steel shovel at elevations
from 4350 to 4598 m on 25 July (nine samples, J1-J9) and 13
August 2015 (eight samples, A1-A8) and from 4598 to 4848
m on 16 August 2015 (six samples, A9-A14) (Fig. 1b).
Sample sites of 25-400 cm” area were established with an
approximate elevation interval of 50 m, typically on flat
and homogeneous surfaces and along the centre line of
LHG, and cryoconite was taken from the top 1-3 cm. The
cryoconite samples were stored in Nalgene bottles (250 ml,
high-density polyethylene) and then transported to the State
Key Laboratory of Cryospheric Science (Lanzhou) within a
container filled with ice. All the samples were kept frozen
until further analysis.

2.3 Laboratory analysis

2.3.1 Grain size measurement

The cryoconite samples were freeze-dried at —70°C and then
divided into six subsamples for measuring grain size, total Fe,
BC, total carbon (TC), inorganic carbon (IC, i.e., carbonate)
and backup. The original subsamples for measuring grain
size were weighed to ~0.35 g using a microbalance (accur-
acy: 0.1 mg). The samples were then treated sequentially
with 10 ml of 30% H,O, (to remove OM), 10 ml of 1.5 M
HCl and 10ml of 1% sodium hexametaphosphate
[(NaPOs)g] dispersant and sonicated for 90 s for dispersal
(Feng and others, 2014). A Malvern Mastersizer 3000 was
employed to examine the grain size distributions of the cryo-
conite samples.

2.3.2 Analysis of total Fe
Subsamples for the total Fe and carbonaceous matter ana-
lyses were ground into powder form (sieved in 75 pm).
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Fig. 1. (a) Topographic map (units: m) of LHG in the western Qilian Mountains, with (b) the sampling sites marked. The control experiments
were implemented at A1-8. (c) Typical surface in the ablation zone of LHG and (d) glacier ice covered by debris and cryoconite at A8.

Subsamples (~20 mg) for total Fe were dissolved via a pres-
surized acid digestion procedure following previously
described methods (Liang and others, 2000). The abun-
dances (by mass) of total Fe in the cryoconite was determined
using inductively coupled plasma optical emission spectrom-
etry (Teledyne Leeman Labs). A USGS geochemical refer-
ence standard (Andesite, AGV-2) was repeatedly measured
to ascertain the accuracy and precision of the total Fe mea-
surements. The measured values for total Fe agreed well
with the standard (recovery of >94%). For each sample,
total Fe was measured three times, and the relative std dev.
were all <10%.

2.3.3 Measurement of carbonaceous matter

Elemental carbon (EC) is typically used as a proxy for BC
because they are composed of the same fraction of carbon-
aceous particles (Lavanchy and others, 1999). In the
present work, a procedure for separating BC from lake sedi-
ments was adapted for determining the BC in the cryoconite,
and the detailed protocol can be found in previous papers
(Han and others, 2011; Cong and others, 2013). Briefly,
~0.1 g of the powder subsamples for BC was acid-treated
(HCI and/or HF) to avoid disturbances in the carbonates
and other minerals, and the samples were then filtered via
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quartz fibre filters (Tissuquarz 2500QAO0-UP, Pall, USA)
that were 47 mm in diameter and presented an even distribu-
tion. The filters were analysed for BC using a thermal-optical
carbon analyser (DRI 2015 model) according to the
IMPROVE-A protocol, with the standard OC-EC split at
635 nm (Chow and others, 2007), and we used varieties of
the thermal-optical reflectance (TOR) and transmittance
(TOT) signals to determine the BCror and BCror, respect-
ively. Moreover, three blanks were prepared and analysed
following the same procedure as the samples, although no
BC was detected. TC and IC were analysed using a TOC-
Vepn carbon analyser (Shimadzu Corp., Japan), and the
results were calculated as mass percentages. Thus, OC =
TC — IC — BC (the average of BCtog and BCror).

2.4 Measurement of spectral albedo

The reflectance measurements of cryoconite/snow/ice
surface were carried out with an Analytical Spectral
Devices FieldSpec 3 (ASD® FS-3) spectroradiometer (radi-
ation wavelengths: 350-2500 nm) during the field survey in
2015. To cover the sample surface, the sensor (25° collimat-
ing lens) was held at an ~0.5 m height (footprint: 386 cm?)
directly above the sample surface. A nearly perfect
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Lambertian reflector was used as a white reference surface,
which was measured before and after each new measure-
ment (Cook and others, 2017). At each site, the spectral
albedos were measured ten times and averaged within 5
min, with the assumption that the effect of atmospheric and
illuminative conditions cannot be altered (Negi and
Kokhanovsky, 2011).

