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Abstract

A trigonometric series has "small gaps" if the difference of the orders of successive terms is
bounded below by a number exceeding one. Wiener, Ingham and others have shown that if a
function represented by such a series exhibits a certain behavior on a large enough subinterval
/, this will have consequences for the behavior of the function on the whole circle group. Here
we show that the assumption that / is in any one of various classes of functions of generalized
bounded variation on / implies that the appropriate order condition holds for the magnitude of
the Fourier coefficients. A generalized bounded variation condition coupled with a Zygmund-
type condition on the modulus of continuity of the restriction of the function to / implies
absolute convergence of the Fourier series.

1980 Mathematics subject classification (Amer. Math. Soc.): 42 A 16, 42 A 55, 26 A 45.

1. Introduction

A trigonmetric series J2an cos nx + bn sin nx — ^ An(x) is said to be lacunary
if it exhibits large gaps, that is, an = bn — 0 except for n € {rik} where
nfc+i/nfc > q > 1, k — 1,2, Such series have been extensively studied
(Zygmund [10], Chapter V, Sections 6-8; Bary [1], Chapter XI) with results of
the following character: some particular local property of the series implies that
it has a certain global property.
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We say tha t a tr igonometric series ^2Ank(x) has "small gaps" if n,k+i — nk>
q > 1. Although this case is briefly t rea ted in the s t andard sources ([10], Chapte r
V, §9; [1], Chapter XI, §13), the l i terature is not well known and we will review
it briefly.

These problems seem first to have been considered by Wiener [9], who showed
tha t if a series with small gaps behaves well in a large enough interval, then
some aspects of this behavior hold for [0,2ir]. His pr imary interest was the
generalization of the Hadamard gap theorem.

Wiener's result was improved by Ingham [3] who employed it to establish a
generalized form of the Hardy-Lit t lewood "high-indices" theorem. Kennedy [4]
established results on nonharmonic tr igonometrical series which specialize to the
harmonic case as follows: If rik+i — rik —> oo and J2-^nk{x) is the Fourier series
of an integrable function / , then

(i) / of bounded variation (BV) on an interval / implies an, bn — O(n~l).
(ii) / G A a on / , 0 < a < 1, implies an,bn = O(n~a).
(iii) / € AQ on /, \ < a < 1, implies £ \an\ + \bn\ < oo.
(iv) / e Aa on /, 0 < a < 1, and f € BV implies £ l«»i»| + \bn\ < oo.
Here Aa denotes the Lipschitz class of order a. Actually he showed these

results hold if lim(nfc+i - njt) > 32TT/|/| and, therefore hold regardless of the
length of / if rik+i - ^ -» oo.

Noble [5] had established the above conclusions under the assumption (n/t+i —
rifc)/log njfc —> oo. Bary [1], Chapter XI, §13, reports on the work of Noble and
slight generalizations of it by Ul'yanov. Her comment to the effect that Kennedy
required / € L2([0, 2TT]) in his results is misleading. Patadia [6] has shown that
a similar extension of SteCkin's theorem on absolute convergence ([1, page 196])
can be made by assuming the conditions of that theorem to hold on an arbitrary
interval and requiring further rik+i — rik —• oo.

2. Definitions and background

Let / be a real function defined on the circle group T([0,2ir)). {/„} will denote
a collection of nonoverlapping intervals in T. HI — [a, b], then / ( / ) = f(b)—f(a).

If A = {An} is a nondecreasing sequence of positive real numbers such that
£ 1/An = oo, we say that / is of A-bounded variation (ABV) if J2? |/(/n)|/An

< oo for every {/n}. This is known to imply that the collection of sums
EI/('»)IMn is bounded [8].

Let <p(x) be a nonnegative convex function defined on [0, oo) such that <p(x)/x
—• 0 as x —» 0. We say that / is of ^-bounded variation (<pBV) if for some c > 0,

} = VeU) < oo.
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If h(n) is a nondecreasing concave-downward function on the positive integers,
we say that / € V[h] if there is a constant C such that £ " |/(/fc)| < Ch{n),
n — 1 ,2 , . . . , for every collection {/n}.

We say that / is in one of the classes on I C T if, in the definition, we restrict
{/„} by /„ C / .

We concern ourselves here with the known estimates of the order of magnitude
of the Fourier coefficients for functions in these classes [7] and with a condition
for the absolute convergence of Fourier series of V[na] [2], showing that these
results hold if the conditions are satisfied on a (large enough) small interval
I CT.

3. Statement of results

We suppose throughout that / is a real function in Ll{T) with Fourier series
£cnfcein*x, n_fc = -nfc, satisfying nk+1 - nk > q > 1, k = 0,1,2,.... Let
I C T be a closed interval with length |7| = (1 + 6)2ir/q, 8 > 0.

We have the following results.

THEOREM 1. With f and I as above,
(i) / e V[h] on I implies cn = O(h(\n\)/\n\).
(ii) / e LBV on I implies cn = 0 (1 /^ i " 1

(iii) / G ipBV on I implies cn =

THEOREM 2. Let f and I be as above. Let ui(f,t) be the modulus of conti-
nuity of f restricted to I. If f € V[na] on I, 0 < a < \, and

" Iwa-^)/2d-)^i^< O O )

then the Fourier series of f converges absolutely.