To minimize disturbances from significant stray light at
shorter wavelengths, we calculated only the broadband
albedos at radiation wavelengths from 500 to 2500 nm via
a standard terrestrial solar spectral irradiance distribution,
which was provided by the American Society for Testing
and Materials (ASTM G-173-03 data). The broadband
albedo (abroad) Was calculated by Eqn (1):

20 Gnarrow (4)i(2)dA
QObroad = 2500 . (1)
w00 [(A)dA

where anarowd) and i(2) denote the measured narrowband
albedo and incoming solar irradiance reference at
wavelengthA, respectively (Ming and others, 2013).

2.5 Calculation of Incident Radiative Forcing

In terms of the broadband albedo (ai,02q) and broadband
albedo reduction caused by LAls (AR, the Incident
Radiative Forcing (IRF) absorbed by the glacier surface and
LAls can be obtained using Eqn (2):

IRFx = Rin_short X (1 — a)l?road) = Rin_short X AREroad (2)

where Rin_short indicates the incident incoming shortwave
solar radiation measured by Kipp and Zonen Net Radiation

LITE radiometers (300-2800 nm), which were set up at a
height of 1.5 m in the ablation zone of LHG (39.478°N,
96.535°E; 4550 m). Radiation data for the study period are
presented in Fig. S1.

2.6 Control experiment

To assess the effect of cryoconite on surface ablation, a
control experiment was implemented in the field. The cryo-
conite material on the glacier surface ice (covering an area
of at least 30 x 30 cm) was removed from AT1-A8 (11 sites,
two sites at A1, A6 and A8) in the LHG ablation zone on
13 August 2015 (Fig. 1b). First, the majority of cryoconite
material was removed with a sterile stainless-steel shovel,
and then we washed the surface ice by water to clean the
residual cryoconite. The spectral albedos and changes in
surface conditions were measured, and comparisons were
conducted between the experimental plots (cryoconite-free
glacier ice) and the control plots with intact cryoconite
layers from 13 to 25 August 2015.

3. RESULTS AND DISCUSSION

3.1 Particle size distribution

The grain size distributions of the cryoconite particles clearly
illustrated that cryoconite was primarily composed of silt
grains (~2-63 pm), which accounted for 81.9-89.7% of the
total cryoconite (Fig. 2). The mean clay grain (<2 um)
content ranged from 4.6 to 8.0%. The mean sand (>63 um)
content ranged from 3.2 to 12.4%, with an average of
8.1%. In addition, the grain size distribution showed a uni-
modal pattern with a modal size of 9.8-14.5 pm, which is
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Fig. 2. Grain size distributions of cryoconite particles measured during the two expeditions shown in Figure 1. The size categories are as
follows: clay (diameter <2 um), fine silt (2-6 mm), medium silt (6-20 pm), coarse silt (20-63 pm), fine sand (63-200 pm), medium sand

(200-600 pm) and coarse sand (600-2000 pm).
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similar to that described in previous deposition studies on
LHG cryoconite (Dong and others, 2016), melting water
(Dong and others, 2014a) and snow pits (Dong and others,
2014b), larger than that in aerosol samples (Xu and others,
2013) but smaller than that in surface soils from potential
sources (Zhang and others, 2016).

3.2 Concentrations and light absorption of Fe and
carbonaceous matter in cryoconite

In this study, the total Fe concentrations ranged from 15.46 to
51.92mgg ', with a mean value of 39.94 mgg™"' (Fig. 3a),
which is similar to the observed total Fe concentrations in
cryoconite from LHG (Cong and others, 2018), aerosols
from Dunhuang (180 km away from LHG) (Zhang and
others, 2003) and samples of the upper continental crust.
Similar levels of total Fe in cryoconite have also been reported
in previous studies on Qiyi Glacier in the central Qilian
Mountains (Wu and others, 2016), Urumgi No. 1 Glacier in
the Tienshan Mountains, Baishui No. 1 Glacier in the
Yulong Mountains (Cong and others, 2018) and Morteratsch
Glacier in the Swiss Alps (Baccolo and others, 2017). The
aforementioned total Fe concentrations were much higher
than those recorded at glaciers in the Himalaya and Arctic
(Singh and others, 2013, 2017) (Table 1).