It is clear that if we make the assumption rik+i— nk —> oo, then the conclusions
hold for any nondegenerate interval / .

4. Preliminaries

The proofs of our theorems rest on two other results:
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LEMMA 1. Let f eL1(T)DL2(I), / a closed subinterval ofT. The sequence
of partial sums of the Fourier series of f converges to f in L2(I') for any closed
interval I' in the interior of I.

PROOF. With I and / ' as above, let g = f on / and g = 0 on T\I. Let Sn()
be the nth partial sum of the Fourier series of a function. Since g € L2 (T) we
have ||-Sn(<?) - <7||z,2(r) —• 0 as n —• oo. Therefore,

I|5B(/) - f\\LHn < \\Sn(f) - Sn(g)\\LHn + ||Sn(ff)
< \\Sn(f) - Sn(g)\\L2{II) + \\Sn(g) - g\\LHT)

= o(l),
since the localization principle implies that Sn(f) — Sn(g) —> 0 uniformly on / ' .

Lemma 1 enables us to extend a result due to Ingham [3] as follows.

LEMMA 2. Let J2cnke
inilX be the Fourier series of a function f € Ll(T) (~l

L2(I) where -nk = n-k, nk+1 -nk > q > 1, k - 0,1,2,.. . , and \I\ = (l+6)2Tr/q
for some 6 > 0. Then

—oo

)2/where As = 2TT(1 + 8)2/46{2 + S).

PROOF. Let /,, be a closed interval of length (1 + r))2ir/q concentric with /,
r\ < 6, and let SN(x) = £fcL-Ncn*e*n*x- Then by [10], Chapter V, Theorem
9.1

TV .

£ |c»J9<(VIJil)/ \SN(x)\2dx.
k=-N •'Ii

By Lemma 1, Sn -* f in L2(/,) as N -> oo and therefore /7 |5JV|2 -> fj |/ |2,
implying

—oo

Letting T) increase to 6 we have the desired result.

5. Proof of Theorem 1

Let |/| = 2ir/q + 2e and let / ' be the concentric interval of length 2ir/q + e.
Consider |Jfc| so large that 0 < 2ir/\nk\ < e/2 and let N = Nk = [(|nfc|e/47r) - 1].
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For j = 1,±1,±2,...,±N, let

9j(x) = f{x + 2*j/\nk\ + 7r/2|nfc|) - f(x + 2vj/\nk\ - n/2\nk\).

Then, for every s,

gj(na) = 2icn,e
i2^n'^ sinns7r/2|nfc|.

(i) If / € V[h] on /, then g, is bounded on V and, therefore YZN 9i G

By Lemma 2.

N

j=-N S=-oo

N

j=-N Jl'

N

-TV

(The letter C will denote various constants independent of k.) Since (jj(nk) =
2icnk sgn nk and 0 < C < (2JV + l)/|nfc| < C for some constants C and C (that
is, 2JV + 1 ~ |nfc|), it follows that

2

|nfc|2

N

- J V

N

• /JEW
1 / 7 \-Af

da;

which establishes (i).
(ii) If / G K.BV on / we observe that

N

Thus from (*) we have

27V+1 |«fc|

This establishes (ii).
(iii) We observe first that for small enough a > 0 (independent of k),
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implying

-N

Thus, from (*) we have

\cnk\<

which yields (iii).

6. Proof of Theorem 2

Let / € V[na] on I and let gj and / ' be as in the proof of Theorem 1.
From Lemma 2 we have

£ Mns)\
2= f ) *\cn.\asin*n.ir/2\nk\<C [ \gj{x)\*dx

S=-oo S=-oo Jl>

for j = 0, ±1,. . . ,±N. For s such that |n;t|/2 < \na\ < \nk\, we have

sin2ns7r/2|nfc| > | ;

letting Yl* indicate summation over these values of s,

Summing over j and noting that 2N + 1 ~ |njt| we have

Fix x E I' and for each integer m > 0, let

Em = {j|2-(m+1)w,(/,7r/|nfc|) < 9j{x) < 2~mujI(f,n/\nk\)}.

Since |^(x)| < cj/(/,7r/|nfc|), each j belongs to one and only one Em. Let vn

be the cardinality of Em. Since / € V[na] on /,

implying
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Therefore

E te(*)ia = E E to
j=-N

implying

E* I |2 ^ ^ (l-2a)/(l-a)
| c n j 2 < j^|W/ '

For large m, if there is ns such that 2m < n3 < 2 m + 1 , let k = max{s|ns < 2TO+1}.
For such an m,

lc I < _ w
lc".l ^ I | w /

2m<|na|<2">+1 ' '

Hence,

The theorem follows then from the fact that the convergence of $̂ °̂oo lc"»l
implied by the convergence of

0

and the convergence of this last series is equivalent to that of
oo i

*1 /
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