BC is primarily obtained from the incomplete combustion
of biomass and fossil fuels, and it is considered to be
the second largest warming agent after CO, (Bond and
Bergstrom, 2006; Ramanathan and Carmichael, 2008). East
Asia and South Asia are the largest emitters of BC (Lu and
others, 2012), which can be transported to the Tibetan
Plateau (Luthi and others, 2015). Therefore, BC in the
Tibetan Plateau has become an important research topic in
recent years. In general, the concentrations of BCrog in the
LHG cryoconite (0.59-1.74 mgg~') were ~5% more than
the concentrations of BCror (0.61-1.69 mg g”) shown in
Fig. S2, which is consistent with the results of a previous
study (Chen and others, 2015), and this phenomenon is
related to the recovery of the initial transmittance signal
value after a delay. In this study, the BC concentration was
based on the average concentrations of BCror and BCror
at each sampling site, and it averaged 1.28 +0.25mgg™"
(Fig. 3a). Our data are consistent with previously reported
BC concentrations in cryoconite across the Third Pole
but lower than those reported for Baishui No. 1 Glacier in
the Yulong Mountains (Cong and others, 2018) and
Morteratsch Glacier in the Swiss Alps (Baccolo and others,
2017) (Table 1). The higher values in the latter regions are
indicative of greater anthropogenic influence. Baishui No.
1 Glacier is typically affected by anthropogenic BC trans-
ported from South Asia and East Asia (the largest BC emitters)
via the Indian summer monsoon and East Asian summer
monsoon (Niu and others, 2018), and Morteratsch Glacier
is located within tens of kilometres from the most industria-
lized and inhabited region of Europe, the Po Valley. BC
sources to LHG, however, are separated by several
hundred kilometres (e.g., Hexi Corridor) or thousand kilo-
metres (e.g., eastern China).

Furthermore, BC can be divided into char (BC measured at
low temperature (580°C) minus the pyrolysed carbon, BC, 1)
and soot (the sum of BC measured at high temperatures (740
and 840°C), BCyy7) based on the IMPROVE-A protocol. The
ratio of BC 1 to BCyr can be used to identify the source
(Han and others, 2007; Cong and others, 2013). In the
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Fig. 3. (a) Concentrations of total Fe and carbonaceous matter in
cryoconite collected on the surface of LHG during the summer of
2015. (b) Proportions of total light absorption contributed by OC,
BC, hematite and goethite. Error bars indicate the std dev..

LHG cryoconite, the values of BCt_tor/BChr_tor and
BC 1_t1o1/BChr_toT varied from 0.58 to 1.75 and from 0.5
to 1.82, respectively (Fig. 4), indicating that fossil fuel con-
tributed the majority of BC in the LHG cryoconite. This
finding is compatible with the recent source-diagnostic
A'C/8'>C compositions of BC isolated from LHG snow pit,
which revealed that fossil fuels contribute 66 +16% (Li and
others, 2016).

In this study, TC was divided into IC, OC and BC. TC con-
centrations in the LHG cryoconite ranged between 12.36
and 32.49mgg~' and averaged 20.09 mgg~'. Although
the average concentrations of IC, OC and total Fe (7.67,
11.18 and 39.94 mgg~', respectively) were much higher
than those of BC (Fig. 3a), the light absorbability of IC is typ-
ically trivial and thus ignored, whereas BC is a much more
effective absorber than OC and Fe. Accordingly, the mass
absorption cross-section (MAC) values for uncoated BC and
OC particles are 7.5 and 0.6 m? g~' (550 nm), respectively
(Kirchstetter and others, 2004; Bond and Bergstrom, 2006).
In this study, we referenced the average ratios of goethite/
total Fe and hematite/total Fe (0.486 and 0.065, respectively)
in the LHG cryoconite (Cong and others, 2018) to calculate
the concentrations of goethite and hematite to effectively
control for the absorption of dust. In addition, the MAC
values for the goethite (Stream Chemicals, Inc.,
Newburyport, MA, USA) and hematite standards (Sigma
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Table 1. Comparisons of the total Fe and BC concentrations in cryoconite samples from the Third Pole, European Alps and Arctic glaciers

Region Area Glacier Total Fe concentration (mgg~") BC concentration (mgg~"') Source
Third Pole Tienshan Urumgi No. 1 46.2+2.2 0.98 +0.09 Cong and others. (2018)
Qilian Laohugou No. 12 39.94+6.88 1.28+0.25% This work
42.8+1.7 1.05+0.18 Cong and others. (2018)
Qiyi 44.8-53.6 Wu and others. (2016)
Tanggula Xiaodongkemadi 34.8+1.8 0.65+0.06 Cong and others. (2018)
Southeast TP Palong No. 4 41.8+1.3 1.29+0.35 Cong and others. (2018)
Yulong Baishui No. 1 49.0+2.1 19.99+2.8 Cong and others. (2018)
Himalaya Sutri Dhaka 25.12+2.18 Singh and others. (2017)
European Alps ~ Swiss Alps Morteratsch 40.85 £ 6.55 2.2-10 Baccolo and others. (2017);
Di Mauro and others. (2017).
Arctic Svalbard Austre Broggerbreen 22.34+1.47 Singh and others. (2017)
Vestre Broggerbreen 16.71+£0.99 Singh and others. (2017)
Midre Lovénbreen 28.17-32.41 Singh and others. (2013)

¢ Average values of BCror and BCror

Aldrich Inc., St. Louis, MO, USA) at 550 nm were set,
respectively, at 0.31 and 1.13m?g~" (Cong and others,
2018). Here, we assumed that the light absorption of
LAls = concentrations; a1s x MAC, a;s and components other
than BC, OC and free Fe in the LHG cryoconite could be con-
sidered negligible with respect to solar light adsorption.
Putting together these pieces of information about LAls con-
centration and properties, we conclude that the BC in the
LHG cryoconite was responsible for a higher fraction of
light absorption (38.1%) than the Fe (goethite 4+ hematite,
35.9%) and OC (26.0%) at 550 nm (Fig. 3b). Recently, Cong
and others (2018) found that BC in LHG cryoconite also con-
tributed more to light absorption than free Fe at 600 nm,
whereas goethite played a stronger role at short wavelengths
due to its higher MAC value (1.55+0.08 m* g~ ' at 450 nm,
0.15+0.01 m* g~ at 600 nm). Furthermore, in their study,
OM dominated light absorption at both 450 and 600 nm
because OM is composed of LAls other than OC, such as
soil humus, humic-like substances and microbial particles.
However, only OC was considered in our study.

3.3 Spectral and broadband albedos

In addition to the angular and spectral distribution of incom-
ing solar radiation, snow albedo is influenced by the physical
properties of the snow (e.g.,, complex refractive index,

20

optically equivalent grain size, density, depth, liquid water
content and LAls within the snowpack) (Warren and
Wiscombe, 1980; Wiscombe and Warren, 1980). The spec-
tral and broadband albedos for various types of LHG surfaces
measured in the field are shown in Figure 5 and Table 2,
respectively. The rough shape of the snow spectral albedo
is controlled by the complex refractive index of ice, which
is very close to that of liquid water for L <5 pum (Warren
and Wiscombe, 1980). Therefore, the valleys at wavelengths
of ~770-830, 870-920, 1000-1060, 1200-1300, 1400-
1600, 1900-2100 and 2400-2500 nm were attributed to
the peak values of light absorption of ice/water at the corre-
sponding wavelengths (Warren and Brandt, 2008).

The cryoconite basin and mound as well as the moraine
sediments had the lowest spectral albedos in Figure 5a,
and the mean values were <0.1 across the visible and
near-IR region. In general, the spectral albedos increased at
wavelengths shorter than 560 nm and decreased at wave-
lengths longer than 2300 nm. In particular, the cryoconite
mound, that is substantially dry, and moraine and moraine
sediments (3 and 10 in Fig. 5, respectively) showed higher
reflectance than the wet cryoconite accumulated in ice
holes or dispersed on the glacier surface (6 and 12 in
Fig. 5). The reason for this is linked to the effect played by
wetness and liquid water on light absorption; it is commonly
known that the presence of superficial liquid films decreases
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Fig. 4. Ratios of BCLT to BCHT in cryoconite collected on the surface of LHG during the summer of 2015. (TOR and TOT represent the

thermal-optical reflectance and transmittance method, respectively.)
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Fig. 5. (a) Spectral albedos of cryoconite/snow/ice in the ablation zone (greyed shading for known water absorption wavelengths). Broadband
albedos for the cryoconite/snow/ice types listed in Table 2. (b) Snow surrounding the cryoconite ice mound (A14 in Table 2); (c) ice
surrounding the cryoconite ice mound (A12 in Table 2); (d) and (e) surface ice and cryoconite materials, respectively (A1-2 in Table 2); (f)
surface ice before and after the removal of uniform debris (A9 in Table 2); and (g) cryoconite basin (A7 in Table 2).

the albedo of some materials (Angstrom, 1925; Lekner and
Dorf, 1988), including cryoconite (Di Mauro and others,
2017). Once the cryoconite material and moraine sediments
were removed, the spectral albedos of the cryoconite/
moraine-free ice (9 and 11 in Fig. 5) increased in the
visible light and shortwave NIR range but decreased in the
longwave NIR wavelengths and even approached zero at
wavelengths longer than 1500 nm, indicating that the
glacier ice contained less LAls and that much of the NIR radi-
ation was absorbed by the melting ice surface and/or

transmitted into deeper layers. These effects complemented
each other, resulting in higher broadband albedos for clean
ice layers.

The shape of the spectral albedos for surface snow (1, 2
and 4 in Fig. 5) and ice (3 and 5 in Fig. 5) near the cryoconite
mound was generally similar to those for snow and sea ice
measured in the Arctic (Beggild and others, 2010; Aoki and
others, 2013; Pope and Rees, 2014). The reflectance of
snow showed a higher average range across almost all the
investigated spectra than those of other types of surfaces.

Table 2. Broadband solar albedos for characteristic snow/ice/cryoconite types in LHG (August 2015). (1) Cryoconite basin, (2) cryoconite
mound, (3) surface ice with cryoconite, (4) surface ice after the removal of cryoconite, (5) surface ice with uniform debris, (6) surface ice
after the removal of debris, (7) coarse-grained ice around the cryoconite mound, (8) coarse-grained snow around the cryoconite ice
mound, (9) cloud amount, (10) solar zenith angle and (11) elevation (m)

Site 1 2 3 4 5 7 8 9 10 11

AT-1 0.10 0.19 0 45.1 4350
Al-2 0.13 0.21 0 42.4 4349
A2 0.12 0.15 0 38.7 4375
A3-1 0.09 0.18 0 30.4 4402
A3-2 0.14 0.24 0 28.3 4402
A4 0.11 0.49 0 25.4 4501
A5 0.11 0.29 1 24.7 4552
A6-1 0.09 0.22 2 25.1 4577
A6-2 0.22 0.52 2 26.1 4577
A7 0.09 0.20 1 36.3 4575
A8-1 0.10 0.25 1 44.5 4598
A8-2 0.07 0.26 1 51.7 4598
A9 0.05 0.21-0.33 2 46 4598
A10 0.10 0.22 3 38.1 4688
A1l 0.10 0.30 3 38.1 4688
A12 0.07 0.19-0.40 3 36.3 4742
A13 0.09 0.58-0.77 7 30.2 4806
Al4 0.10 0.56-0.74 8 27.3 4848
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The dirty ice albedos showed low reflectance values of ~0.3
in the visible wavelengths and <0.2 in the NIR wavelengths
due to the presence of LAls, which dramatically altered the
optical properties of these surfaces. In this work, we did not
measure the concentrations of LAls in surface snow/ice,
although the concentrations of BC and mineral dust in LHG
snow pits have been reported to be only 35ngg™"' (Ming
and others, 2009) and 3.5pgg ' (Dong and others,
2014b), respectively, whereas BC concentrations of up to
2000 ngg~' have been observed in surface snow/ice
(Zhang and others, 2017c¢). The lower LAl concentrations
could explain the higher broadband albedos of the coarse-
grained snow (0.56-0.77) and ice (0.19-0.4) surrounding
the cryoconite. After spreading to nearly clean snow/ice sur-
faces via wind, streams or gravity, cryoconite granules con-
taining abundant LAls reduce the surface albedo, efficiently
absorb solar radiation, accelerate glacial melting and
produce holes in the ice.

3.4 Surface melting caused by cryoconite

The changes between the control and experimental plots
during the study period were recorded at eight different ele-
vations in the ablation zone (Fig. 6 and Table 3). After a few
hours of melting, the ice surfaces at the experimental plots
became whiter and ~1-2 cm higher than their surroundings
(i.e., the control plots in Fig. 6a) on 13 August 2015. The
low-density and more opaque layer formed in the uppermost
glacier ice was referred to as weathering crust (Miiller and
Keeler, 1969). Although the weathering crust contained
LAls and would be reduced by net radiation and sensible
heat, it could result in a greater reflection of incident radi-
ation than absorption by the melting ice surface and/or
greater transmittance to deeper layers. Therefore, the
melting rate of the subsurface ice layer was confined
(Irvine-Fynn and Edwards, 2014). However, the dirty cryoco-
nite layers in the control plots were merely a few millimetres
thick; therefore, the heat fluxes could be transported to the
subsurface ice layer, thereby increasing the temperature of
the subsurface ice layer to 0°C and accelerating melting.
After the 12 d in situ experiment, the ice pillars that sur-
vived in the experimental plots were 28-40 cm higher than
the control plots’ surfaces. The ice pillars were covered by
a layer of porous ice with loosely interlocking crystals under-
lain by material with a higher density. Therefore, the cryoco-
nite material increased glacial melting by a factor of 2.27-
3.28cmd™! relative to cryoconite-free ice surfaces under
the same meteorological conditions (Fig. S1). For

comparison, cryoconite accelerated surface ablation at a
rate ~ three and 1.6-2.6 times greater than that observed
for cryoconite-free bare ice in Yala Glacier (Nepal
Himalaya) (Kohshima and others, 1993) and in Glacier No.
31 (Russian Siberia) (Takeuchi and others, 2015), respect-
ively. Additionally, there was a poor correlation (R* < 0.1)
between the enhanced melting rate and the broadband
albedos of the control plots (Fig. S3a). Furthermore, there
was no obvious altitude effect on the melting rate (R* <
0.22) (Fig. S3b), indicating that the results could be also influ-
enced by these unmeasured factors, such as the liquid water
content and thickness of the cryoconite, which could impact
the transmitting efficiency of conductive heat, slope and
aspect, which could in turn influence the abundance of
solar radiation reaching the glacial surface.

3.5 Estimated albedo reduction and surface ablation
by LAls in cryoconite

Because the spectral albedos of the weathering crust were
not measured in the field, we simulated them using the
SNICAR-online model (Flanner and others, 2007), which is
constrained by the average concentrations of BC and dust
48.7ngg™ " and 72.8 pgg~', respectively) in the glacier
ice layers (excluding the dirty layers) of an ice pit excavated
in the ablation area (4550 m) of LHG (1 August 2016). We
used a snow optical grain radius of 1500 pm and a snow
density of 600 kg m™>. Atmospheric conditions were input
as a clear or cloudy sky based on the observed incoming
shortwave radiation. Snow thickness was assumed to be 1

m. Albedos of the underlying ground followed the recom-
mended values for the SNICAR model (visible: 0.2, near-IR:
0.4). The simulated spectral albedos of the weathering crust
are shown in Fig. S4. In addition, we assumed that the differ-
ences of albedo, IRF and surface ablation between the
control plots and the experimental plots were only contribu-
ted by BC, OC and free Fe based on their total light absorp-
tion proportions at 550 nm (Fig. 3b), regardless of ice algae,
humic matter and liquid water.

The modelled broadband albedos of the weathering crust
in LHG (0.506-0.565) were consistent with the minimum
albedos of coarse-grained snow around the cryoconite
observed at A13 and A14 (0.56) but were 0.292-0.491
higher than those observed for the LHG cryoconite (0.051—
0.216) (Fig. 7a) due to the presence of LAls, thus the cryoco-
nite simultaneously absorbed at least 312.0-486.6 W m~?
more than the weathering crust (Fig. 7b). Consequently, the
albedo reductions of BC, OC and free Fe (hematite and

Fig. 6. Observed surface melting enhanced by cryoconite from LHG, Qilian. (a) Weathering crust formed after ~6 h of melting, and (b) ice

pillars that survived after 12 d of melting.
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Table 3. Heights of ice pillars that survived in the experimental plots and accelerated melting rate caused by cryoconite relative to cryoco-

nite-free ice surfaces from 13 to 25 August 2015

Start time End time Height (cm) Melting rate (cm d™"
Site 13 Aug 2015 25 Aug 2015 Min Max Min Max Elevation (m)
Al-1 10:47 18:40 28 32 2.27 2.60 4350
A1-2 10:43 18:40 30 32 2.43 2.60 4349
A2 11:25 18:36 34 36 2.76 2.93 4375
A3-1 12:21 18:15 30 32 2.45 2.61 4402
A4 13:09 18:09 37 40 3.03 3.28 4501
A5 13:37 18:09 30 31 2.46 2.54 4552
Ab6-1 14:27 17:22 33 35 2.72 2.89 4577
A6-2 14:31 17:22 34 36 2.81 2.97 4577
A7 15:28 10:37 35 38 2.97 3.22 4575
A8-1 16:27 15:43 28 33 2.34 2.76 4598
A8-2 16:53 16:26 34 38 2.84 3.17 4598

goethite) were respectively of 0.159 +0.037, 0.108 +0.037
and 0.154+0.046 (Fig. 7a). The associated uncertainties
could be due to discrepancies in LAl concentrations and
their contributions to total light absorption, solar zenith
angle and atmospheric conditions. Furthermore, the aver-
aged IRF of BC was comparable to that of hematite + goethite
(~150 W m~?) but much higher than that of OC (102.8 W
m~?); the BC IRF in the LHG cryoconite was comparable to
or higher than most previously reported BC IRF in the

surface snow and ice of Third Pole glaciers (Yang and
others, 2015; Ming and others, 2016; Niu and others,
2017a, 2017b; Zhang and others, 2017a, 2017b, 2017¢).
During the 12 d in situ experiment, the various LAls in cryo-
conite effectively enhanced the melting rate by 2.27-3.28
cmd™" compared to a cryoconite-free ice surface under
the same meteorological conditions. Free Fe played the
most important role in accelerating surface ablation (1.01 +
0.25cmd™"), followed by BC and OC (0.99+0.15 and

Broadband albedo

Enhanced melting rate
(cm day™)

[ Goethite
Hematite
[ BC
[ Joc
Observed

A12 4
A13
A14 4

A10
A11 -

Site

Fig. 7. (a) Simulated broadband albedo of the weathering crust and observed broadband albedo of the LHG cryoconite. The discrepancies are
due to the albedo reduction caused by LAls. Simulated (b) IRF and (c) enhanced melting rate contributed by OC, BC and free Fe (hematite and

goethite) in the LHG cryoconite.
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0.76 +0.30 cm d ™', respectively) (Fig. 7c). Considering that
the ablation period often lasts for more than 2 months in
this area, this melting rate should considerably affect the
ablation process of LHG. Therefore, the results highlight
that the albedo of cryoconite-loaded ice is critical for the
mass balance of Tibetan glaciers.

4. CONCLUSIONS

This study presents the particle size distributions, LAl con-
centrations and spectral albedos of cryoconite and the cryo-
conite-enhanced melting rates on LHG on the north-eastern
Tibetan Plateau. The particle size distribution of LHG cryoco-
nite presented a unimodal pattern. Silt grains (~2-63 pm)
accounted for 81.9-89.7% of the total cryoconite particles.
The average concentrations of IC, OC and Fe (7.67, 11.18
and 39.94mgg™', respectively) were much higher than
that of BC (1.28 mg g~ '), whereas BC was responsible for a
higher fraction of light absorption (38.1%) than Fe (goethite
and hematite) and OC (35.9% and 26.0%, respectively).
Therefore, cryoconite granules containing abundant LAls
can reduce the surface albedo and efficiently absorb solar
radiation. Based on spectral albedo observations, cryoconite
exhibited the darkest surface and the lowest mean reflect-
ance (i.e., <0.1) across the visible and near-IR wavelength
range of any material. Compared with the cryoconite-free
ice surface under the same meteorological conditions, cryo-
conite effectively enhanced the melting rate by 2.27-3.28
cmd™" during the 12 d in situ experiment. However, free
Fe played the most important role in accelerating surface
ablation (1.01+0.25cmd™"), followed by BC and OC
(0.99+0.15 and 0.76+0.30cmd™', respectively). The
results presented here further enhance our understanding of
the complex role of cryoconite in the glacier mass balance
in the northern areas of the Tibetan Plateau.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at
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